用户名: 密码: 验证码:
立轴漩涡的力学特性与防控措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立轴漩涡是泄洪洞进水口前比较常见的一种流动现象,对泄洪洞的泄洪安全具有很大的危害,因此在工程实际中需要尽量避免出现。本文结合溪洛渡电站水利工程实际,以消除实际工程中的立轴漩涡现象为目标,从模型试验、理论分析、工程应用等三个方面,对立轴漩涡进行了深入研究。
     建立溪洛渡电站水力学整体模型,对泄洪洞进口处的立轴漩涡进行了试验观测,包括立轴漩涡形态观测和表面流场观测。形态观测是在不同淹没水深情况下,对不同进口体型、不同进口边界、不同下泄流量等条件下的立轴漩涡产生及发展变化过程进行了详细观测。对立轴漩涡的形态特征及水力因素进行了总结分析,并且对立轴漩涡的产生和发展的机理进行了理论研究。利用粒子图像跟踪测速技术对泄洪洞进口前表面流场进行了试验观测,得到了不同水位情况下的流场变化情况,并且根据流场数据计算得到了漩涡环量随淹没水深的变化规律。
     表面流场分布和临界淹没水深是立轴漩涡的两个重要影响因素,本文重点对这两个方面进行了理论研究。针对立轴漩涡表面流场分布,对比分析了之前相关研究的理论和经验公式。根据试验观测及理论分析,改进了立轴漩涡表面流场的计算公式,提高了计算精度,并用漩涡模型实验结果对其进行了验证,在立轴漩涡的理论研究方面具有一定的进步。同时,通过“镜像法”理论,能够考虑侧壁对漩涡的影响,将立轴漩涡的研究理论从无限水域的自由漩涡拓宽到有边壁限制的受限漩涡,理论研究结果更容易应用到水电站的工程实际,研究不仅具有理论意义,而且具有工程应用价值。利用溪洛渡电站水工模型试验数据,对表面流场公式进行了对比分析,进一步验证了改进公式的精度和“镜像法”的适用性。
     总结分析了对漩涡产生起主要作用的影响因素,对立轴漩涡产生和发展机理进行了讨论。同时,对立轴漩涡的临界淹没水深进行了细致深入的研究,探讨了临界淹没水深的判定方法,并且利用模型试验数据对其进行了验证。在此基础上,进一步对泄洪洞进口体型进行了优化分析,提出了一个更有利于消除立轴漩涡的进口体型设计,可以在工程设计上作为参考。
     最后,本文系统地总结了工程实际中常用的消涡措施,并对其消涡原理进行了探讨。从临界淹没水深和表面流场两个方面尝试对消涡措施进行理论上的分析,以期对工程实际中选择合适的消涡措施提供参考。
The vertical vortex frequently occurs in the spillway tunnel intake, which is aserious damage to the safety of flood discharge, so it must be avoided in the engineeringpractice. In this paper, the research is aimed to avoid the vertical vortex phenomenon onXiluodu hydraulic project via the study on experiment investigation, theory analysis andengineering application.
     The experiment study was carried out on the huge hydraulic model of Xiluoduproject. The vortex shape evolution was observed under different submergence depthswith different intake types, different intake boundaries and different flow discharges.The form characteristics and hydraulic effects were analyzed, and the formation andevolution of vertical vortex were studied theoretically. The flow field velocitydistribution was measured by the Particle Tracking Velocimetry (PTV) technology infront of spillway tunnel intake. The development of surface velocity distribution wasobtained with different submergence depths and the changing of velocity circulationwas calculated with different submergence depths.
     Surface velocity distribution and critical submergence depth are two importantaffects to vertical vortex, which have been studied theoretically in this paper. Since allthe related velocity formulas have disadvantage, a new formula of surface velocitydistribution was proposed based on the Navier-Stokes Equations and the experimentresults, whose advantage has been confirmed by comparing with former formulas. Theproposed formula is applied to engineering practice via the “method of images”, whichcan consider the effect of boundary. The vortex theory was developed from free vortexto bounded vortex within boundary, and it is more easily to apply the research theory tothe engineering practice. Moreover, the experiment results certified the precision ofproposed formula and the applicability of “method of images”.
     Based on the theory of “Critical Spherical Sink Surface (CSSS)”, the mechanismabout formation and evolution of vertical vortex was analyzed theoretically. A criterionof critical submergence depth was proposed which is modified by the model experimentresults. Meanwhile, the optimizing research was put forward on spillway tunnel intake,and an optimal type was proposed, which should be more helpful to anti-vortex inengineering practice.
     The purpose of experiment investigation and theoretical research in this paper is toavoid or reduce the vertical vortex phenomenon in engineering practice. Therefore, thecommon anti-vortex measurements were systematic generalized, and the relatedmechanism was discussed. The theoretical analyses were mainly focused on surfacevelocity distribution and critical submergence depth, so as to give suggestions to theengineering practice.
引文
[1]肖白云.溪洛渡水电站高拱坝大流量泄洪消能技术研究.水力发电,2001,(8):69-71.
    [2]韩昌海,党媛媛,赵建钧.大型超高速水流泄洪隧洞安全运行的水力控制[J].水利水电技术,2008,39(4):94-97.
    [3]郭军,张东,刘之平,范灵.大型泄洪洞高速水流的研究进展及风险分析[J].水利学报,2006,37(10):3911-3915.
    [4]陈永灿,江春波,李玉柱.溪洛渡水电站枢纽泄洪消能整体模型试验研究报告.清华大学水利水电工程系,2006.6.
    [5]陈云良.进水口前立轴旋涡水力特性的研究[博士学位论文].四川:四川大学水利水电工程系,2006.
    [6]李海峰,陈红勋,马峥,郭加宏.吸气旋涡的研究与展望.第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(上册),2005:660-671.
    [7]王水田、钱炳法,黄坛口水电站进水口旋涡运动的初步研究报告,水利电力部南京水利科学研究所,1964.
    [8]马吉明,刘德朝.三峡水电站进水口试验研究.中国三峡建设,1999(3):18-20,23.
    [9]郑双凌,马吉明,陈浩波,南春子.进水口漩涡特性及临界淹没水深的研究进展.南水北调与水利科技,2010,8(5):129-132.
    [10]党媛媛,韩昌海.进水口漩涡问题研究综述.水利水电科技进展,2009,29(1):90-94.
    [11] Padmanabhan M, Hecker G E. Scale effects of modeling flow conditions in pump sump.ASCE.1983:153-158.
    [12] Knauss J. Swirling flow problems at intakes. IAHR hydraulic structures design manual,1987.
    [13] Hecker G E. Model-Prototype comparison of free surface vortices. Journal of the HydraulicsDivision, ASCE,1981,107(10):1243-1259.
    [14]胡去劣.低水头进水口的布置及漩涡试验研究.南京:南京水利水电科学研究院,1985.
    [15] Posey C.J, Hsu H. How the vortex affects orifice discharge.Engineering News Record,1950,114(9):30-32.
    [16]汝树勋,刘亚辉.进口漏斗旋涡对有压隧洞脉动壁压的影响.成都科技大学学报,1990(6):85-91.
    [17]杨欣先,李彦硕.水电站进水口设计.大连:大连理工大学出版社,1990.
    [18]张磊.进水口漩涡缩尺效应研究[硕士学位论文].天津:天津大学,2009.
    [19] Rankine W J M. Manual of applied mechanics. C.Griffen Co., London, England,1858.
    [20] Einstein H A., Li H. Steady vortex flow in a real fluid. La Houille Blanche,1955(4):483-496.
    [21]杨正駿,林宗燊,谢佩珍,潘梦钦.水工建筑物进水口自由表面漩涡试验研究.水力发电学报,1987(1):22-35.
    [22]林宗燊,杨正骏,谢佩珍,陈水俤.进水口前立轴漩涡区水流流速特性.水力发电学报,1987(2):11-20.
    [23] Odgaard A J. Free-surface air core vortex. Journal of Hydraulic Engineering, ASCE,1986,112(7):610-620.
    [24] Rosenhead, L. The spread of vorticity in the wake behind a cylinder. Proc. Royal Society ofLondon, England, Series A,1930,127:590-612.
    [25] Mih, W. C. Discussion of 'Analysis of fine particle concentrations in a combined vortex.' J.Hydr. Res.,1990,28(3):392-395.
    [26] HITE E J, MIH W C. Velocity of vertical vortices at hydraulic intakes. Journal of HydraulicEngineering, ASCE,1994,120(3):284-297.
    [27]马吉明,黄继汤,刘天雄.压力进水口的最小淹没水深.水利水电技术,1999,30(5):55-57.
    [28]杜敏.进水口漩涡形成机理及缩尺效应[博士学位论文].天津:天津大学,2008.
    [29] Gordon J L. Vortices at intakes. Water power,1970,22(4):137-138.
    [30]张仲卿,梁军贤,魏有健.大型水电站发电进水口水流流态研究.水力发电,1999(4):16-19.
    [31] Jain A K, Ranga Raju K G, Garde R J. Vortex formation at vertical pipe intakes. Journal of thehydraulics division, ASCE,1978,104(10):1429-1448.
    [32] Pennino B J.抽水蓄能电站进水口模型试验的综合资料,1979,陈蕴莲译.
    [33] Odgaard A J. Discussion of “Free-surface air core vortex.”. Journal of hydraulic Engineering,ASCE,1988,114(4):449-452.
    [34] Daggett L L., Keulegan G H. Similitude Conditions in Free-Surface Vortex Formations.Journal of the Hydraulics Division, ASCE,1974,100(11):1565-1581.
    [35] Gulliver J S., Rindels A J., Lindblom K C. Designing intakes to avoid free surface vortices.Water Power and Dam Construction,1986,(9):24-28.
    [36] Gulliver J S., Rindels A J. Weak vortices at vertical intakes. Journal of Hydraulic Engineering,1987,113(9):1101-1116.
    [37]马吉明,刘德朝.小斜式进水口临界吸气深度的水力试验研究.水利水电技术,1997,28(11):52-56.
    [38] Ma J, Huang J. Vortices at hydroelectric intakes.’98Hydropower International. Beijing,1998:310-314.
    [39]马吉明,梁元博.电站双孔进水口临界淹没水深的试验研究.清华大学学报(自然科学版),2000,40(5):122-124.
    [40] Lewellen W S. A Solution for Three-Dimensional Vortex Flows with Strong Circulation. J.Fluid Mech.1962,14:420-433.
    [41] Anwar H O. Flow in a free vortex. Water Power,1965,4:153-161.
    [42] Anwar H O, Well J A, Amphlett M B. Similarity of Free-Vortex at Horizontal Intake. Journalof Hydraulic Research,1978, l16(2):95-105.
    [43] Reddy Y R., Pickford J A. Vortices at Intakes in conventional Sumps. Water Power,1972,24(3):122-126.
    [44] Nevzat Y., Fikret K. Critical submergence for intakes in open channel flow. J. Hydr. Eng.,1995,121(12):900-905.
    [45]邓淑媛.边界条件对进口水而漩涡的的影响及其克服方法的探讨.中小型工程水力学学术讨论会论文集下册第70号论文,1985.
    [46]邓淑媛.泄水建筑物进口水面漩涡的形成及其克服方法的探讨.水利水运科学研究,1986(4):51-63.
    [47]可可托海电站泄洪洞整体模型试验报告.水电部西北水利科学研究所,1960.
    [48]宝珠寺水电站泄流底孔水工模型试验报告.水电部西北水利科学研究所,1980.
    [49]石头河水库泄洪洞进口地形对洞内流态影响水工模型试验报告.陕西省水利科学研究所,1978.
    [50]新疆黑孜水库副坝下涵洞水工模型试验报告.水电部西北水利科学研究所,1983.
    [51]小川沟水库泄洪洞模型试验报告.西北水工试验所,1956.
    [52]夏毓常.进水口旋涡特性的初步试验.水利水电科学研究院科学研究论文集,1982:159-167.
    [53]卢永金,郭子中.进水口前的水流运动.水动力学研究与进展,1989,4(1):74-78.
    [54]朱卫国.水平进水口前立轴漩涡特性探讨.南京:河海大学,1988.
    [55]陈宗娜,伍超,陈云良,叶茂.进水口前立轴旋涡的试验研究.西南民族大学学报(自然科学版),2006,32(4):799-804.
    [56]邓加林,孙双科,夏庆福.漫湾水电站二期工程进水口漩涡问题研究.云南水力发电,2006,22(2):35-39.
    [57]段文刚,金峰,杨文俊,陈端.三峡地下电站进水口漩涡特性试验研究.水力发电学报,2010,29(2):177-182.
    [58]周华兴.消除船闸输水廊道进口漩涡措施的研究.水运工程,1993(4):29-35.
    [59] Andersen A., Bohr T., Stenum B., Juul Rasmussen J., Lautrup B. Anatomy of a BathtubVortex. PHYSICAL REVIEW LETTERS.2003,91(10):1-4.
    [60] Piva M., Iglesias M., Bissio P., Calvo A. Experiments on vortex funnel formation duringdrainage. Physica A,2003,329:1-6.
    [61] Novak P., CABELKA J. Models in hydraulic engineering physical principles and designApplications. Boston: Pitman Advanced Publishing Program,1981.
    [62] Nystrom J B., Padmanabhan M., Hecker G E. Modeling flow characteristics of reactor sumps.Journal of the energy division, ASCE,1982,108(10):169-183.
    [63] Zajdlik M. New checking mode of model parameter for vortex formation in pump tanks,Proceedings of the17th congress, IAHR, Baden-Baden, West Germany,1977,5:379-386.
    [64]周君亮.泵站原、模型水力特性换算研究.江苏水利,2004(6):8-11,15
    [65] Daggett L K., Keulegan G H. Similitude conditions in free-surface vortex formation. Journalof the Hydraulics Division, ASCE,1974,170(11):1565-1581.
    [66] Amphlett M B. Air-entraining vortices at a horizontal intake. England: Hydraulic ResearchStation,1976.
    [67] Quick M C. Efficiency of air-entraining vortex formation at water intake. Journal of thehydraulics division, ASCE,1970,96(7):1403-1416.
    [68] Jain A K., Ranga K G., Garde R J. Vortex formation at vertical pipe intake. Journal of theHydraulics Division, ASCE,1978,104(10):1429-1445.
    [69] Denny D F. An experimental study of air-entraining vertices in pump. Journal of theInstitution of Mechanical Engineers,1956,170(2):106-116.
    [70] Hatterley R T. Hydraulic design of pump intakes. Journal of the Hydraulics Division,1965,91(2):131-137.
    [71] Iversen H W. Studies of submergence requirements of high-specific speed pumps. Trans.ASME.1953,75(4):107-112.
    [72]高学平,杜敏,宋慧芳.水电站进水口漩涡缩尺效应.天津大学学报,2008,41(9):1116-1119.
    [73] Hecker G E. Model-Prototype comparison of free surface vortices. Journal of the HydraulicsDivision, ASCE,1981,107(10):1243-1259.
    [74] Knauss J. Swirling flow problems at intakes. IAHR hydraulic structures design manual,1987.
    [75] Anwar H O. Vortices in a viscous fluid. Journal of hydraulic Research,1968,6(1):1-14.
    [76] Grant L, Smith G H. Modern developments in Particle image velocimetry. Optics and lasers inEngineering,1988,(9):245-264.
    [77] Kraus N C, Lohrmann A, CABrera R. New acoustic meter for measuring3D laboratory flows.Journal of Hydraulic Engineering, ASCE,1994,120(3):406-412.
    [78]声学多普勒流速计(ADV)的工作原理.北京大学特赛流动测量研究中心译.北京:2000.
    [79]杨敏官,高波,顾海飞.旋流式模型泵内部三维湍流流场的测量[J].排灌机械,2008,26(1):60-64.
    [80] Ru S., He X., Dai G.Experimental investigation on steady three dimensional vortex flow fieldthrough horizontal orifices. International Symposium on Hydraulic Research in Nature andLaboratory,1992,11:162-168.
    [81] Levi E. Vortices in hydraulics. Journal of Hydraulic Engineering, ASCE,1991,117(4):399-413.
    [82] Rajendran V P,Constantinescu S G, Patel V C. Experiments on flow in a model water-pumpintake sump to validate a numerical model. ASME Fluids Engineering Division SummerMeeting, Washington, D C,1998.
    [83] Rajendran V P,Constantinescu S G, Patel V C. Experimental validation of a numerical modelof flow in pump-intake bays. Journal of hydraulic Engineering, ASCE,1999,125(11):1119-1125.
    [84] Rajendran V P, Patel V C. Measurement of vertices in model pump-intake bay by PIV. Journalof Hydraulic Engineering, ASCE,2000,126(5):322-334.
    [85] Li Y, Li X, Zhang B, Wu Y, Tomoyoshi O. PIV experimental analysis for the inter flowcharacteristics in the sump suction sump. ASME FED,2002,257(2A):193-198.
    [86] Xu Y, Wu Y, Li Y, et al. Numerical analysis of the submerged cavitating vortex and theentrained air vortex occurred in a model pump sump. ASME FED,2003(2):317-322.
    [87]唐洪武,徐夕荣,张志军.粒子图像测速技术及其在垂直进水口漩涡流场中的应用.水动力学研究与进展,1999,14(1):128-134.
    [88]李永.进水口前空气吸入涡流态的试验研究和数值模拟[博士学位论文].清华大学.2005.
    [89]何学民,汝树勋.消除进水口前漏斗旋涡的措施.泄水工程与高速水流,1992,(1):1-6.
    [90]王水田.水工建筑物漏斗状吸气漩涡问题的研究和进展.水利电力部南京水利科学研究所,1964.
    [91]何学民,汝树勋.水工建筑物进水口自由表面漏斗旋涡消除措施的试验研究.四川水力发电,1992,(3):38-43.
    [92]杜敏,高学平.进水口最小淹没水深和消涡措施.辽宁工程技术大学学报,2007,26(Suppl):237-239.
    [93]李华.水工建筑物进水口前立轴旋涡的研究[硕士学位论文].四川:四川大学水利水电工程系,2003.
    [94]李海峰.自由表面旋涡的机理研究[博士学位论文].上海:上海大学流体力学系,2009.
    [95]溪洛渡水电站泄洪消能动床模型试验研究报告.清华大学水利水电工程系,2008.
    [96] LI H., CHEN H., MA Z., ZHOU Y. Experimental and numerical investigation of free surfacevortex. Journal of Hydrodynamics (ser. B),2008,20(4):485-491.
    [97]董曾南.水力学.高等教育出版社,1996.
    [98] Rankine E J, William J M. A manual of applied mechanics. London: Charles Griffin andcompany,1968.
    [99] CHEN Y., WU C., YE M. et al. Hydraulic characteristics of vertical vortex at hydraulicintakes. Journal of hydrodynamics (ser. B),2007,19(2):143-149.
    [100] Brocard, D. N., Beauchamp, C. H., and Hecker, G. E.(1982)."Analytic predictions ofcirculation and vortices at intakes." Rep.; Res. Proj.1199-8, Electric Power Research Institute(EPRI), Palo Alto, Calif.
    [101]董曾南,章梓雄.非粘性流体力学.清华大学出版社,1998.
    [102] Wang Y., Jiang C., Liang D. Comparison between empirical formulae of intake vortices.Journal of Hydraulic Research,2011,49(1):113-116.
    [103]李书斌.进水口漩涡影响因素研究.天津:天津大学,2009.
    [104]陈云良,伍超,叶茂,李静.立轴漩涡多圈螺旋流速度分布的研究.水利学报,2005,36(10):1269-1272.
    [105]陈云良,伍超,叶茂,陈建叶,陈宗娜.立轴旋涡多圈螺旋流场特性研究.四川大学学报(工程科学版),2007,39(1):13-17.
    [106] Nevzat Y ld r m. Critical Submergence for a Rectangular Intake. Journal of engineeringmechanics, ASCE,2004,130,(10):1195-1210.
    [107] Batchelor G K. An introduction to fluid dynamics. Cambridge University Press, London,1974.
    [108] Yuan S W. Foundation of fluid mechanics. Prentice-Hall Inc., Englewood Cliffs, N.J.1967.
    [109] White F M. Fluid mechanics. McGraw-Hill Book Co., New York, N.Y.1979.
    [110] Nevzat Y., Fikret K. Critical submergence for intakes in still-water reservoir. J. Hydr. Eng.,1998,124(1):103-104.
    [111] Fikret K., Nevzat Y. Effect of circulation on critical submergence of an intake pipe, Journal ofHydraulic Research,2002,40(6):741-752.
    [112] Nevzat Y., Fikret K. Prediction of critical submergence for an intake pipe. Journal ofHydraulic Research,2002,40(4):507-518.
    [113] Nihat E., Tolga B. Prediction of Critical Submergence for a Rectangular Intake. Journal ofenergy engineering, ASCE,2007,133(2):91-103
    [114]施祖辉,陈青生,周春天.消涡梁在抽水蓄能电站进水口中的应用.红水河,2005,24(4):16-19.
    [115]邹敬民,高树华,于艳丽,韩爽,谷玲.进水口防涡措施研究.水动力学研究与进展(A辑),2000,15(4):463-466.
    [116]王久晟,程观富.某水库泄洪洞进口消涡梁消涡效果试验研究.治淮,2002(5):35-37.
    [117]严根华,陈发展,胡去劣.进水口漩涡及消涡栅试验研究.第三届全国水力学与水利信息学大会论文集,江苏,南京,2007.
    [118]周豹.消涡隔栅在泄洪排沙洞进水口的应用.农业科技与信息,2009(14):47-48.
    [119]叶茂,伍超,杨朝晖,姜跃良.进水口前立轴旋涡的数值模拟及消涡措施分析.四川大学学报(工程科学版),2007,39(2):36-40.
    [120]李华,伍超,张挺,李洪波,叶茂.水工建筑物进水口前立轴旋涡的研究.西南民族学院学报(自然科学版),2002,28(4):479-482.
    [121]段文刚,金峰,张晖.三峡地下电站进水口漩涡特性研究.湖北水力发电,2008(2):3-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700