用户名: 密码: 验证码:
盐胁迫下西瓜嫁接苗的生理响应及其耐盐机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜(Citrullus lanatus Mansfeld)是世界性的重要瓜类蔬菜,也是我国栽培面积最大、种植范围最广的主要瓜类蔬菜之一。近年来,土壤盐渍化严重影响了西瓜产量和品质,阻碍着西瓜设施栽培的可持续发展。因此,寻求克服土壤盐渍化的途径和方法已经迫在眉睫。实践证明,嫁接是克服土壤盐害的一项有效措施。本研究采用营养液栽培,以‘超丰抗生王’葫芦为砧木,‘秀丽’小型西瓜为接穗,探讨了100 mmol·L-1 NaCl胁迫下西瓜嫁接苗的生理响应及其耐盐性的生理机制,为嫁接技术在生产中的应用提供理论依据。主要结果如下:
     (1)采用营养液栽培,选用‘超丰抗生王’、‘将军’、‘丰源先锋’、‘南砧1号’、‘青砧1号’、‘瓠瓜苏清’为砧木,‘早春红玉’和‘秀丽’小型西瓜品种为接穗,首选筛选了西瓜嫁接优良砧木品种和嫁接砧穗组合。结果表明,盐胁迫下,南瓜砧木‘将军’、葫芦砧木‘超丰抗生王’优良株率分别达94%和92%,为较理想的西瓜嫁接砧木材料;‘超丰抗生王’/‘秀丽’、‘将军’/‘秀丽’组合的嫁接苗在盐胁迫下的成活率分别为93.6%和90.5%,为较理想的嫁接组合。因此,本研究选用了‘超丰抗生王’/‘秀丽’组合为研究对象。
     (2)盐胁迫下,西瓜嫁接苗的生物量显著提高,自根苗和嫁接苗叶片H2O2、MDA含量和质膜相对透性均显著增加,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)活性均显著升高,AsA和GSH含量显著降低;而嫁接苗叶片H2O2、MDA含量和质膜相对透性增加幅度以及AsA、GSH含量的降低幅度小于自根苗,抗氧化酶活性的增加幅度大于自根苗。说明嫁接可明显增强植株的活性氧清除能力,从而降低膜脂过氧化程度,提高西瓜幼苗的耐盐性。
     (3)盐胁迫下,自根苗叶绿素a (Chl a)、叶绿素b (Chl b)、总的叶绿素含量和Chl a/Chl b随时间的变化而显著下降。与自根苗相比,嫁接苗下降的幅度较小。盐胁迫下,自根苗叶片的净光合速率(Pn)、气孔导度(Gs)、胞间C02浓度(Ci)和蒸腾速率(Tr)均显著降低,而气孔限制值(Ls)升高,并在胁迫第8天达到极显著水平。与自根苗相比,嫁接显著降低盐胁迫下西瓜幼苗Ls,提高了Pn。上述结果表明,嫁接能够降低盐胁迫对西瓜幼苗光合作用的抑制,改善植株光合效率。
     (4)盐胁迫下,自根苗最大光化学效率(Fv/Fm)、光条件下最大光化学效率(Fv'/Fm')、PSII实际光化学效率(ΦPSⅡ)、光化学淬灭系数(qP)、非光化学淬灭系数(qN)和PSⅡ相对电子传递速率(rETR)随时间变化显著下降,而嫁接苗中这些参数的下降幅度较小;叶绿体超微结构观察显示,盐胁迫下自根苗叶绿体膨胀,结构松散、紊乱以至解体,特别是基质片层断裂、消失,类囊体膜裂开,叶绿体内部脂质球出现数目增多,而嫁接苗间质和基粒片层清晰可见,类囊体膜仍保持完整。试验结果表明,嫁接有利于保护盐胁迫下西瓜幼苗光合膜结构的完整,保护西瓜植株叶片PSⅡ,增强PSⅡ在盐胁迫下的原初光能转化效率,可促进光合作用原初反应过程,进而促进光合作用。
     (5)西瓜嫁接苗地下部比地上部截留了较多的Na+,而地上部的K+含量明显高于地下部;嫁接苗对Na+的根部截流和K+的地上部吸收能力强于自根苗。西瓜嫁接苗可阻隔根系内皮层对Na+向中柱导管中的运输以及限制Na+向中柱导管中的装载,进而将Na+较多地截流在根部,阻止其向地上部分运输;同时将K+较多地运输到地上部分,使地上部保持较高的[K+]/[Na+]比值,从而保持西瓜嫁接苗较强的耐盐性。
Watermelon (Citrullus lanatus Mansfeld) is the world's major vegetable, and is also one of the principal fruit crops which has the largest planting area and is most widely cultivated in China. Impact of soil salinity has become a major factor that affects the yield and quality of watermelon, it is a serious impediment to the sustainable development of watermelon's facility cultivation, and grafting is an important technology to overcome soil salt. In this paper, the influence of grafting to watermelon seedlings under salt stress and physiological responses is studied, furthermore, the physiological and biochemical mechanism through which grafting improves the salt tolerance ability of watermelon seedlings is explored, and the following results are achieved:
     (1) Using nutrient solution for culture, choosing 'super-abundance of antibiotic King', 'General','Fengyuan Pioneer','South anvil 1','Green anvil 1','Gourd' as rootstock,'the ruby in early spring','beauty' as scion,we have studied the effect of the treatment of 200 mmol·L-1 NaCl on the salt tolerance ability of the rootstock and the affinity between the rootstock and the scion. The results showed that under salt stress, the excellent strain rates of pumpkin rootstock general, super abundance of antibiotic Wang were separately 94% and 92%, and they the ideal grafting stock material;The grafted seedlings of the combination of super-abundance of antibiotic King/beautiful, general/beautiful have the survival rates of 93.6% and 90.5% under salt stress, for the ideal grafting combination, which can be used for the grafting cultivation of facility watermelon.
     (2) Using nutrient solution for culture, choosing the 'super-abundance of antibiotic King' gourd as rootstock,'beautiful'watermelon as the scion, we have studied the effect of a salt stress on the Antioxidant Systems of self-rooted and grafted watermelon. The results showed that under salt stress, the leaves' H2O2, MDA content and membrane's relative permeability of self-rooted and grafted watermelon was significantly increased, the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) was significantly increased, the content of AsA and GSH were significantly reduced;but the increasing extent of the leaves' H2O2, MDA content and membrane's relative permeability of grafted watermelon and the decreasing extent of AsA, GSH content were both less than self-rooted seedlings, and the increasing rate of antioxidant enzyme activity was more than self-rooted seedlings. It showed that grafting can significantly enhance plants' ability of eliminating active oxygen, which can reduce the extent of lipid peroxidation, and increase the salt tolerance ability of watermelon seedlings.
     (3) Using watermelon seedlings as materials, we have studied the effect of grafting on watermelon seedlings chlorophyll (Ch) content and gas exchange parameters under NaCl stress. The results showed that:under NaCl stress, with treatment time prolonging, the decreasing extent of Ch a, Ch b, total Ch content, and ratio of Ch a/Ch b in grafted watermelon seedlings was less than that in self-rooted seedings. Under salt stress, Pn, Gs, Ci, and Tr of self-rooted and grafted seedlings were all significantly lower, but Ls was significantly increased, and all these indicators were to reach a very significant level at the eighth day. Compare with self-rooted seedlings, grafting could decrease the extent of Ls significantly, and increase Pn. These results showed that grafting could lighten the photosynthesis inhibition, and improve the photosynthetic rate of watermelon seedlings under salt stress.
     (4) Using watermelon seedlings as materials, we have studied the effect of grafting on watermelon seedlings chlorophyll fluorescence and the chloroplast ultrastructure under NaCl stress. The results showed that, under NaCl stress, with treatment time prolonging, the decreasing extent of Fv/Fm, Fv'/Fm',ΦPSⅡ, qP, qN, and rETR in grafted watermelon seedings was less than that in self-rooted seedlings. Transmission electron microscopy observation indicated that, under NaCl stress, the chloroplast lamellae structure in self-rooted seedings presented loose, and stroma lamellae arranged disorderly, and plastoglobuli increased. Compare with self-rooted seedlings, the chloroplast lamellae structure in grafted watermelon seedings was better, and the photosynthetic membrane still kept completeness. The test showed that, under salt stress, grafting could play a significant role in protecting the photosynthetic membrane of watermelon, protect watermelon PSⅡ, enhance the primary light to energy conversion efficiency of its PSⅡand can promote the primary reaction process of photosynthesis, thus contributing to photosynthesis.
     (5) Using nutrient solution for culture, conducting NaCl salt stress treatment, and using the gourd rootstock which has stronger salt tolerance ability to graft watermelon,having studied the effect of grafting on the Na+, K+ content of graftet watermelon seedlings'root segment and overground segment, various parts of root tissues under salt stress. The results showed that the grafted watermelon seedlings intercepted more Na+ in underground part than in overground part, while the K+ content of overground part was significantly higher than that of the underground;the ability of grafted seedlings'root closure of Na+ and the above-ground absorbtion of K+ is stronger than self-rooted.Those explained that graftet watermelon seedlings can separate the transportation of Na+ from roots'inner cortex to the column tube and limit the loading of Na+ to the column tube, and then intercepted Na+ more in the roots and prevent it from transporting to the overground;while transporting K+ more to the overground part, maintaining a high [K+]/[Na+] ratio in the overground part, thereby maintaining a strong salt tolerance ability of grafted watermelon.
引文
[1]Allakhverdiev S I, Nishiyama Y, Miyairi S, et al. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA Genes in Synechocystis [J]. Plant Physiol,1991,130:1-11.
    [2]Allen R D, Webb R P, Schake S A. Use of transgenic p lants to study antioxidant defenses [J]. Free Radic. Bi ol. Med.,1997,23:473-479.
    [3]American Society of Plant Physiology, Rockville, M D,1991,131-144.
    [4]Amtmann A, Sanders D. Mechanisms of Na+ uptake by plant cells [J]. Advances in Botanical Research,1998,29:76-112.
    [5]Apse M P, Aharon G S, Apse M P. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science,1999,285:1256-1258.
    [6]Asish K P, Anath B D. Salt tolerance and salinity effects on plants:a review [J]. Ecotoxicology and Environmental Safety,2005,60:324-349.
    [7]Bai L P, Zhou B L, Li N, et al., Response of grafted eggplant to NaCl stress [J]. Plant Physiology Communications,2005,41(1):31-33. (in Chinese)
    [8]Belkhodja R, Morales F, Abadia A, et al., Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley(Hordenm vulgare L.) [J]. Plant Physiol,1993,104:667-673.
    [9]Blom-Zandstra M, Vogelzang S A, Veen B W. Sodium fluxes in sweet pepper exposed to varying sodium concentration [J]. J Exp Bot,1998,49:1863-1868.
    [10]Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells [J]. Biochim Biophys Acta, 2000,1465:140-151.
    [11]Bongi G, Loreto F. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves [J]. Plant Physiol.1989,90:1408-1416.
    [12]Bruggemann W, Janiesch P. Comparison of plasma membrane ATPase from salt-treated and salt-free grown Plantago maritima L [J]. Plant Physiol.,1989,134:20-25.
    [13]Chang H, Siegel B Z, Siegel SM. Salinity induced changes in is operoxidase in taro, Colocasia esculenta [J]. Phytochemistry,1984,23:233-235.
    [14]Cheeseman J M. Mechanis m of salinity tolerance in plants [J]. Plant Physiol,1988,87:547-550.
    [15]Chew O, Whelan J, Millar A H. Molecular definition of the Ascorbate-Glutathione cycle in arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants [J]. The Journal of Biological Chemistry,2003,278 (47):46869-46877.
    [16]Chow W S, Ball M C, Anderson J M. Growth and photosynthetic responses of spinach to salinity: Implication of K+ nutrition for salt tolerance [J]. Aust J Plant Physiol,1990,17:563-587.
    [17]Cobbett C S, May M J, Howden R, et al., The glutathione-deficient, cadmium- sensitive mutant, cad 2-1, of Arabidopsis thaliana is deficient in gamma- glutamylcysteine synthetase [J]. Plant J, 1998,16:73-78.
    [18]Conklin P L, Williams E H, Last R L. Environmental stress tolerance of an ascorbic acid-deficient Arabidopsis mutant [J]. Proc Natl Acad Sci USA,1996,93:9970-9974.
    [19]Cuartero J, Fernandez-Munoz R. Tomato and salinity [J]. Scientia Horticulturae,1999, (78):83-125.
    [20]Cuartero J. Variability for some physiological characters affecting salt tolerance in tomato [J]. Acta Horticulturae,2002,573:435-441.
    [21]Davenport R, James R A, Zakrisson-Plogander A,et al., Control of sodium transport in Durum wheat [J]. Plant Physiol,2005,137:807-818.
    [22]Davenport S B, Gallego S M, Benavides M P, et al., Behaviour of antioxidant defense system in t he adaptive response to salt st ress in Helianthus annuus L. cells [J]. Plant Growth Regulation,2003, 40(1):81-88.
    [23]Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence:Correlated with increased of membrane permeability and lipid peroxidation and decreased levels dismutase and catalase [J]. Journal of Experimental Botany,1981,32:93-101.
    [24]Ding L, Zhu J K. Reduced Na+ uptake in the NaCl-hypersensitive sosl mutant of Arabidopsis thaliana [J]. Plant Physiol,1997,113:795-799.
    [25]Drew M C, Dikumwin E. Sodium exclusion from the shoots by roots of Zea mays (cv. LG11) and its breakdown with oxygen deficiency [J]. J Exp Bot,1985,36:55-62.
    [26]Drew M C, Lauchli A. The role of the mesocotyl in sodium exclusion from the shoot of Zea mays L. (cv. Pioneer 3906) [J]. J Exp Bot,1987,38:409-418.
    [27]Dubcovsky J, Santa Maria G, Epstein E, et al., Mapping of the K+/Na+ discrimination locus Knal in wheat [J]. Theoretical and Applied Genetics,1996,92:448-454.
    [28]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology,1982,33:317-345.
    [29]Femandez-Garcia N, Martinez V, Cerda A, et al., Water and nutrient uptake of grafted tommato plants grown under conditions [J]. Joumal of Plant Physiology,2002,159(8):899-905.
    [30]Fortmeier R, Schubert S. Salt tolerance of maize:the role of sodium exclusion [J]. Plant, Cell and Environment,1995,18:1041-1047.
    [31]Foyer C H, Lelandais M, Edwards E A, et al., The role of ascorbate in plants, interactions with photosynthesis and regulatory significance [J]. Current topics in plant physiology,1991,6: 131-144.
    [32]Foyer G H, Halliwell B. The presence of glutathi one and glutathi one reductase in chloroplasts:a proposed role in ascorbic acid metabolism [J]. Planta,1976,133:21-25.
    [33]Fre'de'ric G, Pilot G, Benoit L, et al., Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap [J]. Cell,1998,94:647-655.
    [34]Garbarino J, Dupont F M. Rapid induction of Na+/H+exchanger activity in barley root tonoplast [J]. Plant Physiol,1989,89:1-4.
    [35]Gilliham M. Regulation of ion loading to maize root xylem [D]. PhD Thesis, University of Cambridge, UK,2002.
    [36]Gleen E P, Brown J J. Salt tolerance and crop potential of halophytes [J].Critical Reviews in Plant Sciences,1999,18(2):227-255.
    [37]Govind J. Sixty-three years since Kautsky:ChloroPhyll a fluorescence [J]. Plant Physiol,1995,22: 131-160
    [38]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes [J]. Annu Rev Plant Physiol, 1980,31:149-190.
    [39]Gueta-Dahan Y, Yaniv Z, Zilinskas B A, et al., Salt and oxidative s tress:similar and specific responses and their relation to salt tolerance in citrus [J]. Planta,1997,203:460-469.
    [40]Guria. Variati on in glutathi one and ascorbic acid content among selected cultivars of Phseolus vulgaris pri or to and after ex posure to ozone [J]. Can J Plant Sci,1983,63:733-737.
    [41]Havaux M, Niyogi K K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism [J]. Proc Natl Acad Sci USA,1999,96:8762-8767.
    [42]Heath R L, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation [J]. Archives of Biochemistry and Biophysics,1986,125:189-198.
    [43]Hunt J. Dilute hydrochloric acid extraction of plant material for routine cation analysis commum in soil [J]. Sci Plant Anal,1982,13(1):49-55.
    [44]Imlay J A, Linn S. DNA damage and oxygen radical toxicity [J]. Science,1988,240:1302-1309.
    [45]Inze D, Montagu M V. Oxidative stress in plants [J]. Current Opinion in Biotechnology,1995,6: 153-158.
    [46]Jiang W B, Gao G L, Dai M S, et al., Effects of salt stress on diurnal course of photosynthesis of young hosui pear trees with different rootstock [J]. Acta Horticulturae Sinica,2003,30(6):653 -657.(in Chinese)
    [47]Jin Y H, Tao D L, Hao Z Q, et al., Environmental stresses and redox status of ascorbate [J]. Acta Botanica Sinica,2003,45:795-801.
    [48]Johansen J G, Cheeseman J M. Uptake and distribution of sodium and potassium by corn seedlings. I. Role of the mesocotyl in'sodium exclusion'[J]. Plant Physiol,1983,73:153-158.
    [49]Karavatas S, Manetas Y. Seasonal patterns of Photosystem 2 Photochemical efficiency in evergreen sclerophylls and drought semi-deciduous shrubs under Mediterranean field conditions [J]. Photosynthetica,1999,36:41-49
    [50]Karley A J, Leigh R A, Sanders D. Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells [J]. Trends in Plant Sci,2000,5:465-470.
    [51]Karpinska B, Karlsson M, Schinkel H, et al. A novel superoxide dismutase with a high is oelectric point in higher plants expression, regulation, and protein localization [J]. Plant Physiol,1998,126: 1668-1677.
    [52]Krause G H, Weis E. Chloraphyll fluorescence as tool in plant physiology. II:Interpreation of fluorescence signals [J]. Phytosynthesis Research,1984,5:139-157.
    [53]Krause G H, Weis F. Chlorophyll fluorescence and photosynthesis:The basics [J]. Ann Rev Plant Physiol Plant Mol Biol,1991, (42):313-349.
    [54]Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa) [J]. Plant Sci,2001,943-952.
    [55]Levitt J. Response of plant to environmental stress, Vol B,2nd ed [M]. New York, Academic Press, 1980:102-106.
    [56]Lima J D, Mosquim P R, Damatta F M. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and Phosphorus deficiency [J]. Photosynthetica,1999, 37:113-121.
    [57]Lin C C, Kao C H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings [J]. Plant Sci,2001, (160):323-329.
    [58]Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios [J]. Ann Bot,1999,84:123-133.
    [59]Marschner H. Mineral nutrition of higher plants.2nd ed [M]. London:Academic Press,1995.
    [60]Matsushita N, Matoh T. Function of the shoot base of salt-tolerant reed (Phragmites communis Trinius) plants for Na+ exclusion from the shoots [J]. Soil Sci and Plant nutr,1992,38:565-571.
    [61]May M J, Vernoux T, Leaver C, et al., Glutathione homeostasis in plants:implications for environmental sensing and plant development [J]. Journal of Experimental Botany,1998,49 (321): 649-667.
    [62]Mittler, R. Oxidative stress, antioxidants, and stress tolerance [J]. Ternds Plant Sci,2002,7: 405-410.
    [63]Monneveus P, Mekkaoui M E, Xu X. Physio-logical basis of salt-tolerance in wheat chlorophyll fluorescence as a new tool for screening tolerant genotypes in wheat breeding prospects and future approaches [J]. Varna Bulgarin,1990,1-33.
    [64]Moya J L, Tadeo F R,Gomez-Cadenas A, et al., Transmissible salt tolerance traits indentified through reciprocalgrafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes [J]. J Plant Physiol,2002,159:991-998.
    [65]Munns R, Fermaat A. Whole-plant responses to salinity [J]. Australian Journal of Plant Physiol, 1986,13:143-160.
    [66]Munns R, Tonnet L, Shennan C, et al., Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus. Ions in phloem sap [J]. Plant, Cell and Environ,1988,11:291-300.
    [67]Muraoka H, Tang Y, Terashima L, et al., Contributions of diffusional limitation, Photoinhibition and Photorespiration to midday depression of Photosynthesis in Arisaema heteroplryllum in natural high light [J]. Plant Cell and Environment,2000,23(3):235-250.
    [68]Nakano Y, Aasada K. Hydrogen per oxide is scavenged by ascorbate specific peroxidase in spinach chl or oplasts [J]. Plant Cell Physiol,1981,22:867-880.
    [69]Nass R, Cunningham K W, Rao R. Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase:insights into mechanisms of sodium tolerance [J]. J Biol Chem,1997,272:26145-26152.
    [70]Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling [J]. Current Opinion in Plant Biology, 2002, (5):388-395.
    [71]Noctor G, Foyer C H. Ascorbate and glutathione:keep active oxygen under control [J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279.
    [72]Noctor G, Gomezl L, Leenevanacker H, et al., Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling [J]. Journal of Experimental Botany,2002,53 (372):1283-1304.
    [73]Onbd P, Aeea M, Onib F. Estimati on of hydr oxgen peroxide in higher plant [J]. Anal Biochem, 1984,139:487-492.
    [74]Peng Y H, Zhu Y F, Mao Y Q, et al., Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+ [J]. J Exp Bot,2004,55:939-949.
    [75]Phillips J P, Campbell S D, Michaud D, et al., Null mutation of copper/zinc superoxide dismutase in Drosphila confers hy persens itivity to paraquat and reduced longevity [J]. Proc Natl Acad Sci USA,1989,86:2761-2765.
    [76]Pignocchi C, Kiddle G, Hernandez I, et al., Ascorbate oxidase dependent changes in the redox state of the apop lastmodulate gene transcrip t accumulati on leading to modified hormone signaling and orchestration of defense processes in tobacco[J]. Plant Physiology,2006,141:423-435.
    [77]Potters G, Horemans N L, Bellone S, et al., Dehydroascorbate In fluences the Plant Cell Cycle Through a Glutathione-independent reduction Mechanism [J]. Plant Physiology,2004, (134): 1479-1487.
    [78]Qin H, Liu Y L. Relationship between Na+/H+ antiport of tonoplast vesicles isolated from barley roots and salt compartmentation in plants [J]. Journal of Nanjing Agricultural University,1995,18 (2):16-20. (in Chinese)
    [79]Ralph P J, Gademann R, Dennison W. C. In situ seagrass Photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer [J]. Marine Biology,1998,132:367-373.
    [80]Rus A, Yokoi S, Sharkhuu A, et al., AtHKTl is a salt tolerance determinate that controls Na+ entry into plant roots [J]. PNAS,2001,98:14150-14155.
    [81]Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, et al., The rootstock effect on the tomato salinity response depends on the shoot genotype [J]. Plant Science,2002,162:825-831.
    [82]Santa-Cruz A, Perez-Alfocea F, Caro M, et al., Polyamines as short-term salt tolerance traits in tomato [J]. Plant Sci,1998,138:9-16.
    [83]Santa-Maria G E, Epstein E. Potassium/Sodium selectivity in wheat and the amphiploid cross wheat-Lophopyrum elongatum [J]. Plant Sci,2001,160:523-534.
    [84]Schachtman D P, Schroeder J I. Structure and transport mechanism of high affinity potassium uptake transport from higher plants [J]. Nature,1994,370:655-658.
    [85]Schachtman D P. Molecular insights into the structure and function of plant K+ transport mechanism [J]. Biochim Biophys Acta,2000,1465:127-139.
    [86]Schroeder J I, Hedrich R, Fernandez J M. Potassium-selective single channels in guard cell protoplasts of Vicia faba [J]. Nature,1984,312:361-363.
    [87]Schroeder J I, Ward J M, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants:Biophysical implication for K+ uptake [J]. Annu Rev Biophys Biomol Struct,1994,23:441-471.
    [88]Scotti C, Thu P T. Effect of abscisic pretreatment on membrane leakage and lipid composition of Vigna unguiculata leaf discs subjected to osmotic stress [J]. Plant Science,1997,130:11-18.
    [89]Shabala S. Regulation of potassium transport in leaves:from molecular to tissue level [J]. Annals of Botany,2003,92:627-634.
    [90]Sharma P K, Hall D O. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum [J]. J Plant Physiol,1991,140:661-666.
    [91]Shi H, Ishitani M, Kim C. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proc Natl Acad Sci USA,2000,97:6896-6901.
    [92]Shi H, Quintero F J, Pardo J M, et al., The putative plasma membrane Na+/H+ antiporter SOS1 control long distance transport in plant [J]. Plant Cell,2002,14:465-477.
    [93]Shono M, Wada M, Hara Y. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo [J]. Biochim Biophys Acta,2001,1511:193-199.
    [94]Smirnoff N. Plant resistance to envir onmental stress [J]. Curr Opin Biotechnol,1998,9:214-219.
    [95]Spalding E P, Hirsch R E, Lewis D R, et al., Potassium uptake supporting plant growth in the absence of AKT1 channel activity. Inhibition by ammonium and stimulation by sodium [J]. J Gen Physiol,1999,113:909-918.
    [96]Staal M, Maathuis F J M, Elzenga TM. Na+/H+ antiport activity of the salt-tolerant Plantago maritima and the salt sensitive Plantago media [J]. Plant Physiol,1991,82:179-184.
    [97]Tester M, Davenport R. Na+ tolerance and Na transport in higher plants [J]. Ann Bot,2003,91: 503-527.
    [98]Tester M, Leigh R A. Partitioning of transport processes in roots [J]. J Exp Bot (Roots Special Issue),2001,52:445-457.
    [99]Tietze F. Enzymatic method for quantitative determination of nongram amounts of total and oxidized glutathione [J]. Analytical Biochemistry,1969,27:502-522.
    [100]Tsugane K, Kobayashi K, Niwa Y, et al., A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification [J]. Plant cell, 1999,11:1195-1206.
    [101]Vaidyanathan H, Sivakumar P, Chakrabarty R, et al., Scavenging of reactive oxygen species in NaCl-stressedrice (Oryza sativaL.)-differential response in salt-tolerant and sensitive varieties [J]. Plant Science,2003,165:1411-1418.
    [102]Venema K, Quintero F J, Pardo J M, et al., The Arabidopsis-Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes [J]. J Biol Chem,2002,227: 2413-2418.
    [103]Vizcay B G, Wilson Z A. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant[J].J Exp Bot,2006,57(11):2709-2717.
    [104]Wang B S, Ratajczak R, Zhang J H. Activity, amount and subunit composition of vacuolar-type H+-ATPase and H+-PPase in wheat roots under severe NaCl stress [J]. J Plant Physiol,2000,157: 109-116.
    [105]Wang K Y, Kellomaki S, Zha T. Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year old pine trees after a four-year exposure to carbon dioxide and temperature elevation [J]. Photosynthetica,2003,41:167-175.
    [106]Watad A A, Pesci P, Reinhold L, et al., Proton fluxes as in response to external salinity in wide type and NaCl-adapted Nicotiana cell lines [J]. Plant Physiol,1986,81:454-459.
    [107]Wegner L H, Sattelmacher B, Lauchli A, et al., Transroot potential, xylem pressure, and cortical membrane potential of 'low-salt' maize as influenced by nitrate and ammonium [J]. Plant, Cell and Environ,1999,22:1549-1558.
    [108]Wei G Q, Zh J J, Fang X Z, et al., The effects of NaCl stress on growth, chlorophyll fluorescence characteristics and active oxygen metabolism in seedlings of two cucumber cultivars [J]. Scientia Agricultura Sinica.2004,37(11):1754-1759.
    [109]Wolf O, Munns R, Tonnet M L, et al., The role of the stem in the partitioning of Na+ and K+ in salt-treated barley [J]. J Exp Bot,1991,42:697-704.
    [110]Wu F B, Zhang G P, Dominy P. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidantcapacity [J]. Environmental and Experimental Botany, 2003,50:67-78.
    [111]Yang L F, Zhu Y L, Hu C M, et al., Studies on growth trends, physiological and biochemical characteristics in hydroponically-grown grafted watermelon under NaCl stress [J]. Southwest China Journal of Agricultural Sciences,2005,18(4):439-443. (in Chinese)
    [112]Yeo A R, Lauchli A, Krammer D, et al., Ion measurements by X-ray microanalysis in unfixed, frozen, hydrated plant cells of species differing in salt tolerance [J]. Planta,1977,134:35-38.
    [113]Zhang H X, Blumwald E. Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit [J]. Nat Biotechnol,2001,19:765-768.
    [114]Zhang Y Q, Liu S Q, Yang F J, et al., Study on the screening of salt tolerant watermelon stock and mechanism of salt tolerance [J]. Acta Agriculturae Boreali-occidentalis Sinica,2003,12(4): 105-108. (in Chinese)
    [115]Zhao F G Sun C, Liu Y L, et al., Relationship between polyamines metabolism in roots and salt tolerance of barley seedlings [J]. Acta Bot Sin,2003,45:295-300.
    [116]Zhu H, Ding G H, Fang K, et al., New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings [J]. Plant Growth Regul,2006,49:147-156.
    [117]Zhu J K. Regulation of ion homeostasis under salt stress [J].Current Opinion in Plant Biology, 2003,6:441-445.
    [118]白丽萍,周宝利,李宁,等.嫁接茄子对Nacl协迫的反应[J].植物生理学通讯,2005,41(1):31-33.
    [119]鲍思伟,谈锋.高温对曼地亚红豆杉叶绿素荧光参数的影响[J].福建林业科技,2009,39(3):64-68.
    [120]蔡红,陈同斌,高定,等.城市污泥堆肥对蔬菜幼苗的盐害及其淋洗脱盐效果[J].中国给水排水,2009(15):112-114.
    [121]陈贵林,包兰春,赵丽丽.嫁接西瓜生长动态及伤流液营养元素含量的研究[J].河北农业大学学报,1999,22(3):38-41.
    [122]陈沁,刘友良.谷光甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报,2000,26(3):365-371.
    [123]陈少杰,潘身能,金伟兴.瓜专用冲施肥埃施得对西瓜生长、产量和品质的影响[J].上海蔬菜,2009(2):81-82.
    [124]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报,2001,18(5):587-596.
    [125]陈淑芳,朱月林,刘友良,等NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响[J].园艺学报,2005,32(4):609-613.
    [126]陈小莉,李世清,任小龙,等.大气NH3和介质供氮水平对不同氮效率玉米基因型叶绿素荧光参数的影响[J].生态学报,2008,28(3):1026-1033.
    [127]陈亚军,朱师丹,曹坤芳.两种光照下木质藤本和树木幼苗的生理生态学特征[J].生态学报,2008,28(12):6034-6042.
    [128]陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79-86.
    [129]崔聪聪,郭世荣,冯吉庆,等.盐胁迫对不同西瓜砧木品种幼苗生长及光合作用的影响[J].内蒙古农业大学学报,2007,28(3):134-139.
    [130]崔洪宇,吴波,吴东凯,等.蔬菜嫁接抗病增产机理的探讨[J].北方园艺,2007(10):71-74.
    [131]丁国强,郁樊敏,张瑞明.上海市蔬菜土壤连作障碍问题及原因对策分析[J].中国蔬菜,2009(15):17-20.
    [132]董明伟,李晓慧.嫁接对蔬菜抗逆性影响的研究进展[J].长江蔬菜,2009(20):9-12.
    [133]董晓霞,赵树慧,孔令安,等.苇状羊茅盐胁迫下生理效应的研究[J].草业科学,1998,15(5):10-13.
    [134]鄂志国,张丽靖.水稻盐胁迫应答的分子机制[J].杂交水稻,2010,25(2):1-5.
    [135]范亚文.种植耐盐植物改良盐碱土的研究[D].东北林业大学,2001
    [136]冯立田,赵可夫.活体叶绿素荧光与耐盐作物筛选[J].山东师范大学学报(自然科学版),1997,12(4):436-439.
    [137]冯永军,陈为峰,张黄娜,等.设施园艺土壤的盐渍化与治理对策[J].农业工程学报,2001,17(2):111-114.
    [138]高梅秀,李树和,刘玉芹,等.不同砧木对茄子抗病性、生理活性及产量的影响[J].园艺学报,2001,28(5):463-465.
    [139]郭春芳,孙云.叶绿素荧光动力学在植物抗性生理研究中的应用[J].福建教育学院学报,2006,7:120-123.
    [140]郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J],土壤,2004,36(1):25-29.
    [141]韩志平.盐胁迫对小型西瓜生长、生理代谢的影响及外源钙和腐胺的缓解效应研究[D].南京农业大学,2008
    [142]洪涛,许大全.珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭[J].植物生理学报,1999,25(1):15-21.
    [143]华斌,别之龙.西瓜甜瓜嫁接育苗进展[J].上海交通大学学报(农业科学版),2008,26(5):363-368.
    [144]华春,王仁雷.盐胁迫对水稻叶片光合效率和叶绿体超显微结构的影响[J].山东农业大学学报,2004,35(1):27-31.
    [145]华景清,蔡健.西瓜的营养与药用价值[J].食品与药品,2005,7(6):67-68.
    [146]黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学学报,1997(04):509-514.
    [147]黄毅,张玉龙.保护地生产条件下的土壤退化问题及其防治对策[J].土壤通报,2004,35(2):212-216.
    [148]黄有总,张国平.叶绿素荧光测定技术在麦类作物耐盐性鉴定中的应用[J].麦类作物学报,2004,24(3):114-116.
    [149]姜卫兵,高光林,戴美松,等.盐胁迫对不同砧穗组合梨幼树光合日变化的影响[J].园艺学报,2003,30(6):653-657.
    [150]蒋有条,孙利祥,张明方,等.我国瓜类嫁接栽培与展望[J].长江蔬菜,1998(6):481-484.
    [151]柯世省,金则新.水分胁迫和温度对夏腊梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报,2008,19(1):43-49.
    [152]孔滨,孙波,郑宪清,等.水热条件和施肥对黑土中微生物群落代谢特征的影响[J].2009(46):100-106.
    [153]匡廷云,彭德川,陈志强.叶绿体类囊体膜脂及叶绿素蛋白的结构与功能.见:余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998,171-181.
    [154]李东坡,武志杰,梁成华,等.设施土壤生态环境特点与调控[J].生态学杂志,2004,23(5):192-197.
    [155]李合生.植物生理学实验技术与方法[M].北京:高等教育出版社,2000,167-169.
    [156]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,(02):0266-0275.
    [157]李文嘉,黎炎,王益奎,等.嫁接番茄苗养分吸收特性及产量的研究[J].长江蔬菜,2006(1):53-54.
    [158]李彦,张英鹏,孙明,等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].植物生理学报,2008,1:258-265.
    [159]梁芳,郑成淑,孙宪芝,等.低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响[J].应用生态学报,2010,21(1):29-35.
    [160]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化的应用[J].植物学通报,1992,9(1):1-16.
    [161]刘成静,王崇启,焦自高,等.高温胁迫下西瓜嫁接苗耐热性和保护酶活性的研究[J].长江蔬菜,2009,2b:50-52.
    [162]刘凤荣,陈火英,刘杨.盐胁迫下不同基因型番茄可溶性物质含量的变化[J].植物生理与分子生物学报,2004,30(1):99-104.
    [163]刘慧英,朱祝军,吕国华,等.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究[J].中国农业科学,2003,36(11):1325-1329.
    [164]刘家尧,衣艳君,张承德,等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J].曲阜师范大学学报(自然科学版),1997,23(4):80-83.
    [165]刘君璞,许勇,孙小武,等.我国西瓜甜瓜产业“十一五”的展望与建议[J].中国瓜菜,2006,(1):1-3.
    [166]刘荣,王喜艳,张恒明,等.保护地土壤次生盐渍化及防治对策[J].北方园艺,2008(8):69-72.
    [167]刘文革,阎志红.不同倍性西瓜发芽种子成苗过程中的耐盐性研究[J].中国西甜瓜,2002(3):1-2.
    [168]刘正鲁,朱月林,魏国平,等NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响[J].西北植物学报,2007,27(9):1795-1800.
    [169]芦站根,赵昌琼,周文杰,等.光强对曼地亚红豆杉膜代谢及保护系统的影响[J].重庆大学学报(自然科学版),2003,(08):89-92.
    [170]罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响[J].园艺学 报,2007,34(6):1405-1410.
    [171]马晨,马履一,刘太祥,等.盐碱地改良利用技术研究进展[J].世界林业研究,2010,23(2):28-32.
    [172]马国斌,严秀琴,倪秀红,等.设施栽培西瓜专用砧木的筛选[J].上海农业学报,2005,21(3):9-12.
    [173]马凌云,孙治强,高俊红.不同砧木嫁接对茄子营养品质的影响[J].中国瓜菜,2009(4):11-14.
    [174]马鸣,王宗礼,张德罡.3种禾本科牧草光合特性研究[J].草原与草坪,2008,130(5):48-55.
    [175]毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展[J].中国生态农业学报,2004,12(1):43-46.
    [176]乜兰春,陈贵林.西瓜嫁接苗生长动态及生理特性研究[J].西北农业学报,2000,9(1):100-103
    [177]彭杏敏,陈之群,石芳华,等.不同嫁接方式对日光温室黄瓜生长及品质的影响[J].北方园艺,2010,(15):122-124.
    [178]钱骅,刘友良.大麦根液泡膜Na+/H+逆向运输与盐分区域化分配的关系[J].南京农业大学学报,1995,18(2):1620.
    [179]商学芳,董树亭,郑世英,等.玉米种子萌发过程中Na+、K+和Ca2+含量变化与耐盐性的关系[J].作物学报,2008,34(2):333-336.
    [180]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988,3:62-64.
    [181]史跃林,刘佩瑛,罗庆熙,等.黑籽南瓜砧对黄瓜抗盐性的影响研究[J].西南农业大学学报,1995,17(3):232-236.
    [182]宋荣浩,顾卫红,戴富明.国外西瓜抗病种质在我国抗病西瓜育种中的应用[J].上海农业学报,2009,25(1):124-128.
    [183]孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施[J].农业工程学报,2005,21(S):184-188.
    [184]孙小芳,郑青松,刘友良.盐胁迫下不同基因型棉花萌发生长和离子吸收特性[J].棉花学报,2001,13(3):134-137.
    [185]孙艳,黄炜,田霄鸿,等.黄瓜嫁接苗生长状况、光合特性及养分吸收特性的研究[J].植物营养与肥料学报,2002,8(2):181-185.
    [186]孙治强,白玉玲,陈银亮.嫁接黄瓜的生理基础研究[J].河南农业科学,1996(1):26-28.
    [187]王宝山,邹琦,赵可夫NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,2000,26:845-850.
    [188]王宝山,邹琦,赵可夫NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,2000,26: 845-850.
    [189]王鸣.侯沛.西瓜的起源、历史、分类及育种成就[J].当代蔬菜,2006(3):18-19.
    [190]王学征,韩文灏,于广建.盐分胁迫对番茄幼苗生理生化指标影响的研究[J].北方园艺,2004(3):48-49.
    [191]王玉凤.NaCl胁迫对西瓜种子发芽的影响[J].安徽农业科学,2006,34(24):6497-6499.
    [192]魏国平,朱月林,刘正鲁,等.硝酸钙胁迫对营养液栽培嫁接茄子叶片抗坏血酸-谷胱甘肽循环的影响[J].植物生态学报,2008,32(5):1023-1030.
    [193]魏述英,吴震,黄俊.砧木对网纹甜瓜嫁接植株生长和光合特性的影响[J].上海农业学报,2006,22(4):114-117.
    [194]吴波,周宝利,崔红宇.日光温室甜瓜嫁接抗病栽培之我见[J].蔬菜,2005(1):15-16.
    [195]吴相钰,吴光耀,赵进东.叶绿体的分子生物学.见:余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998,155-170
    [196]谢德意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花,2000,27(9):12-13.
    [197]许传强,李天来,齐红岩.嫁接对网纹甜瓜光合特性、生长状况及产量的影响[J].中国西瓜甜瓜,2005(2):1-3.
    [198]许大全,张玉全.植物光合作用中的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [199]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4)379-387.
    [200]许兴,毛桂莲,李树华,等.NaCl胁迫和外源ABA对枸杞愈伤组织膜脂过氧化及抗氧化酶活性的影响[J].西北植物学报,2003,23(5):745-749.
    [201]阎志红,刘文革,石玉宝,等.NaCl胁迫对不同染色体倍性西瓜种子发芽特性的影响[J].中国农业通报,2005,12:204-208.
    [202]晏斌,戴秋杰,刘晓忠,等.钙提高水稻耐盐性的研究[J].作物学报,1995,11(6):685-590.
    [203]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [204]杨立飞,朱月林,胡春梅,等.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响[J].西北植物学报,2006,26(6):1195-1200.
    [205]杨立飞,朱月林,胡春梅.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究[J].西南农业学报,2005,18(4):439-443.
    [206]杨立飞,朱月林,胡春梅.氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响[J].应用生态学报,2007,18(4):831-836
    [207]杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220.
    [208]杨永杰,董树刚,付成秋,等.栽培番茄耐盐变异系的离体选择[J].青岛海洋大学学报,2001, 31(1):75-80.
    [209]叶武威.棉花种质的耐盐性及其耐盐基因表达的研究[D].中国农业科学院,2007.
    [210]于贤昌,王立江.蔬菜嫁接的研究与应用[J].山东农业大学学报,1998,29(2):249-256.
    [211]于贤昌,邢禹贤,马红,等.黄瓜嫁接苗抗冷特性研究[J].园艺学报,1997,24(4):348-352.
    [212]於丙军,李锁娜,刘友良.大豆苗期盐害离子效应的比较[J].南京农业大学学报,2002,25(1):5-9.
    [213]曾韶西,王以柔,李美如.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报,1997,39(4):308-314.
    [214]曾义安.黄瓜嫁接优势的生理机制研究[D].南京农业大学,2004.
    [215]张爱慧,朱士农.NaCl胁迫下嫁接西瓜幼苗生理特性变化研究[J].江苏农业科学,2009(3):193-195.
    [216]张恩平,张淑红,李天来,等.有机肥与无机肥配施对菜田土壤氮磷钾养分含量的影响[J].黑龙江农业科学,2001(2):5-7.
    [217]张洁.黄瓜抗西瓜花叶病毒(WMV)基因的分子标记研究[D].扬州大学,2006.
    [218]张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展[J].西北植物学报,2004,(09):1765-1771.
    [219]张润花,郭世荣,李娟.盐胁迫对黄瓜根系活力、叶绿素含量的影响[J].长江蔬菜,2006(2):47-48.
    [220]张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响[J].上海农业学报,2004,20(3):62-64.
    [221]张云起,刘世琦,杨凤娟,等.耐盐西瓜砧木筛选及其耐盐机理的研究[J].西北农业学报,2003,12(4):105-108.
    [222]张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜生长、产量及品质的影响[J].山东农业科学,2004(4):30-31.
    [223]章静波.细胞生物学常用方法和技术[M].北京:高等教育出版社,1990.
    [224]章文华.植物的抗盐生理和盐害的防治[J].植物生理学通讯,1997(6):479.
    [225]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    [226]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    [227]赵可夫,王韶唐主编.作物抗性生理[M].农业出版社,1990.
    [228]赵可夫,张万钧,范海,等.改良和开发利用盐渍化土壤的生物学措施[J].土壤通报,2001,32(专辑):115-119.
    [229]赵秀芬,房增国,韩猛.设施蔬菜连作障碍的原因剖析及对策研究[J].安徽农学通报,2007,13(7):117-118.
    [230]周俊国,李新峥.南瓜的开发利用途径及育种目标[J].北方园艺,2004(1):24-25.
    [231]周易善,周桂官,顾桂华,等.沿海地区菜地土壤次生盐渍化的植物修复技术[J].长江蔬菜,2010(13):45-46.
    [232]周玉丽,舒英杰,郁继华.茄子嫁接苗与自根苗光合特性的比较[J].中国蔬菜,2005(6):25-26.
    [233]朱华潭,董炳荣.几种作物耐盐性观测初报[J].浙江农业科学,1995,3:109-111.
    [234]朱进,别之龙.NaCl胁迫下温室内两个砧木的生理响应机制[J].农业工程学报,2008,24(8):227-231.
    [235]朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [236]朱新广,张其德,匡廷云.NaCl胁迫对PSⅡ光能利用和耗散的影响[J].生物物理学报,1999,15(4):787-791.
    [237]朱祝军,俞景权.氮素形态和光照强度对烟草生长和H202清除酶活性的影响[J].植物营养与肥料学报,1998,4(4):379-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700