用户名: 密码: 验证码:
影响土壤中重金属淋溶的主要因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过室内淋溶柱模拟试验,研究了降雨量、降雨pH值、氮磷肥等因素对土壤中Pb、Zn、Cd、As等重金属淋失的影响;并且通过盆栽模拟试验,分别研究了降雨量和施肥与植被种植情况双重因素对土壤中Pb、Zn、Cd、As等重金属淋淋失的影响。主要研究结果如下:
     在相同降雨量下,随着降雨pH值的升高,淋溶液中Pb、Zn、Cd、的浓度和总量都逐渐变小,而淋溶液中As的浓度和总量随pH值的升高呈增大趋势。在研究降雨量这一影响因素时,我们发现淋溶液中Pb、Zn、Cd、的浓度在相同pH值下,随着降雨量的增加而逐渐减小;但是淋溶液中Pb、Zn、Cd、的总量随降雨量的变化规律在不同pH值下而有所不同。在pH为3.0和4.5时,淋溶液中Pb、Zn、Cd的总量随着降雨量的增加明显增加;在pH为5.3时,淋溶液中Pb的总量随着降雨量的增加明显增加。在pH值为7.0时,淋溶液中Pb的总量随降雨量的增加变化不明显。在pH值为5.3和7.0时,淋溶液中Zn、Cd的含量在降雨量较小时,随降雨量的增加而增加,在降雨量较大时,变化不明显。在同一pH值下,淋溶液中As的浓度随降雨量的变化规律不明显,但淋溶液中As的含量随降雨量的增加而明显增加。
     在不施磷肥和少量施磷肥时,土壤中Pb的淋失较大;随着磷肥施用量的增加,Pb的淋失逐渐减小;施肥量达到一定程度后,土壤中Pb的淋失随着磷肥施用量增加变化不明显。土壤中Zn的淋失量,随着磷肥施用量的逐渐增加,呈跳跃式增大的趋势。土壤中Cd、As的淋失量,随着磷肥施用量的增加而增大,但是随着淋溶次数的增多,磷肥施用量对土壤中Cd、As的淋失的影响逐渐减弱。不同氮肥施用量对土壤中Pb的淋失影响不明显。氮肥施用一定时间后,土壤中Zn、Cd的淋失随着施肥量的增加而减小
     盆栽种植水稻时,从不同降雨量来看,土壤中淋出Pb的总量在20mm降雨量时小于5.7mm降雨量时;而土壤中淋出Zn、Cd、As的总量在20mmm降雨量时大于5.7mm降雨量时。从不同种植密度来看,土壤中淋出Pb、Cd、As的总量在各个降雨量时都随着水稻种植密度的增大而减小;土壤中淋出Zn的总量在5.7mm降雨量时随种植密度的增加变化不大,而在20mm降雨量时,土壤中淋出Zn的总量在正常种植密度时和2倍正常种植密度时都小于不种植时。
     盆栽种植小白菜时,淋溶液中Pb、Cd的浓度变化没有明显规律,土壤中Pb、Cd的淋失规律有待进一步研究。在20mm降雨量时,土壤中淋出Zn的总量随着种植密度的增加没有变化;而在50mm和80mm降雨量时,土壤中淋出Zn的总量都是在低种植密度时增加,高种植密度时又减小。土壤中淋出As的总量在相同的种植密度下随着降雨量的增加而增大;从不同种植密度来看,在20mm降雨量时,土壤中淋出As的总量在各个种植密度下相差不大;在50mm降雨量和80mmm降雨量时,土壤中淋出As的总量在种植小白菜时少于不种植小白菜时。
     在盆栽种植小白菜进行施氮肥试验中,尿素对土壤中Pb的淋失影响没有明显规律。不种植时,土壤中Pb、Zn、Cd、As的淋出量随着氮肥施用量的增加略有增大。低种植密度时,土壤中Zn、As的淋出量随着氮肥施用量的增加呈增大趋势,而Cd的淋出量呈减小趋势。高种植密度时,土壤中Zn、Cd、As的淋出量在施肥条件下都远远小于不施肥时。
The effect of rainfall, pH, nitrogen, phosphate on the leaching loss of Pb, Zn, Cd, As in the soil had been researched through leaching column simulation experiments and the effect of rainfall&vegetation and phosphorus&vegetation on the leaching loss of Pb, Zn, Cd, As in the soil been researched through the pot experiments. The principal results are as follows:
     In the same rainfall, the concent and total of the Pb, Zn, Cd in the leaching liquor was decreases gradually with the increased of the rainfall pH value, however, the concent and total of the As in the leaching liquor was increased gradually at the same time.
     The concent of the Pb, Zn, Cd in the leaching liquor was decreases gradually with the increased of the rainfall at the same rainfall pH value. However the total of the Pb, Zn, Cd in the leaching liquor had different variety rule with the increased of rainfall in different rainfall pH value.The total of the Pb, Zn, Cd in the leaching liquor was increased obvious with the increased of rainfall when the rainfall pH value was 3.0 and 4.5. While the total of the Pb in the leaching liquor was increased obvious with the increased of rainfall when the rainfall pH value was 5.3 and it has no change when the rainfall pH value was 7.0.Meanwhile, when the rainfall pH value was 5.3 and 7.0, the total of the Zn, Cd in the leaching liquor was increased obvious with the increased of rainfall when the rainfall was small and it had no change when the rainfall was large.There had no change about the concent of the As in the leaching liquor as the rainfall, while the total of the As in the leaching liquor was increased obvious with the increased of rainfall.
     The total of Pb leaching from the soil was more when there was no phosphorus or little Phosphorus, and it was decreases gradually with the increased of phosphorus usage, however it was no more change when the phosphorus usage great to a certain degree. The total of Zn leaching from the soil was salutatory increased with the increased of phosphorus usage. The total of Cd and As leaching from the soil was increased gradually with the increased of phosphorus usage, and the effect of the phosphorus usage was decreases gradually,
     The effect of the nitrogen usage on the leaching loss of Pb in the soil was not clear. The total of Zn and Cd leaching from the soil was decreases gradually with the increased of the nitrogen usage when some time later.
     When we plant rice in the pot for research, we found the follows results. When the rainfall was 20mm, the total of Pb leaching from the soil was less than it was 5.7mm,while the total of Zn, Cd and As leaching from the soil was more than it was 5.7mm. The total ofPb, Cd and As leaching from the soil was decreases gradually with the increased of the planting density of the rice. When the rainfall was 5.7mm, the total of Zn leaching from the soil has no obvious change. When the rainfall was 20mm, the total of Zn leaching from the soil was larger at no planting than little planting or densitily planting.
     When we plant pakchoi in the pot for research, we found the follows results. The concent of the Pb, Cd in the leaching liquor has no rules, and it need more research. When the rainfall was 20mm, the total of Zn leaching from the soil was no obvious change with the increase of the planting density. When the rainfall was 50mm or 80mm, the total of Zn leaching from the soil was increased at little planting and it was decreased at densitily planting.The total of As leaching from the soil was increased with the increased of the rainfall at the same planting density. When the rainfall was 20mm, the total of As leaching from the soil was no obvious change at the different planting density. When the rainfall was 50mm or 80mm, the total of As leaching from the soil was larger at no planting than it was planting.
     When we plant pakchoi in the pot for nitrogen research, we found the follows results. Urea had no obvious effect on the leaching loss of Pb in the soil. The total of Pb, Zn, Cd and As leaching from the soil was some increased with the increased of the nitrogen usage when it was no planting. With the increased of the nitrogen usage, the total of Zn and As leaching from the soil was obvious increased while the total of Cd was decreased when it was little planting. When it was densitily planting, the total of Zn, Cd and As leaching from the soil was much smaller at use nitrogen than no nitrogen.
引文
[1]陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社,1996.
    [2]陈丽莉,俄胜哲.中国土壤重金属污染现状及生物修复技术研究进展[J].现代农业科学,2009,16(3):139-146.
    [3]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [4]田丽梅,贾兰英,等.天津市土壤重金属污染现状与综合治理对策[J].天津农业科技,2006,4:32-34.
    [5]王庆仁,刘秀梅,崔岩山等.我国几个工矿与污灌区土壤重金属污染状况及原因探讨[J].环境科学学报,2002,22(3):354-358.
    [6]宋书巧,梁利芳,周永章,等.广西刁江沿岸农田受矿山重金属污染现状与治理对策[J].矿物岩石地球化学通报,2003,22(3):152-155.
    [7]宋书巧,吴欢,黄钊,等.刁江沿岸土壤重金属污染特征研究[J].生态环境,2005,14(1):34-37.
    [8]蔡美芳,党志,丈震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13(1):6-8.
    [9]常青山.重金属超富集植物的筛选与螯合吸附研究[D].福州:福建农林大学,2005.
    [10]张莉,周康.贵州省土壤重金属污染现状与对策[J].贵州农业科学,2005,33(5):114-115.
    [11]赵秀峰,王强盛,石宁宁,等.石化园区周边农田土壤重金属污染分析与评价[J].环境科学学报,2010,30(1):133-141.
    [12]刘凤枝.农业环境监测实用手册[M].北京:中国标准出版社,2001.
    [13]茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.
    [14]唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74-75.
    [15]魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    [16]谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.
    [17]胡瑞霞,高柏,胡宝群,等.某铀矿山尾矿堆积区周边土壤中重金属迁移规律初探[J].铀矿冶,2009,28(1):15-17.
    [18]马智宏,王纪华,陆安祥,等.京郊不同剖面土壤重金属的分布与迁移[J].河北农业大学学报,2007,30(6):11-16.
    [19]杜烨锋,李取生,陈连运,等.淋洗脱盐对滩涂土壤空隙隙水重金属垂直迁移的影响[J].生态科学,2009,28(1):62-65.
    [20]李小虎,汤中立,初凤友.金昌市铜镍矿区周围土壤中重金属的迁移特征[J].吉林大学学报,2009,39(1):131-136.
    [21]王碧玲,谢正苗.磷对铅、锌和镉在土壤固相液相 植物系统中迁移转化的影响[J].环境科学,2008,29(11):3225-3229.
    [22]罗磊,张淑贞,马义兵.土壤中砷吸附机理及其影响因素研究进展[J].土壤,2008,40(3): 351-359.
    [23]刘兆昌,张兰生,等.地下水系统的污染与控制[M].北京:中国环境出版社,1991,170-176.
    [24]Cao X, Ma L Q, Rhue D R, et al. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution,2004,131:435-444.
    [25]Cao X, Ma L Q, Chen M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J]. Environmental Science and Technology, 2002,36:5296-5304.
    [26]Cao R X, Ma L Q, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site[J]. Environmental Pollution,2003,122:19-28.
    [27]Cotter Ho wells J, Caporn S. Remediation of contaminated land by formation of heavy metal phosphates[J]. Applied Geochemistry,1996,11:335-342.
    [28]Hettiarachchi GM, Pierzynski GM, Ransom M D. In situ stabilization of soil lead using phosphorus [J]. Journal of EnvironmentalQuality,2001,30:1214-1221.
    [29]Ma L Q, Rao G N. Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils[J]. Journal of Environmental Quality,1997,26:788-794.
    [30]Ruby M V, Davis A, Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science and Technology,1994,28: 646-654.
    [30]Scheckel K G, Ryan J A. Spectroscopic speciation and quantification of lead in phosphate-amended soils[J]. Journal of EnvironmentalQuality,2004,33:1288-1295.
    [32]Yang J, Mosby D E, Casteel SW, et al. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil[J]. Environmental Science and Technology, 2001,35:3553-3559.
    [33]McGowen S L, Basta N T, Brown GO. Use of diammonium phosphate to reduce heavymetal solubility and transport in smelter-contaminated soil[J]. Journal of Environmental Quality,2001,30:493-500.
    [34]Raicevic S, Kaludjerovic-Radoicic T, Zouboulis A I. In situ stabilization of toxic metals in polluted soils using phosphates:theoretical prediction and experimental verification [J]. Journal of HazardousMaterials,2005, B117:41-53.
    [35]BIBAK A. Copper retention by Danish Spodosols in relation to contents of organic matter and aluminum, iron, and manganese oxides [J]. Communications in Soil Science and Plant Analysis,1997,28 (5):939-948.
    [36]CHESHIRE M V, MCPHAIL D B, BERROW M L. Organic matter copper complexes in soils treated with sewage sludge [J]. Science of The Total Environment, 1994,152(1):63-72.
    [37]BESNARD E, CHENU C, ROBERT M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils [J]. Environmental Pollution,2001,112 (3):329-337.
    [38]KING L D. Retention of metals by several soils of the southeastern United States [J]. Journal of Environmental Quality,1998,17 (2):239-246.
    [39]SILVEIRA M L A, ALLEONI L R F, CAMARGO O A, et al. Copper adsorption in oxidic soils after removal of organic matter and iron oxides [J]. Communications in Soil Science and Pland Analysis,2002,33(11):3581-3592.
    [40]AIKEN G R, MCKNIGHT D M, WERSHAW R L. Humic substance in soil, sediment, and water[M]. New York:Wiley,1985,45.
    [41]SINGER P. Trace metals and mwtal-organic interactions[M]. Ann Arbor, MI: Ann Arbor Science,1974.
    [42]ASHLEY J T F. Adsorption of Cu (Ⅱ) and Zn (Ⅱ) by estuarine, riverine and terrestrial humic acids [J]. Chemosphere,1996,33 (9):2175-2187.
    [43]程金沐.土壤环境生态对重金属元素迁移影响分析[J].广东微量元素科学,2005,12(6):12-15.
    [44]张辉.土壤环境学[M].北京:化学工业出版社,2005,8.
    [45]汪雅谷,盛沛麟,袁大伟.模拟酸雨对土壤金属离子的淋溶和植物有效性的影响[J].环境科学,1988,9(2):22-26.
    [46]徐明岗,李菊梅,张青.pH对黄棕壤重金属解吸特征的影响[J].生态环境,2004,13(3):312-315.
    [47]陶春军,周涛发,李湘凌,等.模拟酸雨及施磷对水稻土中汞的淋溶特性影响研究[J].资源调查与环境,2008,29(2):139-144.
    [48]秦燕, 徐晓春, 谢巧勤,等.铜矿采矿废石重金属环境污染的淋溶实验研究[J].地球学报,2008,29(2):247-252.
    [49]张海秀,贝荣塔.马关矿区河流沿岸土壤重金属迁移规律研究[J].山西农业科学,2008(5):82-93.
    [50]赵高峰,徐盈.雨水和表面活性剂的淋溶对河道底泥中多氯联苯迁移的影响[J].分析科学学报,2005,21(4):355-358.
    [51]王旭东,杨雪芹.聚丙烯酰胺对磷素在土壤中吸附一解析与迁移的影响[J].环境科学学报,2006,26(2):300-305.
    [52]张宇峰,姚敏,邵春燕,等.模拟酸雨对土柱中稀土元素迁移的影响[J].环境化学,2005,24(4):379-382.
    [53]李平,王兴祥.模拟酸雨和几种低分子量有机酸淋溶对土壤交换性盐基的影响[J].土壤,2006,38(3):322-327.
    [54]王立仙,马文丽,杨广怀,等.铜在土壤中的淋溶迁移特征研究[J].水土保持学报,2007,21(4):21-24.
    [55]李丰军,郑继东,邓寅生,等.不同粒径煤矸石矿井填充环境影响的淋溶实验[J].河南理工大学学报,2006,25(2):101-104.
    [56]陈静,胡俊栋,王学军,等.表面活性剂对采油区土壤装填土柱中PAHs迁移渗透的影响[J].环境化学,2005,24(1):12-16.
    [57]袁雯,方海兰,赵由才.矿化垃圾的重金属淋溶试验研究[J].环境卫生工程,2007,15(2):34-38.
    [58]杨继松,刘景双,于君宝,等.草甸湿地土壤溶解有机碳淋溶动态及其影响因素[J].应用生态学报,2006,17(1):113-117.
    [59]罗微,林清火,茶正早,等.氮肥品种对砖红壤中钾素淋溶特征的影响[J].水土保持学报,2005,19(6):74-81.
    [60]王学锋,冯颖俊,皮运清,等.EDTA对土壤渗滤液中TOC和重金属动态变化的影响[J].土壤,2007,39(4):573-576.
    [61]息朝庄,戴塔根,黄丹艳.湖南株洲市土壤重金属分布特征及污染评价[J].中国地质,2008,35(3):524-530.
    [62]何义波,李立清,曾清如.重金属污染土壤修复技术的进展[J].广州环境科学,2006,21(4):26-31.
    [63]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
    [64]梁家妮,马友华,周静.土壤重金属污染现状与修复技术研究[J].农业环境与发展,2009,4:45-49.
    [65]周启星,孙铁珩.污染生态学研究与展望[A].生态安全与生态建设.北京:气象出版社,2002,188-193.
    [66]Kramer U, et.al. Free histidine as a metal chelator in plants that accumulate inckel[J]. Nature,1996,379:635-638.
    [67]OrtizDF, et al. Transport of metal-binding pep tides by HMT1, a fission yeast ABC-type vacuolar membrane protein[J]. J Biol. Chem.,1995,270:4721-4728.
    [68]Salt DE. Phytoextraction:present applications and future Promise[A]. Bioremediation of Contaminated Soils. New York, Marcel Dekker.2000.
    [69]姬兴杰,熊淑萍,刘元东,等.不同麦田土壤类型中重金属含量及其变化研究[J].中国农学通报,2007,23(5):364-367.
    [70]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006,26(5):1494-1501.
    [71]郭朝晖,肖细元,陈同斌.湘江中下游农田土壤和蔬菜的重金属污染[J].地理学报,2008,63(1):3-11.
    [72]龙永珍,戴它根,邹海洋.长沙、株洲、湘潭地区土壤重金属污染现状及评价[J].地球与环境,2008,36(3):23 1-236.
    [73]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd> Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550.
    [74]张宇峰,姚敏,邵春燕,等.模拟酸雨对土柱中稀土元素迁移的影响[J].环境化学,2005,24(4):379-382.
    [75]王君,张武平,张勇,等.模拟酸雨对土壤中铁、锰、锌的浸出特征[J].化学研究与应用,2006,18(4):422-425.
    [76]王艳红,艾绍英,李盟军等.氮肥对镉在土壤—芥菜系统中迁移转化的影响[J].中国农业生态学报,2010,18(3):649-653.
    [77]刘世亮,,刘忠珍,介晓磊等.施磷肥对Cd污染土壤中油麦菜生长及吸收重金属的影响[J].河南农业大学学报,2005,39(1):30-34.
    [78]涂从,郑春荣.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学,1997,17(6):526-529.
    [79]Agbenin J Q. Phosphate-induced zinc retention in a tropical semi-arid soil[J] European Journal of Soil Science,1998,49(4):693-700.
    [80]Kaushik R D, Gupta V K, Singh J P. Distrbution of zinc, cadmium,and copper forms in soils as influenced by phosphorus application[J]. Arid Soil Research and Rehabilitation,1993. Volume 7:163-171.
    [81]Shuman L M. Effect of phosphorus level on extractable micronutrents and their distribuion among soil fractions[J]. Soil Sci. Soc. Am. J.,1988,52 (1):136-141.
    [82]王海啸,吴俊兰,张铁金,等.山西石灰褐土的磷锌关系及其对玉米幼苗生长的影响[J].土壤学报,1990,27(3): 241-248.
    [83]张淑香,王小彬,李秀英,等.干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响[J].植物营养与肥料学报,2001,7(4):391-396.
    [84]刘忠珍,刘世亮,刘芳,等.不同磷含量对石灰性潮土吸附、解吸有效性锌的影响[J].河南农业大学学报,39(4):472-476.
    [85]廖晓勇,陈同斌,阎秀兰等.不同磷肥对砷超富集植物蜈蚣草修复砷污染土壤的影响[J].环境科学,29(10):2906-2911.
    [86]HONG C O, LEE D K, KIM P J. Feasibility of phosphate fertilizer to immobilize cadmium in a field[J]. Chemosphere,2008,70(11):2009-2015.
    [87]SMITH E, NAIDU R, ALSTON A M. Chemistry of inorganic arsenic in soils:II. Effect of phosphorus, sodium, and calcium on arsenic sorption[J]. Journal of Environmental Quality,2002,31(2):557-563.
    [88]周娟娟,高超,李忠佩,等.磷对土壤As(V)固定与活化的影响[J].土壤,2005,37(6):645-648.
    [89]陈同斌.砷毒田中水稻栽培技术的研究[J].生态农业研究,1996(1):42-44.
    [90]徐国明,张桂银,褚卓栋,等.铝污染土壤上施用氮肥对小麦POD活性及铅吸收的影响[J].中国农学通报,2007,23(6):572-575.
    [91]王艳红,艾绍英,李盟军,等.氮肥对污染农田中铅的调控效应[J].环境污染与防治,2008,30(7):39-46.
    [92]周细红,曾清如,蒋朝辉,等.尿素施用对土壤pH值和模拟温室箱内NH3和NO2浓度的影响[J].土壤通报,2004,35(3):374-376.
    [93]赵晶,冯文强,秦鱼生,等.不同氮磷钾肥对土壤pH和镉有效性的影响[J].土壤学报,2010,47(5):953-961.
    [94]章骅,何品晶,吕凡等.重金属在环境中的化学形态分析研究进展[J].环境化学,2011,30(1):130-137.
    [95]罗磊,张淑贞,马义兵.土壤中砷吸附机理及其影响因素研究进展[J].土壤,2008,40(3):351-359.
    [96]赵兴敏,王春玲,董德明,等.重金属和有机氯农药在沈阳郊区农田土壤中的吸附和迁移[J].环境科学学报,2010,30(9):1880-1887.
    [97]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    [98]解怀生,陈美君,许兴苗,等.土壤Cd、As、Pb在水稻植株中的吸收分布特征[J].浙江农业科学,2010,5:1056-1058.
    [99]黄德乾,汪鹏,王玉军,等.污染土壤上水稻生长及对Pb. Cd和As的吸收[J].土壤,2008,40(4):626-629.
    [100]李波,青长乐,周止宾,等.肥料中氮磷和有机质对土壤重金属的影响及治污中的应用[J].重庆环境科学,2000,22(6):37-40.
    [101]TU Cong, ZHENG Chunrong, CHEN Huaiman. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil[J]. Chemosphere,2000,41(1/2).
    [102]SILBER A, GANM ORE-NEUMANN R, BEN-JAACOV J.Effects of nutrient addition on growth and rhizosphere pH of Leucadendron (Safari Sun set) [J]. Plant and Soil,1998,199(2):205-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700