用户名: 密码: 验证码:
赤泥改性颗粒修复材料及其对铅锌污染土壤的原位稳定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用氧化铝工业废渣——赤泥的潜在胶凝性,通过改性和添加造粒辅料和表面活性剂等,常温下转鼓造粒制备赤泥基颗粒和赤泥-磷复合颗粒,并应用于铅锌污染土壤的原位稳定化修复。这是针对赤泥资源化利用的一种有益创新。
     通过在实验室开展模拟污染土修复试验、矿区重金属污染土壤盆栽试验、土柱淋溶实验和土壤中磷扩散试验;采用X射线衍射微区分析、扫描电子显微镜分析、原子吸收分光光度计分析等相结合的检测方法,对制备颗粒的组成和结构、土壤理化性质、重金属的含量和形态变化、有效磷的溶释扩散进行了研究。
     本论文的主要研究内容和创新点如下:
     1.改善赤泥胶凝性能
     赤泥原料(RM)凝结性差,水灰比0.5时,赤泥初凝时间为]5.75h,终凝超过48h,不能满足造粒成型要求。通过外加胶凝材料,粉磨、煅烧赤泥原料,调节水灰比等手段对其胶凝性能进行改性研究。采用赤泥粉料过0.150mmm筛,添加5%水泥,5-10%石膏,水灰比0.5时,常温下可控制凝结时间2h内。
     2.赤泥颗粒的制备与改良
     比较了不同造粒设备和工艺条件下制备的赤泥颗粒的性质。通过调节外加胶凝剂用量,添加造粒辅料和表面活性剂,确定常温下转鼓造粒制备赤泥基颗粒(PL):赤泥原料粉(<0.15mm)通过转鼓造粒机在水灰比0.5条件下进行颗粒化造粒,胶凝材料水泥和石膏分别采用5%,秸秆粉末(<0.15mm)1%,表面活性剂OP为0.1%。该转鼓造粒方式区别于混合料注水搅拌一成型硬化的胶凝过程,造粒颗粒细小分散,内部多孔,水分易散失,因此是弱化胶凝下的造粒。
     3.赤泥颗粒对铅锌污染土壤的修复
     将制备的赤泥颗粒用于模拟铅污染土壤和铅锌矿区污染土的修复试验,确定用量和施用方式。结合韭菜、水稻盆栽实验,比较在水旱两种栽种条件下的原位稳定化修复效果,并分析对土壤环境和植物生长的影响。
     施用赤泥原料(粉)和赤泥颗粒(PL)均能在修复初期有效减少离子交换态铅(Pb-Ⅰ)。但施用赤泥原料(粉)在修复15d后Pb-Ⅰ反而持续增多,而施用赤泥颗粒修复15d后,对Pb-Ⅰ持续钝化效果明显,其最大降幅(模拟污土中)为94.50%。施用赤泥颗粒对土壤pH的影响小:施用1%和5%,相比施用赤泥原料(粉)的土壤pH分别下降9.76%和13.63%。
     土壤含水率在20%~25%,施加5%PL对500mg/kg模拟铅污染土进行修复,离子交换态铅(Pb-Ⅰ)和碳酸盐态铅(Pb-Ⅱ)含量最大降幅分别为94.50%和45.95%。残渣态铅(Pb-V)含量增加48.46%。施用赤泥颗粒对矿区污染土壤修复,离子交换态铅、锌降幅最大为44.79%,100%(即未检出)。残渣态铅、锌含量最大增幅72.26%,45.54%。
     赤泥原料通过添加辅助剂改性成赤泥颗粒后,能使碱性物质包覆在水化产物的晶格或晶格间隙中,从而缓释OH-。这一新的赤泥修复材料不仅保留了赤泥原料较强的吸附性能,也能有效促进污染土壤中各形态重金属持续向稳定的残渣态转化。
     4.赤泥-磷复合颗粒的制备和修复应用
     在赤泥基颗粒对铅锌污土稳定化修复应用基础上,进一步添加可溶和难溶磷酸盐,制成改良赤泥-磷复合颗粒(PK和PCA)。赤泥-磷复合颗粒缓解了因赤泥而引起的土壤pH值增加,同时促进了对矿区土壤中铅锌的稳定化。
     施加5%含磷6.80%赤泥颗粒PK4,对铅的化学转化促进最显著,其中残渣态铅(Pb-V)增加达81.26%,有机结合态(Pb-VI),铁锰氧化态(Pb-Ⅲ),碳酸盐态(Pb-Ⅱ)分别减少78.74%,85.62%,73.46%。控制赤泥-磷复合颗粒中可溶性磷含量1.70%,可保证植株正常生长并能有效抑制韭菜对铅的吸收,抑制率高达86.88%。土柱淋溶实验中,添加可溶磷在早期磷淋出量最高,为25.89mg/L。而添加颗粒PK4的试验组中5-20d内水溶磷持续释放优势明显,高出添加可溶磷处理下23.34%。
     实验结果表明赤泥-磷复合颗粒不仅能修复重金属污染土壤,又能缓释磷,持续提供有效磷素。本研究为赤泥在土壤修复和农业生产应用方而进行了积极有益的探索,提供新的资源化利用思路。
Red mud is the waste from aluminium industries. Based on its potential hydration, a modified red mud granule and red mud-phosphate compound particle were made through rotary drum granulation under normal temperature with adding admixtures and surfactants. These granules were applied in the remediation of Pb-Zn polluted soil. It is an innovative approach to utilization of red mud for remediation.
     Remediation of artificial polluted soil and mine soil, experiments of leaving and expansion of phosphoric in soil column were conducted. The compositions and microstructures of particles, chemical-physical prosperities of soils, content and changes of phases of metals, leaving and expansion of phosphoric were determined and characterized by XRD, SEM-EDS,ABS.
     Main conclusions in this study are obtained as follows:
     1. Modification of the gelling property of red mud
     The gelling property of raw red mud (RM) is poor as the initial set time was15.75h and the final set time exceeded48h under water/powder ratio of0.5. So, modification was processed by adding cements, milling and calcination, adjust water/powder ratio. The conditions and compositions of the final set time within2h were red mud powder below0.150mm,5%cement,5-10%gypsum, water/powder ratio of0.5.
     2. Preparation and modification of red mud granules
     Properties of red mud granules manufactured by different granular under different conditions were compared. Rotary drum granulation was distinct from moisture measuring, mixing and molding. Because of the water was easy to dismiss from the small and separate granules, it was a weak gelling through rotary drum granulation. The optimum technological condition of red mud based granule PL was determined as RM (<0.150mm),5%cement,5%gypsum,1%rice straw (<0.150mm), surfactant OP of0.1%through rotary drum granulator.
     3. Remediation of Pb-Zn polluted soil using red mud granule
     PL was applied in the rremediation of artificial polluted soil and mine soil to determine the optimum amount and application mode. The effect of using red mud granules were studied in the in situ remediation with leeks and rice used in the pot experiments. And the influence on soil and growth of plants were analysis.
     Both of RM and PL could decrease the ion exchangeable Pb (Pb-Ⅰ). Comparing to increase of Pb-I after15d, continue notable stabilization was occurred. On soil pH, the increase by using PL was less influential. Compare to RM, the decrease rate was9.76%(adding1%) and13.63%(adding5%).
     When the soil moisture was maintained20%-25%, the largest decrease rate of Pb-I and Pb-Ⅱ was94.50%and45.95%with5%PL adding into the artificial polluted soil, while the increase of residual Pb was48.46%. The decrease of ionic Pb and Zn was44.79%and100%in the remediation of mine soil. And the increase of residual Pb and Zn was72.26%and45.54%.
     The advantage of this modified red mud granule was that alkali could be coated in the structure of hydration crystal to dilate the release of OH". So it not only persist the absorption prosperity of re mud but also purse the transformation of phases.
     4. Preparation of red mud-phosphate composite granule and its application
     On the base of the application of PL, red mud-phosphate composite granule (signed as PK and PCA) was manufactured by adding soluble and dissoluble phosphate. A further relief of the increase of soil pH was obtained by using these granules to substitute red mud powder.
     When adding5%composite granule PK4(containing6.80%phosphoric), the transformation of phases was significant that the largest increase rate of residual Pb was81.26%and the decrease of carbonate, iron-manganese oxide and organic phase were78.74%,85.62%,73.46%. With1.70%phosphoric in PK2, the absorption of lead was effectively restrained by68.05%in the case of plants vegetated well.
     In the leaching experiment, the content of soluble-phosphoric after passing through soil column was the largest as25.89mg/L by adding soluble phosphate in the initial stage. But during5-20d, the release of water soluble phosphoric was in a higher level with adding PK4than adding soluble phosphate, ranging23.34%. Experiment results showed that red mud-phosphate composite granule can stabilize the metals and at the same time relieve the release of phosphoric. This study has tentatively probed in the usage of red mud in remediation of soil and agricultural production. It may provide an idea for future utilization of red mud.
引文
[1]何伯泉,周国华.赤泥在环境保护中的应用[J].轻金属,2001(2):24-26.
    [2]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [3]李禾.中国国土面积13%土壤存污染[J].资源导刊,2010(5):54-54.
    [4]工业和信息化部,科学技术部.《赤泥综合利用指导意见》.工信部联节[2010]401号.
    [5]杨志民.我国氧化铝生产的综合回收与利用[J].世界有色金属,2002,(2):35-38.
    [6]刘可鑫,保积庆,肖连生.电渗析法处理氧化铝厂外排废水[J].安全与环境学报,2004,4(1):89-92.
    [7]Liu Y, Lin C X, Wu Y G. Characterization of red mud derived from a combined Bayer process and bauxite calcinations method[J]. Journal of hazardous materials, 2007,146(1-2):255-260.
    [8]饶平平,拜耳法干式赤泥基本特性及堆场运行特征分析[J].工程地质学报,2010,(3):340-344.
    [9]姜跃华,刘勇,林初夏,等.郑州氧化铝厂赤泥化学和矿物学特征及资源化利用探讨[J].轻金属,2007(10):18-21.
    [10]陈静,王军,赵颖,等.赤泥复合剂絮凝处理太湖水华藻与海洋赤潮藻[J].环境工程学报,2011,5(9):1933-1936.
    [11]Paramguru R K, Rath P C, Misra V N. Trends in red mud utilization:a review [J]. Miner Process Extr Metall Rev,2004,26(1):1-29.
    [12]景英仁,景英勤,杨奇.赤泥的基本性质及其工程特性[J].轻金属,2001(4):20-23.
    [13]南相莉,张廷安,刘燕,等.我国主要赤泥种类及其对环境的影响[J].过程工程学报,2009,9(z1):459-461.
    [14]Brunori C, Cremisini C, Massanisso P. Reuse of a treated redmud bauxite waste: studies on environmental compatibility[J]. Journal of hazardous materials,2005, 117(1):55-63.
    [15]Snigdha S, Batra V S. Catalytic applications of red mud, an alu-minum industry waste:a review[J]. Applied Catalysis B,2008,81:64-69.
    [16]韩玉芳,杨久俊,王晓,等.烧结法和拜耳法赤泥的基本特性对比及利用价值研究[J].材料导报,2011,25(22):122-125.
    [17]Jones G, Joshi G, Clark M, et al. Carbon capture and the aluminum industry preliminary studies[J]. Environmental Chemical,2006, (3):297-303.
    [18]曲永新,关文章,张永双,等.炼铝工业固体废料(赤泥)的物质组成与工程特性及其防治利用研究[J].工程地质学报,2000,8(3):296-305.
    [19]刘昌俊,李文成,周晓燕,等.烧结法赤泥基本特性的研究[J].环境工程学报,2009,3(4):739-742.
    [20]Thakur R S, Sant B R. Utilization of Red Mud:Pt.1. Analysis and Utilization as raw Material for Absorbents, Building Materials, Catalysts, Fillers, Paints and Pigments[J]. Journal of Scientific and Industrial Research 1983,22,87-108.
    [21]Nevin Y, Vahdettin S. Utilization of bauxite waste in ceramic glazes[J]. Ceram Int,2000, (26):485-493.
    [22]任根宽,用改性赤泥为原料制备水泥[J].化工环保,2008,28(6):526-530.
    [23]刘子高,杨昌适,程宗浩,等.拜耳法赤泥的处理和利用[J].中国有色金属学报,1997,7(1):40-44.
    [24]Singh M, Vpadhayay S N, Prasad P M. Preparation of special cements from red mud[J]. Waste Manage,1996, (8):665-670.
    [25]卜天梅李文化杨金妮,等.利用烧结法赤泥生产水泥的研究[J].水泥技术,2005(2):67-68.
    [26]刘春,尹国勋.烧结法赤泥生产混凝土的研究探讨[J].中国资源综合利用,2007,25(3):17-19.
    [27]Vincenzo M Sglavo, Renzo Campostrini. Bauxie 'red mud' in the ceramic industry Part 1:thermal behavior[J]. Journal of the European Ceramic Society, 2000(20):235-238.
    [28]宋国卫,刘辉.赤泥在微孔硅酸钙保温材料生产中的应用[J].山东冶金,2004,26(2):36-37.
    [29]吴建锋,罗文辉,徐晓虹.赤泥陶瓷保温砖的制备及结构与性能[J].武汉理工大学学报,2008,30(5):15-18.
    [30]杨家宽.铝业赤泥免烧砖中试生产及产业化[J].环境工程,2006(4):52-55.
    [31]祝丽萍,倪文,张旭芳,等.赤泥-矿渣少熟料体系制备全尼砂胶凝允填料试验研究[J].金属矿山,2009,(11):175-178.
    [32]李小雷,翟二安,陶丰.低温熔融法制备拜耳法赤泥质微晶石的研究新型建筑材料[J].2011,38(3):61-63.
    [33]杨家宽等.赤泥—粉煤灰微品玻璃晶化行为研究[J].材料科学与工艺,2005(6):616-619.
    [34]Qinyan Yue, Yaqin Zhao, Qian Li. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal[J]. Journal of hazardous materials,2010,173(1/3):741-748.
    [35]吴建锋,张明雷,徐晓虹,等.用烧结法赤泥制备多孔陶瓷滤球的研究[J].陶瓷学报,2007,28(4):276-281.
    [36]徐晓虹,邸永江,吴建锋,等.利用工业废渣研制环保陶瓷滤球[J].武汉理工大学学报,2004,26(5):12-15.
    [37]王艳秋,霍维周.颗粒赤泥吸附剂对重金属离子的吸附性能研究[J].工业用水与废水,2008,39(6):82-85.
    [38]李良波,杜辛颖,张智理,等.UHMWPVC/微细赤泥/炭黑复合导电材料的研究[J].上海塑料,2010(2):41-44.
    [39]Ordonez S, Sastre H, Diez F V. Characterization and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloro ethylene[J]. Applied Catalysis. B,2001,29 (4),263-273.
    [40]Alvarez J, Ordonez S, Rosal R, et al. A new method for enhancing the performance of red mud as a hydrogenation catalyst[J]. Applied Catalysis. A, General,1999,180 (1),399-409.
    [41]Mishra B, Staley A. Recovery of value added products from red mud[J]. Minerals and metallurgical processing society for mining, Metallurgy and Exploration,2002,19(2):87-89.
    [42]Prasad P M. Processing of the International symposium of light metals [J]. Science and Technology,1985, (4):31-52.
    [43]Xiang Qinfang, Liang Xiaohong, Schiesinger Mark E, et al. Low temperature reduction of ferric iron in red mud[C]. Light Metals:Proceeding of Session, TMS Annual Meeting Feb 11 Nov 15 2000:157-162.
    [44]Mishra B, Staley A. Kirkpatrick D. Recovery and utilization of iron from red mud[C]. Light Metal:proceeding of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania) Feb 11 Nov 15 2000:149-156.
    [45]E.Ercagt, R.Apak. Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig iron[J]. Journal of Chemical Technology and Biotechnology,1997,70:241-246.
    [46]李佩鸿.平果铝矿赤泥直接还原炼铁的研究[J].广西冶金,1999(7):16-19.
    [47]徐进修,罗修连.赤泥的综合利用和有价金属的回收工艺综述[J].广西冶金,1994(4):19-29.
    [48]周秋生,范旷生,李小斌,等.采用烧结法处理高铁赤泥回收氧化铝[J].中南大学学报(自然科学版),2008,39(1):92-96.
    [49]李顺常.赤泥在干法脱硫中的试验与应用[J].煤炭科学技术,1999,27(3):22-23.
    [50]于绍忠,满瑞林.赤泥用于热电厂烟气脱硫研究[J].矿冶工程,2005,25(6):63-65.
    [51]陈义,李军旗,黄芳,等.拜耳赤泥吸收S02废气的性能研究[J].贵州工业大学学报(自然科学版),2007,36(4):30-32,36.
    [52]Sahu R C, Patel R K, Ray B C. Removal of hydrogen sulfide using red mud at ambient conditions[J]. Fuel Processing Technology,2011,92:1587-1592.
    [53]黄芳,李军旗,赵平源,等.拜耳赤泥脱硫工艺的应用基础研究[J].有色金属,2010(3):17-20.
    [54]赵改菊,路春美,田园.赤泥的固硫特性及其机理研究[J].燃料化学学报,2008,36(3):
    [55]Vishwajeet S, YadavMurari Prasad, Jeeshan KhanS. S, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of hazardous materials, 2010(1/3):
    [56]Zouboulis A I, Kydros K A. Use of red mud for toxic metals removal the case of nickel [J]. Journal of Chemical Technology and Biotechnology,1993,58: 95-101.
    [57]Gupta V K., Suhas A I, Saini V K. Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste[J]. Industrial Engineer Chemical Research,2004,43:1740-1747.
    [58]Wang S B, Boyjoo Y, Choueib A, et al. Removal of dyes from aqueous solution using fly ash and red mud[J]. Water Research,2005,39:129-138.
    [59]Lopez E, Soto B, Arias M. Adsorbent properties of red mud and its use for wastewater treatment[J]. Water Research,1998,32(4):1314-1322.
    [60]Yunus Cengeloglu. Recovery and Concentration of Al(Ⅲ), Fe(Ⅱ), Ti(Ⅳ) and Na(Ⅰ) from Red Mud[J]. Jounrnal of Colloid and Interface Science,2001,244: 342-346.
    [61]于华通,陈明,谭科艳.用赤泥去除酸性矿井水中重金属污染物的初步研究[J].岩矿测试,2006,25(1):45-48.
    [62]Altundogan H S, Altundogan S, Tumen F, et al. Arsenic removal from aqueous solutions by adsorption on red mud[J]. Waste Manage,2000,20:761-767.
    [63]Resat Apak, Gulten Atun, Kubilay Guclu, et al. Sorptive removal of Cesium-137 and Strontium-90 from water by unconventional sorbents:Usage of bauxitewastes (red mud)[J]. Journal of nuclear science and technology,1995, 32(10):1008-1017.
    [64]Altundogan H S, Altundogan S, Tumen F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Manage,2002,22:357-363.
    [65]魏宁,栾兆坤,王军.铝改性赤泥吸附剂的制备及其除氟效能的研究[J].无机化学学报,2009,25(5):849-854.
    [66]Cengeloglu Y, Kir E, Ersoz M. Removal of fluoride from aqueous solution by using red mud[J]. Separation and Purification Technology,2002(28):81-86.
    [67]Ali T, Nadide D. Removal of fluoride from water by using granular red mud:Batch and column studies[J]. Journal of Hazardous Materials,2009,164: 271-278.
    [68]林琳,毛陆原.用工业废渣赤泥和工业副产聚合硫酸铁处理火电厂含氟灰水[J].环境污染与防治,1995,17(5):14-15.
    [69]Jyotsna mayee Pradhan. Adsorption of Phosphate from Aqueous Solution Using Activated Red Mud[J]. Colloid and Interface Science,1998,204:169-172.
    [70]张志峰,吴浩汀.赤泥处理含P废水的试验研究[J].安全与环境工程,2005,12(4):49-51.
    [71]Huang Weiwei, Wang Shaobin, Zhu Zhonghua, et al. Phosphate removal from wastewater using red mud [J]. Journal of Hazardous Materials,2008,158:35-42.
    [72]郑越,刘方,吴永贵.赤泥去除工业废水中铵态氮的研究[J].贵州化工,2010,35(2):44-47.
    [73]Namasivayam C, Arasi D J S E. Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere,1997,34(2):401-417.
    [74]Namasivayam C. Treatment of Dairy Wastewater Using waster Red mud[J]. Research Industrial,1992,37(3):165-167.
    [75]姜浩,廖立兵,郑红,王军玲,龙梅.赤泥吸附垃圾渗滤液中COD和氨氮的实验研究[J].安全与环境工程,2007(3):69-73.
    [76]李尉卿,李舒,郑作杰等.氧化铝厂赤泥在垃圾渗滤液处理中的吸附和脱氮研究[J].现代科学仪器,2008(5):96-99.
    [77]罗道成,易平贵.用氧化铝厂赤泥制备高效混凝剂聚硅酸铁铝[J].环境污染治理技术与设备,2002,3(8):33-35.
    [78]刘作霖.赤泥生产硅钙复合肥料[J].《轻金属》1980(3):55-58.
    [79]蔡德龙,钱发军,邓挺,等.硅肥在黄河冲积土上的水稻肥效试验研究[J].地域研究与开发,1998,14(1):48-50.
    [80]Summers R N, Smirk D D, Karafilis D. Phosphorus retention and leachates from sandy soil amended with bauxite residue(red mud)[J]. Australian Journal of Soil Research.1996a,34:555-567.
    [81]Summers R N, Guise N R, Smirk D D, et al. Bauxite residue (red mud) improves pasture growth on sandy soils in Western Australia[J]. Australian Journal of Soil Research,1996b,34:569-581.
    [82]Snars K E, Gilkes R J, Wong M T F. The liming effect of bauxite processing residue (red mud) on sandy soils[J]. Australian Journal of Soil Research,2004, 42:321-328.
    [83]Menzies N W, Snars K E, Kopittke G R, et al. Amelioration of cadmium contaminated soils using cation exchangers[J]. Journal of Plant Nutrition,2009, 32(8):1321-1335.
    [84]王国贞,朱泮民,段璐泞.拜耳法赤泥改良及种植黑麦草的研究[J].安徽农业科学,2010,38(31):17486-17487,17493.
    [85]Li Yanzhong, Liu Changjun, Luan Zhaokun, et al. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash[J]. Journal of Hazardous Materials,2006,137:374-383.
    [86]Zhao Ying, Wang Jun, Luan Zhaokun, et al. Removal of phosphate from aqueous solution by red mud using a factorial design[J]. Journal of Hazardous Materials, 2008,139:1-7.
    [87]梁玉英,黄益宗,朱永官,等.赤泥对土壤磷素释放的影响[J].农业环境科学学报,2007,26(1):286-289.
    [88]程雅靖,单保庆,张洪.赤泥在控制沉积物磷释放中的应用研究[J].环境工程学报,2009,3(7):1180-1184.
    [89]Romkens J M, Nelson D W. Phosphorus relationships in runoff from fertilized soils[J]. Journal of Environmental Quality.1974,3:10-13.
    [90]Chen J S, Mansell R S, Nked-Kizza P., et al. Phosphorus transport during transient unsaturated water flow in anacid sandy soil[J]. Proceedings of the Soil Science Society of America,1996, (60):42-48.
    [91]Young E O, Donald S R. Phosphate release form seasonally flooded soils:a laboratory microcosm study [J]. Journal of Environmental Quality,2001, (30): 91-101.
    [92]Shearer G, D H. Kohl, S H Chien. The nitrogen-15 abundance in a wide variety of soils[J]. Proceedings of the Soil Science Society of America,1982,42: 899-902.
    [93]Kanwar R S, Baker J L, Baker D G. Tillage and split N-fertilization effects on subsurface drainage water quality and crop yields[J]. Transactions of the ASAE, 1988,31:453-461.
    [94]Varshney P, Kanwar R S, Baker J L, et al. Tillage and nitrogen management effects on nitrate-nitrogen in the soil profile[J]. Transactions of the ASAE,1993, 36(3):783-789.
    [95]冯固,杨茂成等.用32P示踪研究石灰性土壤中磷素的形态及其有效性变化[J].土壤学报,1990,33(3):301-307.
    [96]史春霞,王碧茜,封克,等.淹水种植水稻条件下磷元素的渗漏研究[J].湖南农业科学,2007,(1):49-51.
    [97]刘培斌,程伦国,陈瑞忠,等.排水条件下稻田中氮素运移转化规律的试验研究[J].农田水利与小水电,1994,(4):15-20.
    [98]曹红霞,康绍忠.溶质施加方法对土壤溶质迁移的影响[J].灌溉排水学报,2003,22(2):5-8.
    [99]杨维等.氮素在包气带与饱水层迁移转化的实验研究[J].环境科学研究,2008,21(3):69-75.
    [100]洪林,袁自瑛,江海涛.漳河灌区农田排水氮素流失规律研究[J].武汉大学学报(工学版),2009,42(6):681-684.
    [101]Brown S, Christensen B, Lombi E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ[J]. Environmental Pollution.2005,138(1):34-45.
    [102]梁新华,冯瑞云,孟晋建.土壤改良剂扩蓄增容效果研究[J].山西农业科学,2009,37(4):53-55.
    [103]张莉,赵保卫,李瑞瑞.沸石改良土壤的研究进展[J].环境科学与管理,2012,37(1):39-43.
    [104]张艳,邓扬悟,罗仙平.土壤重金属污染以及微生物修复技术探讨[J].有色金属科学与工程,2012,3(1):63-66.
    [105]Brown K S. The Green Clean[J]. BioScience,1995,45(9):579-582.
    [106]Baker A J M, Brooks R R. Terrestrial higher plants which hyper accumulate metallic elements-a review of their distribution, ecology and photochemistry[J]. Biorecovery,1989,1(2):81-126.
    [107]金兰淑,林国林,许泳峰.重金属污染土壤的植物修复最新研究动态[J].世界农业,2008(8):47-51.
    [108]陈同斌,韦朝阳,黄洋春,等.砷超富集植物蜈蚣草及其对砷的富集特性[J].科学通报,2002,47(3):207-210.
    [109]杨建广,杨建英,彭长宏.从超富集植物Berkheya coddii中回收镍.中国有色金属学报,2009,19(4):754-759.
    [110]Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd2+, Pb2 and Zn2+ using dried marine green macroalga Caulerpa lentillifera[J]. Bioresource Technology,2006,97 (18):2321-2329.
    [111]Probstein R F, Hicks R E. Removal of contaminants from soils by electile fields[J]. Science,1993,260:498-503.
    [112]Maini G, Sharman A K, Knowles C J, et al. Electrokinetic remedia tion of metals and organics from historically contaminated soil[J]. Journal of Chemical Technology and Biotechnology,2000,75(8):657-664.
    [113]卫泽斌,郭晓方,吴启堂.化学淋洗和深层土壤固定联合技术修复重金属污染土壤.农业环境科学学报,2010,29(2):407-408.
    [114]王宏康.环境土壤学基础研究进展[J].农业环境保护,1999,18(6):263-267.
    [115]Lindsay W L, Norvell W A. Equilibrium relationship s of Zn2+, Fe2+, Ca2+ and H+ with EDTA and DTPA in soils[J]. Proceedings of the Soil Science Society of America,1969,33:62-68.
    [116]Lombi E, Zhao F J, Wieshanumer G, et al. In situ fixation of metals in soils using bauxite residue:bio2 logical effects[J]. Environmental Pollution, 2002(118):445-452.
    [117]Basta N T, McGowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution,2004,127 (1):73-82.
    [118]Castaldi P, Melis P, Silvetti M, et al. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil[J]. Geoderma,2009,151:241-248.
    [119]李瑞美,王果,方玲.石灰与有机物料配施对作物镉铅吸收的控制效果研究[J].农业环境科学学报,2003,22(3):293-296.
    [120]黄光明,周康民,汤志云,等.土壤和沉积物中重金属形态分析[J].土壤,2009,41(4):201-205.
    [121]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,]996,17(1):89-92.
    [122]崔德杰,张玉龙.上壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.
    [123]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analysis Chemical,1979,51(7): 844-851.
    [124]Malviya R, Chaudhary R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products. Journal ofHazardous Materials,2006, 137:207-217.
    [125]Wu Q T, Wei Z B, Ouyang Y. Phytoextraction of metal-contaminated soil by hyperaccmnulator sedum alfredii H:effects of chelator and co-planting[J]. Water, Air and Soil Pollution,2007,180:131-139.
    [126]Gupta V K, Gupta M and Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminum industry waste[J]. Water Research,2001,35(5):1125-1134.
    [127]陈宏,陈玉成,杨学春.石灰对土壤中Hg Cd Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    [128]Bell L C, Black C A. Crystalline phosphates produced by interaction of orthophosphate fertilizer with slightly acid and alkaline soils[J]. Proceedings of the Soil Science Society of America,1970,34:735-740.
    [129]Hettiarachchi G M, Pierzynski G M. In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide:Influence of Plant Growth[J]. Journal of Environmental Quality,2002,31:564-572.
    [130]陈世宝,朱永官,马义兵.添加羟基磷灰石对土壤铅吸附与解吸特性的影响[J].环境化学,2006,25(4):409-413.
    [131]金亮,周健民,王火焰.石灰性土壤肥际磷酸二铵的转化与肥料磷的迁移[J].磷肥与复肥,2008,23(5):14-18.
    [132]Panwar B S, Singh J P, Laura R D. Cadmium uptake by cowpea and mungbean as affected by Cd and P application[J]. Water, Air and Soil Pollution,1999,112: 163-169.
    [133]Chen S B, Zhu Y G, Ma Y B. Effects of phosphate amendments on Pb extractability and movement of phosphorus in contaminated soil[J]. Acta Scientiae Circumstantiae,2006,26(7):1140-1144.
    [134]Hoods P S, Alloway B J. The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils[J]. Journal of Agricultural Science,1996,127:289-294.
    [135]Gworek B. Use of synthetic zeolites of 3 A and 5A type for lead immobilization in a anthropogenic soils[J]. Polish Journal of Soil Science,1992,25(1):35-39.
    [136]Haidouti C. Inactivation of mercury in contaminated soils using natural zeolites[J]. The Science of the Total Environment,1997,208:105-109.
    [137]Garcia-Sanchez A, Alastuey A, Querol X. Heavy metal adsorption by different minerals:application to the remediation of polluted soils[J]. The Science of the Total Environment,1999,24(2):179-188.
    [138]杨秀敏,胡桂娟.凹凸棒石修复镉污染的土壤[J].黑龙江科技学院学报,2004,14(2):80-82.
    [139]张强,李支援.海泡石对镉污染土壤的改良效果[J].湖南农业大学学报,1996,22(4):346-350.
    [140]杨秀红,胡振琪,高爱林,等.钠化改性膨润土对Cd2+的吸附研究[J].环境化学,2004,25(5):506-509.
    [141]Backes C A, Mclaren R G, Rate A W, et al. Kinetics of cadium and cobalt desorption from iron and manganese oxides[J]. Proceedings of the Soil Science Society of America,1995,59:778-785.
    [142]Ainsworth C C, Pilon J L, Gassman P L, et al. Cobalt,cadium and lead sorption to hydrous iron oxide:residence time effet[J]. Proceedings of the Soil Science Society of America,1994,58:1615-1623.
    [143]张亚丽,沈其荣,等.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):2]2-218.
    [144]McGrath S P, Sanders J R, Shalaby M H. The effects of soil organic matter levels on soil solution concentration and extractabilities of Mn, Zn and Cu[J]. Geoderma,1988,42:77-188.
    [145]王果,谷勋刚.三种有机肥水溶性分解产物时铜,镉吸附的影响[J].土壤学报,1999,36(2):179-188.
    [146]Bolan N S, Adriano D C, Natesan R, et al. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil[J]. Journal of Environmental Quality,2003,32:120-138.
    [147]Narwal R P,Singh B R.Effect of organic materials on partitioning,extractability and plant uptake of metals in an alum shale soil[J].Water, Air and Soil Pollution, 1998,103:405-421.
    [148]李剑超,王果.有机物料影响下土壤溶液铜形态及其有效性研究[J].农业环境保护,2002,21(3):197-200.
    [149]李光林,魏世强,等.镉在腐植酸上的吸附与解吸特征研究[J].农业环境科学学报,2003,22(1):34-37.
    [150]李瑞美,王果,等.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果[J].土壤与环境,2002,11(4):348-351.
    [151]Akinci A, Artir R. Characterization of trace elements and radionuclides and their risk assessment in red mud[J]. Materials Characterization,2007 (2):1-5.
    [152]Gupta V K, Sharma S. Removal of cadmium and zinc from aqueous solutions using red mud[J]. Environment Science Technology,2002,36(16):3612-3617.
    [153]Santona,L, Castaldi,P, Melis,P, et al. Evaluationof the interaction mechanisms between red muds and heavy metals[J]. Journal of Hazardous Materials,2006, 136:324-329.
    [154]Garau G, Castaldi P, Santona L, et al. Influence of red mud.zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma,2007,142(1-2):47-57.
    [155]Gray C W, Dunham S J, Dennis P G, et al. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud [J]. Environmental Pollution,2006,142:530-539.
    [156]Bertocchi A F, Ghiani M, Peretti R, et al. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn[J]. Journal of Hazardous Materials,2006,134(1-3):112-119.
    [157]邓日烈,李克敌,聂呈荣,等.不同改良剂对镉污染土壤上空心菜保护酶系统的影响[J].2008,26(1):73-76.
    [158]王立群,罗磊,马义兵,等.不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J].农业环境科学学报,2009,28(6):1098-1105.
    [159]郝晓伟,黄益宗,崔岩山,等.赤泥对污染土壤Pb、Zn化学形态和生物可给性的影响[J].环境工程学报,2010,4(6):1431-1435.
    [160]高卫国,黄益宗,孙晋伟,等.赤泥和堆肥对土壤锌形态转化的影响[J].农业环境科学学报,2008,27(3):879-883.
    [161]高卫国,黄益宗,雷鸣.添加堆肥和赤泥对土壤生物有效性Cd和Zn的影响[J].环境工程学报,2008,2(1):78-82.
    [162]Lee S H, Lee J S, Choi Y J, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments[J]. Chemosphere,2009,77: 1069-1075.
    [163]Lombi E, Zhao F J, Zhang G Y, et al. In situ fixation of metals in soils using bauxite residue:chemical assessment[J]. Environmental Pollution,2002,118: 435-443.
    [164]Friesl W, Horak O, Wenzel W W. Immobilization of heavy metals in soils by the application of bauxite residues:pot experiments under field conditions[J]. Journal of Plant Nutrition and Soil Science,2004,167:54-59.
    [165]Garau G, Silvetti M, Deiana S, et al. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil[J]. Journal of Hazardous Materials,2011,185:1241-1248.
    [166]Keller C, McGrath S P, Dunham S J. Trace metal leaching through a soil-grassland system after sewage sludge application[J]. Journal of environmental quality.2002,31(5):1550-60.
    [167]Chauhan S, Silori C S. An evaluation of successful reclamation of bauxite residue through afforestation activities in south India[J]. Journal of Horticulture and Forestry,2011,3(7):214-221.
    [168]Manecki M, Bogucka A, Bajda T, et al. Decrease of Pb bioavailability in solis by addition of phosphate ions[J]. Environmental Chemistry Letters,2006,3(4): 178-181.
    [169]McGowen S L,Basta N T,Brown G O.Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil[J]. Journal of Environmental Quality,2001,30(2):493-500.
    [170]王碧,谢正苗,孙叶芳,等.磷肥对铅锌矿污染土壤中铅毒的修复作用[J].环境科学学报,2005,25(9):1189-1194.
    [171]单艳红,杨林章,王建国.土壤磷素流失的途径、环境影响及对策[J].土壤,2004,36(6):602-608.
    [172]王道涵,梁成华.农业磷素流失途径及控制方法研究进展[J].土壤与环境,2002(2):
    [173]岳云龙,芦令超,常均,等.赤泥碱矿渣水泥及其制品的研究[J].硅酸盐通报,2001,20(1):46-49.
    [174]GB15618-1995,土壤环境质量标准[M].中国标准出版社,2004:1-3.
    [175]中华人民共和国质量监督检验检疫总局.GB/T1346-2001水泥标准稠度用水量、凝结时间、安定性检测方法[M].中国标准出版社,2001,1-6.
    [176]GB/T 2419-2005水泥胶砂流动度测定方法[M].中国标准出版社,2005,1-12.
    [177]鲁如坤.土壤农化分析[M].中国农业科技出版社,1999:13-165.
    [178]GB\T17140-1997土壤质量铅镉的测定KI-MIBK萃取火焰原子吸收分光光度法[M].中国环境科学出版社,1997,1-12.
    [179]GB11893-89水质总磷的测定钼酸铵分光光度法[M].中国标准出版社,1989,1-4.
    [180]曹瑛,李卫东,刘艳改.工业废渣赤泥的特性及回收利用现状[J].硅酸盐通报,2007,26(1):143-135.
    [181]潘志华,于健.碱矿渣赤泥水泥[J].水泥工程,2000,(1):53-56.
    [182]关文章.赤泥的特殊工程性能及其利用之研究[J].勘察科学技术,1999(3):9-13.
    [183]赵宏伟,李金洪,刘辉.赤泥制备硫铝酸盐水泥熟料的物相组成及水化性能[J].有色金属,2006,58(4):119-123.
    [184]Tsakiridis P E, Agatzini-Leonardou S, Oustadakis P, Red mud addition in the raw meal for the production of portland cement clinker [J]. Journal of Hazardous Materials,2004,116(1/2):103-110.
    [185]张彦娜 潘志华 李东旭 许仲梓.赤泥用作高性能水泥性能调节组分的研究[J].南京工业大学学报:自然科学版,2004,26(5):20-24.
    [186]袁俊,减水剂对混凝土性能影响的研究[J].水泥助磨剂技术,2012(1):11-21.
    [187]张惠芬,冯璜.粘土矿物钝化改性和钝化机理初步研究[J].高校地质学报,2000,6(2):287-291.
    [188]盛光遥,斯蒂芬·博伊德.有机粘土矿物及土壤改性在污染防治和环境修复中的应用[J].自然杂志,1997(2):95-103.
    [189]Pichtel J, Kuroiwa K, Sawyer H T. Distrbution of Pb, Cd and Ba in soils and plants of two contanminated sites[J]. Environmental Pollution,2000(110): 171-178.
    [190]Mohammed M H, Markert B. Toxicity of heavy metals on Scenedesmus quadricauda(Turp.) de Brebisson in batch cultures[J]. Environmental Science and Pollution Research,2006,13(2):98-104.
    [191]Liu H L, Li L Q, Yin C Q, et al. Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake[J]. Journal of Environmental Sciences,2008,20 (4):390-397.
    [192]郝汉舟,陈同斌,靳孟贵,等.重金属污染土壤稳定/固化修复技术研究进展[J].应用生态学报,2011,22(3):816-824.
    [193]王英辉,陈学军,赵艳林等.铅锌矿区土壤重金属污染与优势植物累积特征[J].中国矿业大学学报,2007,36(4):487-493.
    [194]Farfel M R, Orlova A O, Chaney R L, et al. Biosolids compost amendment for reducing soil lead hazards:A pilot study of Orgro (R) amendment and grass seeding in urban yards[J]. Science of the Total Environment,2005,340(1-3): 81-95.
    [195]Ryan J A, P zhang, D Hesterberg, et al. Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite[J]. Environmental Science and Technology,2001,35:3798-3803.
    [196]鲍士旦.土壤农化分析[M].中国农业出版社,2005,1:138-140.
    [197]Echeverria J C, Morera M T, Mazkiaran C, et al. Competitive sorption of heavy metal by soils. Isotherms and fractional factorial experiments[J]. Environmental Pollution,1998,101:275-284.
    [198]Naidu R, Bolan N S, Kookana R S, et al. Ionic strength and pH effects on surface charge and Cd sorption characteristics of soils[J]. Journal of Soil Science,1994,45:419-429.
    [199]胡振琪,杨秀红.重金属污染土壤的粘土矿物与菌根稳定化修复技术[M].地质出版社,2006,7:67-72.
    [200]Koopal L K, Saito T, Pinheiro J P, et al. Ion binding to natural organic matter: General considerations and the NICA-Dorman model [J]. Colloids and Surfaces A:Physico-chemical and Engineering Aspects.2005,265:40-54.
    [201]Ford R C, Sparks D L. The nature of Zn precipitates formed in the presence of pyropyllite[J]. Environment Science and Technology,2000,34:2479-2483.
    [202]Ciavatta C, Govi M, Simoni A, et al. Evaluation of heavy metals during stabilization of organic matter in compost produced with municipal solid wastes[J]. Bioresource Technology,1993,43(2):147-153.
    [203]戴树桂.环境化学[M].高等教育出版社,2006,10:186-192
    [204]Cheng X T, Wang G, Liang Z C. Effect of amendments on growth and element uptake of pakchoi in a cadmium,zinc and lead contaminated soil[J]. Pedoshpere, 2002,12(3):243-250.
    [205]陈世宝,朱永官.不同含磷化合物对中国芥菜(Brassica Oleracea)铅吸收特性的影响[J].环境科学学报,2004,24(4):707-712.
    [206]Ma L Q, Rao G N, Effects of Phosphate Rock on Sequential Chemical Extraction of Lead in Contaminated Soils[J]. Jounal of Environmental Quality, 1997,26:788-794.
    [207]黄昌勇.土壤学(第三版)[M].中国农业出版社,2010,9:173-235.
    [208]Riffaldi R, Levi-Minzi R, Cardelli R, et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil[J]. Water, Air, and Soil Pollution,2006,170(1-4):3-15.
    [209]Riffaldi R, Levi-Minzi R, Saviozzi A, el. al. Adsorption on soil of dissolved organic carbon from farmyard manure[J]. Agriculture, Ecosystems and Environment,1998,69(2):113-119.
    [210]Pcryea F J.Phosophate-induced release of arsenic from soils contaminated with lead and arsenic[J]. Soil science society of america journal,1991,55: 1301-1305.
    [211]陈世宝,李娜,王萌,等.利用磷进行铅污染土壤原位修复中需考虑的几个问题[J].中国生态农业学报,2010,18(1):203-209.
    [212]周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展[J].生态学报,2007,27(7):3043-3050.
    [213]顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤,1990,22(2):101-102.
    [214]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29(1):80-86.
    [215]Heathwaite A L, Dils R M. Characterising phosphorusloss in surface and subsurface hydrological pathways[J]. Science of The Total Environment,2000, 251-252:523-538.
    [216]梁媛,王晓春,曹心德.基于磷酸盐、碳酸盐和硅酸盐材料化学钝化修复重金属污染土壤的研究进展[J].2012,31(1):16-25.
    [217]鲁如坤,时正元.磷在土壤中有效性的衰减[J].土壤学报,2000,37(3):323-329.
    [218]张海涛,刘建玲,廖文华,等.磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响[J].植物营养与肥料学报,2008,14(2):284-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700