用户名: 密码: 验证码:
城市土壤—植物系统中融雪剂的污染行为及其生态学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
融雪剂是高纬度城市冬季除雪化冰、保证交通安全的主要措施之一。近年来,在中国北方地区氯盐型融雪剂除雪以其简便的操作方式、低廉的价格和良好的融雪效果而得到广泛应用。随着化学融雪剂施用量的逐年增加,其对土壤、植被、地表水和地下水和野生动物的生态环境效应受到广泛关注。高浓度的Na+和Cl-会影响土壤结构和渗透性,对土壤微生物和植物形成渗透胁迫。由于城市市区融雪剂施用量大,融雪剂对土壤-植物系统的危害最为直接,因此研究城市土壤环境中可溶性盐离子的积累具有非常重要的意义。然而在城市环境中,城市道路网密度高,不渗透地表面积比例大,使用融雪剂的种类繁多,融雪剂使用后可溶性盐离子的迁移途径复杂,因此对于城市环境探究可溶性盐离子在土壤-植物系统中的积累和淋溶效应更为重要。
     本研究以辽宁省沈阳市为研究对象,主要采用野外调查、室内模拟与分析测试相结合的方法,对融雪剂在城市环境中的主要污染行为及生态效应展开系统研究。研究结果表明,目前沈阳市使用的典型融雪剂是以NaCl和CaCl2为主要成分的氯盐型融雪剂。采集城市冬季使用融雪剂的交通主要干道残雪、绿化土壤、典型绿化植物、雨水地表径流和环城水系样品,研究结果表明,城市冬季残雪中Na+、Ca2+和C1-离子等主要离子含量远高于对照,并在城市绿化土壤和典型绿化植物油松中具有明显的积累作用。融雪剂的使用也导致了雨水径流中的可溶性盐离子含量的增加,其在环城水系中的积累可能导致对城市水生生态系统造成不利影响。
     以城市典型绿化树木油松、灌木唐棣和3种冷季型草坪草为研究对象,探讨2种典型融雪剂(1号融雪剂:NaCl质量百分比为45.2%;2号融雪剂:NaCl质量百分比为54.6%)与其种子发芽、生理生态(叶绿素、质膜透性、酶、丙二醛MDA、光合特性等)的剂量-效应关系以及K+、Na+吸收运输和分配的影响,并进一步探究外源K+和SA在缓解融雪剂对油松幼苗生长抑制中的效应关系。研究结果表明,随着融雪剂处理浓度的增加,3种草坪草种子萌发和幼苗生长受到的抑制作用增强,唐棣幼苗根、茎和叶各器官中Na+含量增加,K+含量和K+/Na+比值降低,根茎运输的SK,Na逐渐上升,茎叶运输的SK, Na显著下降,不同器官间Na+含量表现为根>叶>茎。与2号融雪剂相比,1号融雪剂处理下草坪草种子萌发和幼苗生长的抑制作用更小,唐棣幼苗生物量积累、K+/Na+比值和SK, Na相对更高。3种草坪草对融雪剂胁迫的耐受能力大小依次为:黑麦草、早熟禾、白三叶,耐受1临界值分别为6.25-9.61g/L、4.99-6.17g/L和1.97-3.11g/L,极限值分别为12.89-16.85g/L、9.79-12.62g/L和5.71-8.26gL。融雪剂处理选唐棣叶片中的K+/Na+比值高于根茎,说明唐棣具有一定的耐盐性,根系对Na+截留能力强,保持较高茎向叶SK, Na是减轻地上部分离子毒害的关键因素。0.2%浓度融雪剂胁迫下,20mmol/L KNO3和2mmol/L水杨酸SA能明显诱导油松幼苗过氧化物酶POD活性的增强,缓解膜脂过氧化作用,降低丙二醛MDA在叶片中的积累,维持细胞膜的稳定性。虽然外源K+和SA对油松幼苗叶片胞间CO2浓度Ci和气孔导度Gs的缓解作用并不显著,但其可通过提高叶绿素含量促进光合作用的进行,缓解融雪剂胁迫对油松幼苗生长的抑制,分别增加生物量24.9%和63.6%。可见,20mmol/L KNO3和2mmol/L SA处理能有效缓解融雪剂对油松幼苗的伤害。
     融雪剂对土壤生物化学性质的试验结果表明,随融雪剂处理浓度的增加,土壤微生物量碳、微生物量氮、土壤呼吸、土壤脲酶和过氧化氢酶活性、土壤矿化作用和硝化作用均受到不同程度的抑制,当融雪剂处理浓度高于0.5%时,土壤微生物量碳土壤呼吸、土壤脲酶活性、土壤矿化作用和硝化作用的抑制程度与对照相比差异显著。土壤中微生物量C/N比与融雪剂处理浓度的相关性分析中,土壤中微生物量CN比和融雪剂处理浓度之间呈现极显著的负相关性(r=0.963,P<0.01),试验结果表明随融雪剂浓度的增加,微生物群落中真菌数量显著减少,细菌成为优势群落。微生物量碳与土壤酶、累积矿化量、累积硝化量的显著相关关系表明,融雪剂对土壤微生物量、微生物活性和群落结构变化的影响可能是导致融雪剂抑制土壤的氮转化过程的重要因素。
     城市土壤环境中Na和Cl离子明显积累,浓度分别达到352-513mg/kg和577-2,353mg/kg, Cd、Pb、Cu和Zn全量的平均含量为3.0mg/kg、49.2mg/kg、72.0mg/kg和167.4mg/kg。通过先淋洗融雪剂处理液后淋洗去离子水的淋洗方式,模拟实际土壤环境中融雪剂的使用和降水冲刷的过程。土柱淋溶实验的研究结果表明,融雪剂处理下土壤对Cd和Zn的释放量达到总量的20.9%和16.2%,淋出液中Cd、Zn与Cl含量的极显著相关性表明,氯化络合物的形成是Cd和Zn迁移的主要方式之一。与Cd、Zn相比,仅有2.34%的Pb被释放,证实了土壤环境中Pb元素的低迁移性。然而,本试验中淋出液中较高浓度的Pb、Cu和Fe、TOC浓度间显著的相关性表明胶体运移是土壤中1Pb和Cu迁移的主要方式,可见土壤中Pb污染达到一定浓度时,融雪剂对Pb胶体迁移的影响不容忽视。融雪剂对棕壤和红壤中重金属迁移行为的短期淋溶实验结果表明,棕壤对Cu和Pb的释放量为20.98mg/kg和1.11mg/kg,占土壤中Cu和Pb全量的11.11%和0.82%,红壤对Cu的释放量为14.42mg/kg和0.87mg/kg,占土壤中的Cu和Pb全量的7.64%和0.64%。棕壤对Cd和Zn的释放量占土壤中Cd和Zn全量的22.19%和17.37%,红壤的释放量为37.48%和33.20%。可见,棕壤对Pb和Cu的释放高于红壤,而对Cd和Zn的释放量远低于红壤。比较传统型融雪剂(NaCl)和替代型融雪剂(KCOOH)对土壤重金属迁移行为影响的异同,结果表明KCOOH对土壤中Cd、Pb、Cu和Zn的释放量均低于NaCl,因此,与传统型融雪剂NaCl相比KCHOO可能是更好的选择,但其对其他金属元素的释放及对其他环境介质的生态效应有待进一步研究。
Large quantities of deicing salts are applied in urban areas for clearing the pavement and ensuring the normal traffic flow during the winter seasons in Northeastern China. There have been many recent reports of high salt levels on aquatic systems and terrestrial vegetation. According to the different pathways by which salt ions may move after deicing salts application, studies of salt storage in soils are especially needed in urban environments. Compared to soils in other ecosystems, urban soils are more exposed to human activities. Urban areas are responsible for a large portion of deicing salts use. However, most previous studies of the effects of deicing salts have been on the soils beside remote, rural highways where salt effects are easily attributed to as single source (a road). It is still unclear how well results of rural studies apply to urban areas, where road and sidewalk density is high, total impervious cover is high. The most common deicing material used in Shenyang city, where the largest and oldest heavy industrial base city in China, is the chemical compounds including sodium chloride (NaCl), calcium chloride (CaCl2).
     In this paper, the possible alternative pathway by which salt ions (K, Ca, Na, Mg, Cl and SO42-) may move to soil, plants and aquatic systems after deicing chemicals applications was investigated. The distribution characteristics of the principal components in the urban environment showed that the high sodium and chloride concentration in roadside snow is extensively higher than thatin roadside snow samples collected far from urban roads. The salt from deicing operation has been observed to accumulate in roadside soil and inhibit the growth of vegetation (Pinus tabulaeformis). There was an obvious increasing of salt ions concentrations in stormwater runoff samples, especially Na and Cl. It is also found that readily soluble salts ions in stormwater runoff peaked at the first storm event after winter.It is evident that the application of deicing salts in cold regions of China every year has had adverse impacts on the aquatic ecology through stormwater runoff.
     Application of chemical road deicers has a negative impact on roadside vegetation. Every year, plants in cities suffer from direct and indirect effects of salt application for winter road maintenance.The effects of different concentrations of two typical deicing salts on seed germination and growth response of three kinds of cool-season turfgrasses(Poa pratensis cv. Merit, Lolium perenne cv. Green Emerald and Trifolium repens cv. Riverdel) were studied in this paper. The NaCl content of two typical deicing salts was45.2%and54.6%, respectively. The investigation of growth response in the turfgrass seedlings including length of roots and shoots, relative water content, relative conductivity of the plasma membrance, malondialdehyd (MDA) content and peroxidases (POD) activity. The results showed that the inhibition effect of seed germination and growth response in the three kinds of turfgrasses was increased with the increasing deicing salts concentration. Compared with No.1deicing salt, the inhibition effect of No.2deicing salt on seed germination and growth of three cool-season turfgrass species was stronger. The deicing salts tolerance was in the sequence Lolium perenne, Poa pratensis and Trifolium repens. The critical value of those was6.25-9.61g/L,4.99-6.17g/L and1.97-3.11g/L, respectively. The maximum value was12.89-16.85g/L,9.79-12.62g/L and5.71-8.26g/L, respectively. The deicing salts stress mainly inhibited water absorption, disturbed membrane function and induced MDA accumulation via the effect of osmotic and ion toxicity. However, POD enzyme of the three kinds of turfgrass seedlings played a significant role under the deicing salts stress.
     Pot experiments were performed in soil culture to test the effect of two typical deicing salts on the growth and K+and Na+transportation and distribution of Amelanchier alnifolia seedlings. The results showed that the biomass accumulation of roots, stems and leaves of seedlings was inhibited by the stress of two typical deicing salts. The treatment of0.4%deicing salts decreased the biomass accumulation significantly in comparison with the control seedlings. Compared with the No.2deicing salts, the seedling of Amelanchier alnifolia had the higher biomass accumulation, K+/Na+ratios and higher transportation selectivity of K+to Na+from root to stem and stem to leaves. In conclusion, the inhibition effect of No.2deicing salt was stronger. With the increasing concentration of deicing salts, the Na+content in the roots, stems and leaves of Amelanchier alnifolia increased while the K+content decreased, resulting in a decrease in the K+/Na+ratio. The ability of ion transporting from root to stem was enhanced, while K+to Na+from stem to leaves was decreased significantly under the increasing concentration of deicing salts.
     It was reported that the application of exogenous K+and salicylic acid (SA) could protect plants against abiotic stress. In this study, pot experiments were performed in soil culture to test the efficacy of two soil additives, potassium nitrate (KNO3) and SA, in alleviating the stress of deicing salts on growth and photosynthetic parameters of Pinus tabulaeformis seedlings. The results showed that the treatment of KNO320mmol/L and SA2mmol/L to0.2%deicing salts had high dry weight and water content. Meanwhile, the MDA content and leakage rates of electrolyte increased once exposure to0.2%deicing salts, and salts exposure also had an inhibitory effect on the activities of the POD. It was also found that the contents of Ci and Gs remained unchanged in leaves of Pinus tabulaeformis seedlings in all alleviation treatments, but the enhancing of chlorophyll contents played a key role in maintaining the leaf photosynthetic rate under the treatment of KNO3and SA. The results indicated that the salt tolerance of Pinus tabulaeformis seedlings was improved by using soil additives of KNO320mmol/L and SA2mmol/L. Exogenous K+and SA showed strong benefits against deicing salts-induced negative symptoms.
     Of several impacts of road salting on roadside soils, the potential disruption of the nitrogen cycle has been largely ignored. The effects of deicing salts on the activity and community structure of soil microorganisms, ammonification and nitrification in the soils were investigated. The results showed that the inhibition effect of microbial biomass, metabolic quotient, urease enzyme activiy, the content of mineralizable N and nitrate N growth response was increased with the increasing deicing salts concentration. All that indexes were inhibited significantly by the stress of0.5%deicing salts..The declining trend in biomass C/N with increasing salinity may reflect the baeterial dominanee in soil microbial biomass. The positive relationship between microbial biomass and the content of mineralizable N and nitrate N, indicated that the remarkable influence of deicing salts on the activity and community structure of soil microorganisms, and induced the decrease of soil nitrogen mineralization and nitrification in the soils.
     Widespread use of deicing salts on road in cold regions has been shown to mobilize heavy metals in roadside soils putting ground and surface waters at risk. Examining the accumulation of deicing salts and its short-term effect on metal mobility in urban roadside soils is important for understanding the distribution and movement of heavy metals in the environment of Northern China. The investigation results from41roadside soils not only showed a strong rise in deicing-salt related Na concentration (352-513mg/kg) and Cl concentration (577-2,353mg/kg), but also high Cd (1.2-7.6mg/kg) and Pb (28.7-101.6mg/kg) values. The most serious contaminated roadside soil was leached in columns alternately with de-icing salt solution and de-ionized water to simulate the runoff of deicing salts into roadside soils followed by snowmelt or rainwater. The results showed that an extensive mobilization of Cd (20.90%of the total Cd) occurred in the salt leachate and a high correlation with Cl showed that Cl complexes are important for the mobilization, although the cation exchange cannot be excluded. Conversely, only2.34%of the total amount of Pb was leached confirming the usual hypotheses about the high immobility of Pb in soils. However, the high Pb concentration coincided with peaks in Fe and TOC concentrations and the low proportion of Pb in the>0.45μm phase, implied an extensive mobilization of small-sized colloids.
引文
[1]Akbar K F, Headley A D, Hale W H G, Athar M.2006. A comparative study of de-icing salts (sodium chloride and calcium magnesium acetate) on the growth of some roadside plants of England [J]. Journal of Applied Sciences and Environmental Management,10(1):67-71.
    [2]Alshammary S F, Qian Y L, Wallner S J.2004. Growth response of four turfgrass species to salinity [J]. Agricultural Water Management,66:97-111.
    [3]Amrhein C, Mosher P A, Strong J E, Pacheco P G.1994. Trace metal solubility in soils and waters receiving deicing salts [J]. Journal of Environmental Quality,23:219-227.
    [4]Amrhein C, Mosher P A, Strong J E.1993. Colloid-assisted transport of trace metals in roadside soils receiving deicing salts [J]. Soil Science Society of America Journal, 1212-1217.
    [5]Amrhein C, Strong J E, Mosher P A.1992. Effect of de-icing salts on metal and organic matter mobilization in roadside soils [J]. Environmental Science and Technology,26: 703-709.
    [6]Amrhein C, Strong J E.1990. The effect of deicing salts on trace metal mobility in roadside soils [J]. Journal of Environmental Quality,19:765-722.
    [7]Andersson A.1975. Relative efficiency of nine different soil extractants [J]. Swedish Journal of Agricultural Research,5:125-135.
    [8]Astebol S O, Pedersen P A, Rohr P K, Fostad O, Soldal O.1996. Effects of de-icing salts on soil, water and vegetation [R]. Norwegian National Road Administration, Report MITRA 05/96, Oslo (in Norwegian with English summary):63.
    [9]Azam F, Muller C.2003. Effect of sodium chloride on denitrification in glucose amended soil treated with ammonium and nitrate nitrogen [J]. Journal of Plant Nutrition and Soil Science,166:594-600.
    [10]Backstrom M, Karlsson S, Backman L, Folkeson L, Lind B.2004. Mobilisation of heavy metals by deicing salts in a roadside environment [J]. Water Research,38:720-732.
    [11]Banks M K, Schwab A P, Henderson C.2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants [J]. Chemosphere,62:255-264.
    [12]Barnthouse L W, Suter G W.1986. Use manual for ecological risk assessment [M]. Environmental Sciences Division Publication No.2679. U.S. Environmental Protection Agency, Office of Research and Development.
    [13]Batra L, Manna M C.1997. Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions [J]. Arid Soil Research and Rehabilitation, 11(3):295-303.
    [14]Bauske B, Goetz D.1993. Effects of deicing salts on heavy metal mobility [J]. Acta Hydrochim Hydrobiol,21:38-42.
    [15]Blomqvist G, Johansson E L.1999. Air-borne spreading and deposition of deicing salt-a case study [J]. The Science of the Total Environment,235(1-3):161-168.
    [16]Blumwald E.2000. Sodium transport and salt tolerance in plants [J]. Current Opinion in Cell Biology,12:431-434.
    [17]Boekhold A E, Temminghoff E J M, van der Zee S E.1993. Influence of electrolyte composition and pH on the cadmium adsorption by an acidic soil. Journal of Soil Science,44: 85-96.
    [18]Bogemans J, Neirinckx L, Stassart J M.1989. Effect of deicing NaCl and CaCl2 on Spruce. Plant and Soil,120:203-211.
    [19]Borsami O, Valpuesta V, Botella M A.2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings [J]. Plant Physiology,126(3):1024-1030.
    [20]Brauer J, Geber M A.2002. Population differentiation in the range expansion of a native maritime plant, Solidago sempervirens L. International Journal of Plant Sciences,163(1): 141-150.
    [21]Brenner M V, Horner R R.1992. Effects of calcium magnesium acetate (CMA) on DO innatural waters. Resources [J]. Conservation and Recycling,7:239-265.
    [22]Bryson G M, Barker A V.2002. Sodium accumulation in soils and plants along Massachusetts roadsides [J]. Communications in Soil Science and Plant Analysis,33(1-2): 67-78.
    [23]Butler B J, Addison J.2000:Biological effects of road salts on soils. Environment Canada CEPA Priority Substances List Environmental Resource Group on Road Salts. Commercial Chemicals Evaluation Branch, Environment Canada, Hull.
    [24]Byung Yun Yang, Rex Montgomery,2003, De-icers derived from corn steep water [J]. Bioresurce technology,90:265-273
    [25]Cancilla D A, Baird J C, Rosa R.2003. Detection of aircraft deicing additives in groundwater and soil samples from Fairchild Air Force Base, a small to moderate user of deicing fluids [J]. Environmental Contamination Toxicology,70:868-875.
    [26]Cekstere G, Nikodemus O, Osvalde A.2008. Toxic impact of the de-icing material to street greenery in Riga [J]. Latvia. Urban Forestry and Urban Greening,7:207-217.
    [27]Cernohlavkova J, Hofman J, Bartos T, Sanka M, And61 P.2008. Effects of road deicing salts on soil microorganisms [J]. Plant Soil Environment,54 (11):479-485.
    [28]Chen S L, Li J K, Wang S S, Fritz E, Huttermann A, Altran A.2003. Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and Populus tomentosa. Canadian Journal of Forest Research,33(6): 967-975.
    [29]Chen Y, Senesi N, Schnitzer M.1977. Information provided on humic substances by E4/E6 rotios [J]. Soil Science Society of America Journal,41:352-358.
    [30]Cunningham A M, Snyder E, Yonkin D, Ross M, Elsen T.2008. Accumulation of deicing salts in soils in an urban environment [J]. Urban Ecosyst,11:17-31.
    [31]Czerniawska-Kusza I, Kusza G, Duzynski M.2004. Effect of Deicing Salts on Urban Soils and Health Status of Roadside Trees in the Opole Region [J]. Environmental Toxicology,19: 296-301.
    [32]Davidson C M, Thomas R P, Mcvey S E, et al.1994. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments [J]. Analytica Chimica Acta,291: 277-286.
    [33]Defourny C.2000. Environmental risk assessment of deicing salts [C]. World salt Symposium,8th The Hague, Netherlands,2:767-770.
    [34]Delfine S, Alvino A, Villani M C, Loreto F.1999. Restrictions to carbon dioxide conductance and photosynthesis in spinach leave recovering from salt stress [J]. Plant Physiology,119(3):1101-1106.
    [35]Doner H E.1978. Chloride as a factor in mobilities of Ni, Cu and Cd in soils [J]. Soil Science Society of America Journal,42:882-885.
    [36]Du Xiaodong, Dai Xuanli.2005. The Monitoring Cl- in the Soil Sample by ion chromatography [J]. Modern Scientific Instruments,4:57.
    [37]Duckworth C M S, Cresser MS.1991. Factors influencing nitrogen retention in forest soils [J]. Environmental Pollution,72:1-21.
    [38]Elliot H A, Linn J H.1987. Effect of calcium magnesium acetate on heavy metal mobility in soils [J]. Journal of Environmental Quality,16(3):222-226.
    [39]Erdei L, Kuiper P J C.1980. Substrate-dependent modulation of ATPase activity by Na' and K+ in roots of Plantago species [J]. Physiologia Plantarum,49(1):71-77.
    [40]Field R, Struzeski J E, Masters E H, Tafuri N A.1974. Water pollution and associated effects from street salting [C]. Water pollution control in low-density areas:Proceedings of a rural environment engineering conference,317-340.
    [41]Findlay S E G, Kelly V R.2011. Emerging indirect and long-term road salt effects on ecosystems [J]. Annals of the New York Academy of Sciences,1223:58-68.
    [42]Fischel M.2001. Evaluation of selected deicers based on a review of the literature [R]. The Seacrest Group. Colorado Department of Transportation Research Branch.
    [43]Fluckiger W, Braun S.1981. Perspectives of reducing the deleterious effect of de-icing salt upon vegetation [J]. Plant and Soil,63(3):527-529.
    [44]Forczek S T, Benada O, Kofronova O, Sigler K, Matucha M,2011. Influence of road salting on the adjacent Norway spruce (Picea abies) forest [J]. Plant Soil and Environment,57(7): 344-350.
    [45]Forstner U.1981. Metal Pollution in Aquatic Environment (Second Edition) [M]. Berlin: Springer-Verlag.
    [46]Fostad O, Pedersen P A.2000. Container-grown tree seedling responses to sodium chloride applications in different substrates [J]. Environmental Pollution,109:203-210.
    [47]Frankenberger W T, Bingham F T.1982. Influence of salinity on soil enzyme activities [J]. Soil Science Society of America Journal,46(6):1173-1177.
    [48]Gadde R R, Laitinen H A.1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides [J]. Analytical Chemistry,46(13):2022-2026.
    [49]Galuszka A, Migaszewski Z M, Podlaski R, Dolegowska S, Michalik A.2001.The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland [J]. Environmental Monitoring and Assessment,176:451-464.
    [50]Geng Q Z, Irard G G, Edoux E L.1996. Modeling of nitrogen cycle and nitrate transfer in regional hydrogeologic systems [J]. Groundwater,34(2):293-304.
    [51]Gibbs J N, Palmer C A.1994. A survey of damage to roadside trees in London caused by the application of de-icing salt during the 1990/1991 winter [J]. Arboricultural Journal,18: 321-343.
    [52]Godwin K S, Hafner S D, Buff M F.2003. Long-term trends in sodium and chloride in the Mohawk River, NewYork:The effect of fifty years of road-salt application [J]. Environmental Pollution,124:273-281.
    [53]Green S M, Cresser M S.2008. Nitrogen cycle disruption through the application of de-icing salts on upland highways [J]. Water Air and Soil Pollution,188:139-153.
    [54]Green S M, Machin R, Cresser M S.2008. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils [J]. Environmental Pollution,152:20-31.
    [55]Grolimund D, Borkovec M.2005. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:mathematical modeling and laboratory column experiments [J]. Environmental Science and Technology,39:6378-6386.
    [56]Guntner M, Wilke B M.1982. Effects of de-icing salt on soil enzyme activity [J]. Water Air and Soil Pollution,20:211-220.
    [57]Gutiw P L, Jin Y C.1998. Roadside salinity changes by pavement deicer application on a Saskatchewan highway [M]. Proceedings of an international Symposium Helsinki, Finland: 14-30.
    [58]Hanslin H M.2011. Short-term effects of alternative de-icing chemicals on tree sapling performance [J]. Urban Forestry and Urban Greening,10:53-59.
    [59]Harless M L, Huckins C J, Grant J B, Pypker T G.2011. Effects of six chemical deicers on larval wood frogs (Rana Sylvatica) [J]. Environmental Toxicology and Chemistry,30(7): 1637-1641.
    [60]Harrison R M, Laxen D P H, Wilson S J.1981. Chemical association of lead, cadmium, copper and zinc in street dust and roadside soil [J]. Environmental Science and Technology, 15:1378-1383.
    [61]Hartleya W, Edwards R, Leppb N W.2004. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests [J]. Environment Pollution,131:495-504.
    [62]Hellsten P, Nysten T.2001. Migration and chemical reactions of alternative de-icers in sand filters. The Finnish environment [M]. Edita:Helsinki,515:67.
    [63]Hoffman R W, Goldman C R, Paulson S, Winters G R.1981. Aquatic impacts of deicing salts in the central Sierra Nevada Mountains, California [J]. Water Resource Bullutine,17(1): 280-285.
    [64]Horner R R.1988. Environmental Monitoring and Evaluation of Calcium Magnesium Acetate (CMA) [M]. TRB, National Research Council, Washington, D.C.
    [65]Horner R R., Brenner M V.1992. Environmental evaluation of calcium magnesium acetate for highway deicing applications [J]. Resources, Conservation and Recycling,7(1-3): 213-237.
    [66]Howard J L, Sova J.1993. Sequential extraction analysis of lead in Michigan roadside soils: mobilization in the vadose zone by deicing salts? [J] Journal of Soil Contamination,2: 361-378.
    [67]Howard K W F, Beck P J.1993. Hydrogeochemical implications of groundwater contamination by road de-icing chemicals [J]. Journal of Contaminant Hydrology,12 (3):245-268.
    [68]Howard K W F, Livingstone S.2000. Transport of urban contaminants into Lake Ontario via sub-surface flow [J]. Urban Water,2(3):183-195.
    [69]Huston M A, Smith T M.1987. Plant succession:Life history and competition [J]. American Naturalist,130:168-198.
    [70]Jackson R B, Jobbagy E G.2005. From icy roads to salty streams [J]. Proceedings of the National Academy of Sciences,102(41):14487-14488.
    [71]Jastrow J D, Miller R M.1993. Neighbor influences on root morphology and mycorrhizal fungus colonization in tallgrass prairie plants [J]. Ecology,72:561-569.
    [72]Jenkinson D S,1988. Determination of microbial biomass carbon and nitrogen in soil. In: Wilson, J.R. (Ed.), Advances in Nitrogen Cycling in Agricultural Ecosystems [M]. Common wealth Agricultural Bureau International. Wallingford. UK, PP.368-386.
    [73]Kakuturu S, Clark S E.2012. Impacts of deicing salts on soil structure and infiltration rate [C]. World Environmental and Water Resources Congress:411-414.
    [74]Kaushall S, Groffman P, Likens G, Belt K, Stack W, Kelly V, Band L, Fisher G.2005. Increased salinization of freshwater in the northeastern United States [J]. Proceedings of the National Academy of Sciences,102(38):13517-13520.
    [75]Kayama M, Quoreshi A M, Kitaoka S, Kitahashi Y, Sakamoto Y, Maruyama Y, Kitao M, Koike T.2003. Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst., and Picea glehnii Masters planted along roadsides in northern Japan [J]. Environmental Pollution,124:127-137.
    [76]Khodary S E A.2004. Effects of salicylic acid on the growth, photosynthesis and carbohydrate Metabolism in salt stress Maize plant [J]. International Journal of Agriculture and Biology,6(1):5-8.
    [77]Kinniburgh D G, Jackson M L, Syers J K.1976. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum [J]. Soil Science Society of America Journal,40:796-799.
    [78]Klitzke S, Lang F, Kaupenjohann M.2008. Increasing pH releases colloidal lead in a highly contaminated forest soil [J]. European Journal of Soil Science,59:265-273.
    [79]Kookana R S, Naidu R.1998. Effect of soil solution composition on cadmium transport through variable charge soils [J]. Geoderma,84:235-48.
    [80]Kovacik J, Klejdus B, Hedbavny J, Backor M.2009. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants [J]. Ecotoxicology,18:544-554.
    [81]Kusza I C, Kusza G, Duzynski M.2004. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region [J]. Environmental Toxicology,19(4):296-301.
    [82]Laura R D.1974. Effects of neutral salts on carbon and nitrogen mineralization of organic matter in soil [J]. Plant and Soil,41:113-127.
    [83]Laura R D.1977. Salinity and nitrogen mineralization in soil [J]. Soil Biology and Biochemistry,9:333-336.
    [84]Lavola A, Karjalainen R, Tiitto R J.2012. Bioactive polyphenols in leaves, stems, and berries of Saskatoon (Amelanchier alnifolia Nutt.) cultivars [J]. Journal of agricultural food chemistry,60(4):1020-1027.
    [85]Levitt J.1980. Response of Plants to Environmental Stress [M].2nded. New York: Academic Press,365-434.
    [86]Li Fayun, Fan Zhiping, Xiao Pengfei, Oh Kokyo, Ma Xiping, Hou Wei.2009. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China [J]. Environmental Geology,57(8):1815-1823.
    [87]Li Fayun, Zhang Ying, Xiong Zaiping, Sun Tingting.2011. Effect of deicing salt on ion conentrations in urban roadside snow and surface water [C].5th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2011.
    [88]Linde M, Oborn I, Gustafsson J P.2007. Effects of Changed Soil Conditions on the Mobility of Trace Metals in Moderately Contaminated Urban Soils [J]. Water Air and Soil Pollution,183:69-83.
    [89]Lofgren S.2001. The chemical effects of deicing salt on soil and stream water of five catchments in Southeaste Sweden [J]. Water Air and Soil Pollution,130:863-868.
    [90]Loupassaki M H, Chartzoulakis K S, Digalakin N B, Androulakisa 11.2002. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium and sodium in leaves, shoots and roots of six olive cultivars [J]. Journal of Plant Nutrition,25(11): 2457-2482.
    [91]Lumsdon D G, Evans L J, Bolton K A.1995. The influence of pH and chloride on the retention of cadmium, lead, mercury and zinc by soils [J]. Journal of Soil Contamination,4: 137-150.
    [92]Lundmark A, Olofsson B.2007. Chloride deposition and distribution in soils along a deiced highway-assessment using different methods of measurement [J]. Water Air and Soil Pollution,182:173-185.
    [93]Luo Xuemei, Chen Xinzhi, Wang Kan, Liang Chenghua.2003. Pollution status and evaluation of heavy metal in vegetable production base in Shenyang [J]. Environmental Protection Science,29(118):43-45.
    [94]Maathuis F J, Amtmanna A.1999. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios [J]. Annuals of Botany,84:123-133.
    [95]Maser P, Gierth M, Schroeder J I.2002. Molecular mechanisms of potassium and sodium uptake in plants [J]. Plant and Soil,247(1):43-54.
    [96]Mathews S T, Kim T, Zhang A J, Fish W J, Rimando A M, Mentreddy S R.2008. Anti-diabetic properties of serviceberry (Amelanchier alnifolia) [J]. Planta Medica,74:70.
    [97]Mayer T, Rochfort Q, Borgmann U, Snodgrass W.2008. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond [J]. Environmental Pollution,156(1):143-151.
    [98]McCormick R W, Wolf D C.1980. Effect of sodium chloride on CO2 evolution, ammonification and nitrification in a Sassafras sandy loam [J]. Soil Biology and Biochemistry: 12:153-157.
    [99]Meathuie F J M, Sanders D.1996. Mechanism of potassium absorption by higher plant roots [J]. Physiologia Plantarum,96(1):158-168.
    [100]Miklovic S, Galatowitsch S M.2005. Effect of NaCl and Typha anguslifolia L. on marsh community establishment:A greenhouse study [J]. Wetlands,25(2),420-429.
    [101]Miller W P, Mcfee W W, Kelly J M.1983. Mobility and retention of heavy metals in sandy soils [J]. Journal of Environmental Quality,12:579-584.
    [102]Naidu R, Bolan N S, Kookana R S, Tiller K G.1994. Ionic strength and pH effects on the sorption of cadmium and the surface charge of the soil [J]. European Journal of Soil Science, 45:419-429.
    [103]Nazar R, Iqbal N, Syeed S, Nafees A. Khan.2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars [J]. Journal of Plant Physiology,168: 807-815.
    [104]Neid S L, Biesboer D D.2005. Alleviation of salt-induced stress on seed emergence using soil additives in a greenhouse [J]. Plant and Soil,268:303-307.
    [105]Nelson S S, Yonge D R, Barber M E.2009. Effects of Road Salts on Heavy Metal Mobility in Two Eastern Washington Soils [J]. Journal of Environmental Engineering,135(7): 505-510.
    [106]Noreen S, Ashraf M.2008. Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid:growth and photosynthesis [J]. Pakistan Journal of Botany,40(4):1657-1663.
    [107]Norrstrom A C, Bergstedt E.2001. The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils [J]. Water Air and Soil Pollution,127: 281-299.
    [108]Norrstrom A C, Jacks G,1998. Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts [J]. The Science of the Total Environment,218(2-3):161-174.
    [109]Norrstrom A C.2005. Metal mobility by de-icing salt from an infiltration trench for highway runoff [J]. Applied Geochemistry,20:1907-1919.
    [110]Novotny E V, Murphy D, Stefan H G.2008. Increase of urban lake salinity by road deicing salt [J]. Science of the Total Environment,406 (1-2):131-144.
    [111]Novotny V.1998. Cyanide and metal pollution by urban snowmelt:Impact of deicing compounds [J]. Water Science and Technology,38(10):223-230.
    [112]Novotny V.1999. Urban and highway snowmelt:Minimizing the impact on receiving water [R]. Water Environment Research Foundation (WERF), Project 94-1RM-2.
    [113]Ostendorf D W, DeGroot D J, Pollock S J, Long L J.1997. Aerobic Degradation Potential Assessment from Oxygen and Carbon Dioxide Soil Gas Concentrations in Roadside Soil [J]. Journal of Environmental Quality,26(2):445-453.
    [114]Parida A K, Das A B.2005. Salt tolerance and salinity effects on plants:A review [J]. Ecotoxicology and Environmental Safety,60:324-349.
    [115]Paul E A, Clark F E.1989. Soil Microbiology and Biochemistry [M]. Academic Press, San Diego, PP.283.
    [116]Paul F. Romkens J B, Wim S.1996. Interaction between Ca2+ and dissolved organic carbon: implications for metal mobilization [J]. Applied Geochemistry,11(1-2):109-115.
    [117]Pedersen L B, Randrup T B, Ingerslev B.2000. Effects of road distance and protective measures on deicing salt [J]. Journal of Arboriculture,26 (5):238-245.
    [118]Pierzynski G M, Sims J T, Vance G F.2000. Soils and EnvironmentalQuality, second ed [M]. CRC Press, Boca Raton, Florida.
    [119]Power M, Mrcarty L S.2002. Trends in the development of Ecological Risk ass-essment and management frameworks [J]. Human and Ecological Risk Assessment,8(1):7-18.
    [120]Ramakrishna D M, Viraraghavan T.2005. Environmental impact of chemical deicers-a review [J]. Water Air and Soil Pollution,166:49-63.
    [121]Ramos L, Hernandez L M, Gonzalez M J.1994. Sequential fractionation of copper, lead, cadmiumand zinc in soils from or near Donana National Park [J]. Journal of Environment Quality,23:50-57.
    [122]Rasa K, Peltovuori T, Hartikainen H.2006. Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil [J]. Science of the Total Environment,366:819-825.
    [123]Reinosdotter K, Viklander M.2005. A comparison of the contamination of snow in two Swedish municipalities-Lulea and Sundsvall [J]. Water Air and Soil Pollution,167:3-16.
    [124]Renault S, Croser C, Franklin J A, Zwiazek J J.2001. Effect of NaCl and Na2SO4 on red-osier dogwood (Comus stolonifera Michx) seedlings [J]. Plant and Soil,233:261-268.
    [125]Richburg J A, Patterson W A., Lowenstein F.2001. Effects of road salt and Phragmites australis invasion on the vegetation of a western Massachusetts calcareous lake-basin fen [J]. Wetlands,21(2):247-255.
    [126]Robidoux P Y, Delisle C E.2001. Ecotoxicological Evaluation of three deicers (NaCl, NaFo, CMA)-effect on terrestrial organisms [J]. Ecotoxicology and Environmental Safety, 48,128-139.
    [127]Robies M D, Burke I C.1997. Legume, grass, and conservation reserve program effeets on soil organic matter recovery [J]. Ecological Applications,7:345-357.
    [128]Sasb(?) A, Benedikz T, Randrup T B.2003. Selection of trees for urban forestry in the Nordic countries [J]. Urban Forestry and Urban Greening,2:101-114.
    [129]Salminen J M, Nyst6n T H, Tuominen S M.2011. Review of approaches to reducing adverse impacts of road deicing on groundwater in Finland [J]. Water Quality Research Journal of Canada,46:166-173.
    [130]Sansalone J J, Glenn D W.2002. Accretion of pollutants in snow exposed to urban traffic and winter storm maintenance activities [J]. Journal of Environmental Engineering,128(2): 151-166.
    [131]Sanzo D, Hecnar S J.2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica) [J]. Environmental Pollution,140:247-256.
    [132]Schenk R U.1986. Ice melting characteristics of calcium magnesium acetate [R]. FHWA-RD-86-005. U.S. Federal Highway Admin., Office of Res. And Dev., Washington, D.C.
    [133]Schwab A P, Zhu D S, Banks M K.2008. Influence of organic acids on the transport of heavy metals in soil [J]. Chemosphere,72 (6):986-994.
    [134]Silver P, Rupprecht S M, Stauffer M F.2009. Temperature-dependent effects of road deicing salt on Chironomid Larvae [J]. Wetlands,29(3):942-951.
    [135]Singh B R, Agarwal A S, Kanehiro Y.1968. Effect of Chloride Salts on Ammonium Nitrogen Release in Two Hawaiian Soils [J]. Soil Science Society of America Journal,33(4): 557-560.
    [136]Sophie M. Green, Robert Machin, Malcolm S. Cresser.2008. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils [J]. Environmental Pollution,152(1):21-31.
    [137]Stephanie L N, David D B.2005. Alleviation of salt-induced stress on seed emergence using soil additives in a greenhouse [J]. Plant and Soil,268:303-307.
    [138]Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon M L, Tari 1.2009. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na1 content in leaves without toxicity symptoms in Solanum lycopersicum L [J]. Journal of Plant Physiology,166:914-925.
    [139]Tack F M G., Singh S P, Verloo M G.1999. Leaching behaviour of Cd, Cu, Pb and Zn in surface soils derived from dredged sediments [J]. Environmental Pollution,106:107-114.
    [140]Tang Xiangyu, Weisbrod N.2009. Colloid-facilitated transport of lead in natural discrete fractures [J]. Environmental Pollution,157:2266-2274.
    [141]Tessier A, Campbell P G C, Bisson M.1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals [J]. Analytical Chemistry,51 (7):844-851.
    [142]Thunqvist E L.2004. Regional increase of mean chloride concentration in water due to the application of deicing salt [J]. Science of the Total Environment,325:29-37.
    [143]Tilman D.1988. Plant strategies and the structure and dynamics of plant communities [M]. Princeton:Princeton University Press,52-97.
    [144]Tommaso A D.2004. Germination behavior of common ragweed(Ambrosia artemisiifolia) populations across a range of salinities [J]. Weed Science,52:1002-1009.
    [145]Traina S J, Novak J, Smeck N E.1990. An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acid [J]. Journal of Environmental Quality,19: 151-153.
    [146]Tsihrintzis V A, Hamid R.1997. Modeling and management of urban Stormwater runoff quality:a review [J]. Water Resources Management,11:137-164.
    [147]Turnbull D A, Bevan J R.1995. The impact of airport de-icing on a river:The case of the Ouseburn, Newcastle upon Tyne [J]. Environmental Pollution,88:321-332.
    [148]Urn W, Papelis C.2002. Geochemical effects on colloid-facilitated metal transport through zeolitized tuffs from the Nevada Test Site [J]. Environmental Geology,43:209-218.
    [149]Veltman S, Schoenberg T, Switzenbaum M S.1998. Potential for anaerobic treatment of airport deicing fluids [C]. Proceeding of the 1998 ASCE Conference on Environmental Engineering:239-244.
    [150]Viskari E L, Karenlampi L.2000. Road Scots pine as an indicator of deicing salt use-a comparative study form two consecutive winters [J]. Water Air and Soil Pollution,122: 405-409.
    [151]Wahlstrom M.1996. Nordic recommendation for leaching tests for granular waste material [J]. Science of Total Environmet,178:95-102.
    [152]Wayne G. Landis.2003. The frontier in ecological risk assessment of expanding spatial and temporal scales [J]. Human and Ecological Risk Assessment,9:1415-1424.
    [153]Winters G, Gidley J, Hunt H.1985. Environmental Evaluation of CMA. Report [R]. FHWA-RD-84-095. FHWA, U.S.Department of Transportation.
    [154]Yand S H, Ji J, Wang G.2006. Effects of salt stress on plants and the mechanism of salt tolerance [J]. World Science Technology Rearch and Development,28(4):70-76.
    [155]Yuan Bingcheng, Li Zizhen, Liu Hua.2007. Microbial biomass and activity in alkalized magnesic soils under arid conditions [J]. Soil Biology and Biochemistry,39:3004-3013.
    [156]Zhang Ying, Li Fayun, Yan Xia, Li Xia, Cheng Zhihui, Shen Manli, Rong Xiangmin.2012. Alleviation effect and mechanism of exogenous potassium nitrate and salicylic acid on the growth inhibition of Pinus tabulaeformis seedlings induced by deicing salts [J]. Acta Ecologica Sinica,32(14):4300-4308.
    [157]Zhu Jiankang.2003. Regulation of ion homeostasis under salt stress [J]. Current Opinion in Plant Biology,6:441-445.
    [158]鲍士旦.2000.土壤农化分析[M].北京:中国农业出版社.
    [159]曾幼玲,蔡忠贞,马纪,张富春,王波.2006.盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J].生态学杂志,25(9):1014-1018.
    [160]陈静波,阎君,张婷婷,刘建秀,郭海林.2008.四种暖季型草坪草对长期盐胁迫的生长反应[J].草业学报,17(5):30-36.
    [161]陈少良,李金克,尹伟伦,王沙生.2002.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,24(6):84-88.
    [162]丛日晨,李芳,古润泽.2005.融雪剂对城市园林植物伤害机理的研究[J].中国园林,12:60-64.
    [163]崔虎亮,乔聪,李霞,侯建伟.2011.化学融雪剂胁迫对翠菊生理特性的影响[J].湖北农业科学,50(10):2043-2051.
    [164]代琳琳,赵晓明.2004.融雪剂的环境污染与控制对策[J].安全与环境工程,11(4):29-31.
    [165]戴树桂,刘广良,钱芸,孙玉宝.2001.土壤多介质环境污染研究进展[J].土壤与环境,10(1):1-5.
    [166]杜保国,杨途熙,魏安智,杨锋利.2005.桤叶唐棣组织培养研究[J].西北植物学报,25(2):400-404.
    [167]谷文英,李兴正,祈新梅,牟莹莹,高洪文.2012.盐胁迫对将军菊苣生长及离子吸收的影响[J].中国农学通报,28(31):157-161.
    [168]顾大形,陈双林,顾李俭,可晓,庄明浩,李应.2011.盐胁迫对四季竹细胞膜透性和矿质离子吸收、运输和分配的影响[J].生态学杂志,30(7):1417-1422.
    [169]管志勇,陈发棣,陈素梅,唐娟,杨帆.2010. NaCl胁迫对2个菊属野生种幼苗体内K+、Na+和Cl-分布及生长的影响[J].生态学报,30(12):3198-3205.
    [170]惠红霞,许兴,李守明.2004.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,23(1):5-9.
    [171]蒋新元,李阁男,赵梦婕.2012.竹醋基有机酸钙对建兰生长及土壤性质的影响[J].中南林业科技大学学报,32(1):207-210.
    [172]李芳,张俊民.2009.融雪剂对园林植物种子萌发的影响[J].环境科技,22(5):22-24.
    [173]李合生.2000.植物生理生化实验原理和技术[M].北京:高等教育出版社,164-167.
    [174]李建兵,黄冠华.2008.盐分对粉壤土氮转化的影响[J].环境科学研究,21(5):98-103.
    [175]李明,王根轩.2002.干早胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,22(4):503-507.
    [176]李宁宁,党炳俊,杜启艳,常重杰.2009.有机融雪剂对泥鳅的急性毒性以及红细胞微核研究[J].湖北农业科学,48(9):2224-2226.
    [177]李万桥,陆庆轩,李辉,王学文.2003.2003年春季城市中部分绿化植物死娃匕亡原因初析[J].辽宁林业科技,6:35-36.
    [178]李小刚,曹靖,李凤民.2004.盐化及钠质化对土壤物理性质的影响.土壤通报,35(1):64-72.
    [179]李雪.2011.氯盐类融雪荆对城区排污口水质及农作物种子发芽的影响[D].吉林:吉林大学公共卫生学院.
    [180]李振高,骆永明,滕应.2008.土壤与环境微生物研究法[M].北京:科学出版社.
    [181]李周园,周骏辉,梁英梅.2012.氯盐融雪剂与大叶黄杨致死的剂量-效应关系[J].北京林业大学学报,34(1):64-69.
    [182]卢静君,多立安,刘祥君.2004.盐胁迫下两草种SOD和POD及脯氨酸动态研究[J].植物研究,24(1):115-119.
    [183]陆海玲.2011.土壤盐分对棉田土壤微生物活性和土壤肥力的影响[D].南京:南京农业大学.
    [184]骆虹,罗立斌,张晶.2004.融雪剂对环境的影响及对策[J].中国环境监测,20(1):55-56.
    [185]马溪平,李法云,肖鹏飞,侯伟,于效举.2007.典型工业区周围上壤重金属污染评价及空间分布[J].哈尔滨1:业大学学报,39(2):326-329
    [186]毛桂莲,许兴,徐兆桢.2004.植物耐盐生理生化研究进展[J].中国生态农业学报,12(1):43-46.
    [187]牛世全,杨婷婷,李君锋,达文燕,杨建文.2011.盐碱土微生物功能群季节动态与土壤理化因子的关系[J].干早区研究,28(2):328-334.
    [188]彭海平.2011.天安门广场油松2010年春季死亡原因及技术措施[J].农学学报,1:44-49.
    [189]任天志.2000.持续农业中的土壤生物指标研究[J].中国农业科学,33(1):68-75.
    [190]佘小平,贺军民,张键,邹庆春.2002.水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应[J].西北植物学报,22(2):401-405.
    [191]时唯伟,支月娥,王景,周培.2009.土壤次生盐渍化与微生物数量及土壤理化性质研 究[J].水土保持学报,23(6):166-170.
    [192]孙铁珩,李培军,周启星.2005.土壤污染形成机理与修复技术[M].北京:科学出版社.
    [193]田宏,刘洋,张鹤山,蔡化,陈明新.2010.NaCl和Na2CO3对扁穗雀麦新品系种子萌发的胁迫[J].湖南农业大学学报(自然科学版),36(3):276-279.
    [194]涂常青,温欣荣,陈桐滨.2006.土壤硝态氮两种测定方法的比较[J].安徽农业科学,34(9):1925-1928.
    [195]王宝山,赵可夫.1995.小麦叶片中K+、Na+提取方法的比较[J].植物生理学通讯,31(1):50-52.
    [196]王东明,贾媛,崔继哲.2009.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,25(4):124-128.
    [197]王树凤,胡韵雪,李志兰,孙海菁,陈益泰.2010.盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J].生态学报,30(17):4609-4616.
    [198]王双印.2012.耐融雪剂植物的筛选及融雪剂对微生物多样性的影响[D].北京:中国林业科学研究院.
    [199]王素平,郭世荣,胡晓辉,贾永霞,焦彦生.2007.NaCl胁迫对黄瓜幼苗体内K、Na+和C1分布的影响[J].生态学杂志,26(3):348-354.
    [200]王魏.2008.外源生长调节物质对NaCl胁迫下菠菜的缓解效应[D].陕西:西北农林科技大学.
    [201]王艳春,白雪薇,李芳.2011.氯盐融雪剂对城市道路绿化带土壤性状的影响[J].环境科学与技术,34(11):59-63.
    [202]王银山,张燕,谢辉,傅德平,高翔,吕光辉.2009.艾比湖湿地不同盐碱环境土壤微生物群落特征分析[J].干旱区资源与环境,23(5):133-137.
    [203]吴丰,关肠,万清林.2010.融雪剂对植物的影响及对策[J].哈尔滨师范大学自然科学学报,26(1):98-101.
    [204]徐佳佳,张建军,茹豪,王清玉,李慧敏,李民义.2011.融雪剂对大叶黄杨生长和生理特性的影响[J].生态环境学报,20(8-9):1238-1242.
    [205]徐万里,刘骅,张云舒.2007.新疆盐渍化土壤氮素矿化和硝化作用特征[J].西北农林科技大学学报(自然科学版),35(11):141-145.
    [206]严霞,李法云,刘桐武,张营,马溪平,王效举.2008.化学融雪剂对生态环境的影响[J].生态学杂志,27(12):2209-2214.
    [207]严霞,李法云,刘桐武,张营.2007.化学融雪剂对小麦和玉米种子发芽的影响[J].气象与环境学报,23(4):62-66.
    [208]晏斌,戴秋杰.1994.外界K水平对水稻幼苗耐盐性的影响[J].中国水稻科学,8(2):119-122.
    [209]杨惠娟,安国勇,张国增,苗琛,周云,宋纯鹏.2004.Na+和Ca2+对拟南芥根原生质体质膜内向K+通道电流的影响[J].西北植物学报,24(8):1409-1413.
    [210]杨乐苏.2006.土壤有机质测定方法加热条件的改进[J].生态科学,25(5):459-461.
    [211]杨利艳,韩榕.2011.Ca2+对小麦萌发及幼苗抗盐性的效应[J].植物学报,46(2):155-161.
    [212]杨路华,沈荣开,覃奇志.2003.土壤氮素矿化研究进展[J].土壤通报,34(6):569-571.
    [213]杨晓英,杨劲松.2005.盐胁迫对黑麦草幼苗生长的影响及磷肥的缓解作用[J].土壤通报,36(6):899-902.
    [214]殷宁,顾龚平.2009.融雪剂种类及其对环境中动植物的影响[J].农业科技与信息,24:51-52.
    [215]余海英,孔亚平,张科利,衷平.2009融雪剂在路域土壤中的累积扩散及其对土壤性质的影响[J].水土保持学报,23(6):182-214.
    [216]余海英,张科利,戴海伦.2011.化学融雪剂对区域环境的影响及累积扩散特点[J].土壤通报,42(5):1276-1280.
    [217]于建国.2012.化学融雪剂对城市园林绿化植物的影响及对策[J].山东林业科技,(1):84-87.
    [218]元炳成,黄伟,李凤成.2010.镁碱化对土壤微生物活性和水解酶的影响[J].生态环境学报,19(9):2344-2348.
    [219]元炳成,刘权,黄伟,李凤成.2011.镁碱化盐土微生物生物量和土壤基础呼吸[J].土壤,43(1):67-71.
    [220]元炳成.2007.河西走廊干早条件下微生物生态研究[D].兰州:兰州大学.
    [221]张春荣,李红,夏立江,任丽萍,饶震红.2005.镉、锌对紫花苜蓿种子萌发及幼苗的影响[J].华北农学报,20(1):96-99.
    [222]张红梅,速宝玉.2004.土壤及地下水污染研究进展[J].灌溉排水学报,23(3):70-74.
    [223]张进凤,韩寒冰.2009.融雪剂对水稻幼苗生长及部分生理特性的影响[J].茂名学院学报,19(4):14-16.
    [224]张平究.2006.不同生态条件’下土壤微生物生物化学和分子生态变化及其土壤质量指示意义—以太湖地区水稻土和西南喀斯特土壤为例[D].南京:南京农业大学.
    [225]张土功,高吉寅.1999.水杨酸和阿斯匹林对小麦盐害的缓解作用[J].植物生理学报,25(2):159-164.
    [226]张淑茹,赵淑华,沈宇翔,王超.2009.氯盐类融雪剂对土壤环境影响的初步调查[J].中国卫生工程学,8(3)150-154.
    [227]张卫兵.2008.融雪剂对土壤理化性质影响的分析研究—以贵阳至遵义高速路段为例[J].贵州大学学报(自然科学版),25(6):636-639.
    [228]张宪政.1992.作物生理研究法[M].北京:农业出版社195-200.
    [229]张营,李法云,荣湘民,孙婷婷,李霞,程志辉.2012.融雪剂对3种冷季型草坪草种子萌发和幼苗生长的影响.湖南农业大学学报(自然科学版),38(5):491-496.
    [230]张营,李法云,严霞,李霞,程志辉,沈曼莉,荣湘民.2012.外源K+和水杨酸在缓解融雪剂对油松幼苗生长抑制中的效应与机理.生态学报,32(14):4300-4308,
    [231]赵春梅,崔继哲,金荣荣.2012.盐胁迫下植物体内保持高K+/Na+比率的机制[J].东北农业大学学报,7:155-160.
    [232]赵菲.2012.醋酸钙镁融雪剂对土壤中重金属形态和地表水中溶解氧含量的影响[D].吉林:吉林大学环境与资源学院,中国优秀硕士学位论文全文数据库.
    [233]赵世杰,许长成,邹琦,孟庆伟.1994.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,30(3):207-210.
    [234]赵莹莹.2006.化学融雪剂的环境影响探讨研究[D].东北师范大学,中国优秀硕十学 位论文全文数据库.吉林:东北师范大学环境学院.
    [235]郑青松,王仁雷,刘友良.2001.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,27(4):325-330.
    [236]周峰,李平华,王宝山.2003.K+稳态与植物耐盐性的关系[J].植物生理学通讯,39(1):67-70.
    [237]周礼恺,张志明.1980.土壤酶及其研究法[J].土壤通报,11(5):37-38.
    [238]朱晓军,梁永超,杨劲松,娄运生.2005.钙对盐胁迫下水稻幼苗抗氧化酶活性和膜脂过氧化作用的影响[J].土壤学报,42(3):453-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700