用户名: 密码: 验证码:
磁场对反渗透海水淡化中传质行为影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界上很多国家和地区,水资源短缺是限制社会经济可持续发展的一个重要因素,由于海水资源储量丰富,海水淡化是解决水资源问题的重要途径,对现有海水淡化技术的任何改进将显著提高人们的生活质量。目前,效率最高的海水淡化方法是反渗透法,但仍存在需要高压和经常更换膜组件的问题,因此急需对现有海水淡化技术进行改进。考虑到磁场在水处理方面的优势,我们提出了基于旋转电磁效应海水淡化技术,该方法具有抑垢、缓蚀、杀菌、灭藻,能源利用率高和设备动力损耗低等优点,但其中磁场对海水微观结构和动力学性质以及海水淡化过程中水分子和盐离子在反渗透膜中传质行为的作用效果和机制,旋转电磁效应涉及的主要因素对磁场作用效果的影响规律并不明确,因此本文开展了该方面的分子动力学模拟和实验研究。
     采用分子动力学模拟方法,以扩散系数为依据,选择与实验数据最接近的SPCE水分子模型和合适的势能参数,研究磁场对纯水和NaCl溶液中水分子扩散系数、对相关函数、配位数等的影响。模拟结果表明,磁场作用下,纯水中水分子之间的氢键网络增强、结构有序性增强、分子簇平均尺寸增加;NaCl溶液中两种离子与水分子之间作用均减弱、水合离子尺寸减小、水合数目减少,水分子之间氢键作用减弱、水分子簇减小,接触离子对增加而桥接离子对减少。
     进一步通过研究磁场大小、浓度、温度、盐种类和磁场类型对溶液中磁场作用效果的影响,发现随着磁场、浓度和温度的增加,磁场作用效果均增强,而磁场对不同种类盐离子组成溶液呈现不同的作用效果,交变磁场和脉冲磁场的作用效果均不如静磁场明显,并随着磁场变化频率的增加而减弱。
     实验测量了磁场对NaCl溶液红外光谱、紫外光谱、表面张力、渗透压和粘度的影响,结果表明磁处理后,钠离子和氯离子与水分子之间的作用力均减弱,水合离子的尺寸减小,水合数目减少,钠离子的结构有序性和氯离子的结构无序性均降低,并且磁场对氯离子比对钠离子的作用效果更明显,磁场打乱了溶液中原本的氢键网络结构,溶剂水的摩尔体积增大,溶液中水分子簇减小,水分子之间的氢键作用减弱。与磁场对NaCl溶液影响的分子动力学模拟结果一致,验证了分子动力学模拟用于NaCl溶液微观结构和动力学性质分析的可靠性,可以用来预测磁场大小、浓度、温度、盐种类和磁场类型对磁场作用效果的影响。
     通过分子动力学模拟MPD和TMC单体的“聚合”过程,得到交联密度、密度、孔径均与实验值吻合较好的聚酰胺膜。模拟水分子和盐离子在膜中的扩散行为,磁场使聚合物之间以及水分子和聚合物之间的作用减弱,而离子和聚合物之间的作用增强,聚酰胺膜中水分子扩散系数增加,离子移动性减弱,这将导致海水淡化过程中水分子更容易而盐离子更难通过反渗透膜,有利于提高产水量和脱盐率。
     采用分子动力学模拟方法,以水分子和盐离子扩散行为为依据,研究磁场大小、温度、盐种类和磁场类型对磁场作用效果的影响。随着磁场强度增加,磁场作用效果呈渐近线趋势增强;温度较高时,磁场对水分子扩散系数和离子移动性的影响更明显;由不同种类盐离子组成的模拟系统,磁场对由二价离子组成的且水分子与聚合物之间作用较弱的系统中的传质行为影响较大,而对由一价离子组成的且水分子与聚合物之间作用较强的系统中的传质行为影响较小;与静磁场相比,交变磁场和脉冲磁场的作用效果分别增强和减弱,随频率增加,两种磁场的作用效果均增强。为进一步提高海水淡化产水量和脱盐率,可以采取增强磁场,升高温度和增加磁场变化频率的措施。
     设计渗透和反渗透实验装置,分析磁场对BW30、LE和XLE三种聚酰胺反渗透膜中传质过程的影响。由于膜表层的差异,三种反渗透膜呈现出的磁场作用效果不同。磁场作用下,渗透过程中吸附系数Kwater和Ksalt均增大,水和盐在膜中的传质速率均增加,而反渗透过程中,水和盐的传质速率主要由扩散系数决定,Dwater增加,Dsalt减小,水在膜中的传质速率增加而盐的减小,水通量和脱盐率均增加。实验结果与磁场对水和盐在聚酰胺膜中传质行为影响的分子动力学模拟结果一致,说明分子动力学模拟可以有效地分析磁场对反渗透海水淡化影响的作用效果和机制,预测磁场大小、温度、盐种类和磁场类型对磁场作用效果的影响规律。基于旋转电磁效应海水淡化技术中,引入磁场有益于海水淡化过程,并且可以通过增强磁场,适当调控旋转速率升高温度和增加磁场变化频率进一步提高海水淡化效率。
Fresh water shortage is one of the main factors that restraint the sustainabledevelopment of socio-economy in many regions and countries of the world. Due tothe vast reserves of seawater available, seawater desalination is an important way tosolove the problem. Any improvement of the currently used seawater desalinationtechnologies can improve the quality of people's lives. Recently, the most efficientseawater desalination technology is reverse osmosis, whereas, it requires highpressures and frequent replacement of membrane module. It is therefore an urgentneed to improve the current seawater desalination method. Considering theadvantages of magnetic fields in water treatment, we proposed a seawaterdesalination method based on the rotating electromagnetic effect. It has the merits ofscale and corrosion inhibition, sterilization and removal algae, high energyefficiency and low device power loss, etc. But the magnetic effect on themicrostructure and dynamics properties of seawater and the transport behavior ofwater molecules and salt ions in the reverse osmosis membrane during seawaterdesalination process, and the influence mechanism, as well as the influence ofrelated main factors of rotating electromagnetic effect on the magnetic effect isunknown. Therefore, it is studied in this paper by molecular dynamics simulationsand experiments.
     Molecular dynamics simulation is used to choose the proper water model andpotential, then SPCE model is adopted because the corresponding diffusioncoefficient is close to the experiment value. The effect of magnetic field on diffusioncoefficients, pair correlation functions and running integration numbers of purewater and NaCl solution is investigated. With the effect of magnetic field, thehydrogen network between water molecules and the relevant order are bothenhanced, and the mean sizes of water clustes increase in pure water. In NaClsolution, the interaction between ions and water molecules is weakened. The meansizes of both Na+and Cl-ions and the corresponding hydration numbers aredecreased. The hydrogen interaction between water molecules is weakened and themean sizes of water clustes decrease. Besides, Magnetic field makes the contactpairs increase and the solvent separated ones decrease.
     The influence of magnetic intensity, concentration, temperature, salt speciesand the type of magnetic field on the magnetic effect is performed. With the increaseof magnetic intensity, concentration and temperature, the magnetic effect isenhanced. The magnetic effect on various solutions is different and it depends on thesalt species. The magnetic effect of pulse and alternating field is less significant than that of static field, and it weakens with the frequency of magnetic feld.
     Magnetic effect on the infrared spectra, ultraviolet spectra, surface tension,osmosis pressure and viscosities of NaCl solution is studied. The results show that,under the influence of magnetic field, the interaction between ions and watermolecules is weakened. The mean sizes of both Na+and Cl-ions and thecorresponding hydration numbers are decreased. The structure–ordering propertyof Na+ions and the structure–disordering property of Cl-ions are both weakened.the magnetic effect on the Cl-ions is more obvious than that on the Na+ions.Magnetic field disrupts the hydrogen network in the solution and the molar volumeof the solvate water increases. The mean sizes of the water clusters decrease and thehydrogen interaction between water molecules is weakened. These agree well withthe molecular dynamics simulation results of magnetic effect on NaCl solution. Itreveals that molecular dynamics simulation can be used to ayalyze the magneticeffect and predict the influence of magnetic intensity, concentration, temperature,salt species and the type of magnetic field on the magnetic effect.
     Molecular dynamics simulation is carried out to investigate the polymerizationprocess of MPD and TMC monomers to form the PA. The crosslinking density,density and pore diameter of the modled PA all agree well with the experimentresults. The diffusion behavior of water molecules and salt ions in the membrane issimulated. With the effect of magnetic field, the interaction between polymer andthat between water molecules and polymer is weakened, while the interactionbetween ions and polymer is enhanced. These lead to increased diffusioncoefficients of water molecules and weakened mobility of ions in the PA. Inseawater desalination, the water molecules and salt ions would permeate membranemore readily and hardly, respectively. Magnetic field is beneficial to improve thewater production and salt rejection.
     Based on the transport behavior of water molecules and salt ions in themembrane, molecular dynamics simulation is performed to study the influence ofmagnetic intensity, temperature, salt species and the type of magnetic field on themagnetic effect. With the increase of magnetic intensity, the diffusion coefficientincreases and the asymptotic behavior is observed. Magnetic effect on the diffusioncoefficients of water molecules and mobility of ions is more obvious at highertemperatures. For the simulation systems composed with different salt species, themagnetic effect on the transport behavior of the system composed of divalent ionsand in which the water molecules interact strongly with polymer is more obvious,while it is less on the transport behavior of the system composed of monovalent ionsand in which the water molecules interact weakly with polymer. Compared with thestatic magnetic field, the magnetic effect of pulse and alternating field is enhancedand weakened, respectively. Moreover, both the effect turns significantly with the frequency of magnetic feld. In seawater desalination, the water production and saltrejection can be further improved by increasing magnetic intensity and properlyregulating rotating rate to raise temperture and increase magnetic frequency.
     Osmosis and reverse osmosis devices are designed to investigate the magneticeffect on the transport processes of BW30, LE and XLE membranes. The magneticeffect on the three membranes is different from each other and the diversities aredue to the various membrane surface characters. With the influence of magneticfield, the adsorption coefficients Kwaterand Ksaltboth increase, and the transport rateof both water and salt is increased in the osmosis process. However, the diffusioncoefficients Dwaterincrease and Dsaltdecrease. The transport rate of water and salt isincreased and decreased respectively, and water flux and salt rejection are bothincreased in the reverse osmosis process. Thses are in accordance with the moleculardynamics simulation results of magnetic effect on water and salt transport in the PAmembranes. This indicates that molecular dynamics simulation can effectivelyanalyze the effect of magnetic field on the reverse osmosis seawater desalinationand the influence machnism, as well as predict the influence of magnetic intensity,temperature, salt species and the type of magnetic field on the magnetic effect. Inthe seawater desalination method based on the rotating electromagnetic effect,magnetic field is beneficial to the seawater desalination process. Desalinationefficiency can be improved by increasing magnetic intensity and properly regulatingrotating rate to raise temperture and increase magnetic frequency.
引文
[1] Miller J E. Review of water resources and desalination technologies.Albuquerque: Sandia National Laboratories2003:6-49.
    [2] Pasta M, Wessells C D, Cui Y, La Mantia F. A desalination battery. Nano Letters.2012,12:839-843.
    [3] Pandey V, Nagaraj R, Dangore A Y, Thalor K L, Prabhakar S, Shrivastava V K,Tewari P K. Process control in multi-stage flash desalination industry. InternationalJournal of Nuclear Desalination.2010,4:174-183.
    [4] Gacem Y, Taleb S, Ramdani A, Senadjki S, Ghaffour N. Physical and chemicalassessment of MSF distillate and SWRO product for drinking purpose. Desalination.2012,290:107-114.
    [5] Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materialsfor desalination—Development to date and future potential. Journal of MembraneScience.2011,370:1-22.
    [6] Malaeb L, Ayoub G M. Reverse osmosis technology for water treatment: State ofthe art review. Desalination.2011,267:1-8.
    [7] Sayyaadi H, Saffari A. Thermoeconomic optimization of multi effect distillationdesalination systems. Applied Energy.2010,87:1122-1133.
    [8] Druetta P, Aguirre P, Mussati S. Optimization of Multi-Effect Evaporationdesalination plants. Desalination.2013,311:1-15.
    [9] Marcovecchio M, Aguirre P, Scenna N, Mussati S. Global optimal design ofmechanical vapor compression (MVC) desalination process. Computer AidedChemical Engineering.2010,28:1261-1266.
    [10] Barbosa Jr J R, Ribeiro G B, de Oliveira P A. A State-of-the-Art Review ofCompact Vapor Compression Refrigeration Systems and Their Applications. HeatTransfer Engineering.2012,33:356-374.
    [11] Sadrzadeh M, Mohammadi T. Treatment of sea water using electrodialysis:Current efficiency evaluation. Desalination.2009,249:279-285.
    [12] Nair M, Kumar D. Water desalination and challenges: The Middle Eastperspective: a review. Desalination and Water Treatment.2012,1-11.
    [13] Chung T S, Zhang S, Wang K Y, Su J, Ling M M. Forward osmosis processes:yesterday, today and tomorrow. Desalination.2012,287:78-81.
    [14] Elimelech M. Yale constructs forward osmosis desalination pilot plant.Membrane Technology.2007,2007:7-8.
    [15] Kim S J, Ko S H, Kang K H, Han J. Direct seawater desalination by ionconcentration polarization. Nature Nanotechnology.2010,5:297-301.
    [16] Kim S J, Wang Y C, Lee J H, Jang H, Han J. Concentration polarization andnonlinear electrokinetic flow near a nanofluidic channel. Physical Review Letters.2007,99:44501.
    [17] Pankratz T. IDA Desalination Yearbook2009–2010. Oxford: Media Analytics,2010:6-7.
    [18]王湛,周翀.膜分离技术基础.北京:化学工业出版社,2006:43-58.
    [19] Kotelyanskii M, Wagner N J, Paulaitis M E. Building large amorphous polymerstructures: Atomistic simulation of glassy polystyrene. Macromolecules.1996,29:8497-8506.
    [20] Pan F, Ma J, Cui L, Jiang Z. Water vapor/propylene sorption and diffusionbehavior in PVA–P (AA-AMPS) blend membranes by GCMC and MD simulation.Chemical Engineering Science.2009,64:5192-5197.
    [21]刘清芝.反渗透膜及水溶液内扩散过程的分子模拟研究.青岛:中国海洋大学,2007:48-123.
    [22] Marque G, Neyertz S, Verdu J, Prunier V, Brown D. Molecular dynamicssimulation study of water in amorphous kapton. Macromolecules.2008,41:3349-3362.
    [23] Raghunathan A V, Aluru N R. Molecular understanding of osmosis insemipermeable membranes. Physical Review Letters.2006,97:24501.
    [24] Zhang Q G, Liu Q L, Wu J Y, Chen Y, Zhu A M. Structure-related diffusion inpoly (methyl methacrylate)/polyhedral oligomeric silsesquioxanes composites: Amolecular dynamics simulation study. Journal of Membrane Science.2009,342:105-112.
    [25] Chang K S, Chung Y C, Yang T H, Jessie Lue S, Tung K L, Lin Y F. Freevolume and alcohol transport properties of PDMS membranes: Insights ofnano-structure and interfacial affinity from molecular modeling. Journal ofMembrane Science.2012,417-418:119-130.
    [26] Harder E, Walters D E, Bodnar Y D, Faibish R S, Roux B. Molecular dynamicsstudy of a polymeric reverse osmosis membrane. Journal of Physical Chemistry B.2009,113:10177-10182.
    [27] Wu C, Xu W. Atomistic simulation study of absorbed water influence onstructure and properties of crosslinked epoxy resin. Polymer.2007,48:5440-5448.
    [28] Wu C, Xu W. Atomistic molecular simulations of structure and dynamics ofcrosslinked epoxy resin. Polymer.2007,48:5802-5812.
    [29] Li C, Strachan A. Molecular simulations of crosslinking process ofthermosetting polymers. Polymer.2010,51:6058-6070.
    [30] Li C, Medvedev G A, Lee E W, Kim J, Caruthers J M, Strachan A. Moleculardynamics simulations and experimental studies of the thermomechanical response ofan epoxy thermoset polymer. Polymer.2012,53:4222-4230.
    [31] Murad S, Nitsche L C. The effect of thickness, pore size and structure of ananomembrane on the flux and selectivity in reverse osmosis separations: amolecular dynamics study. Chemical Physics Letters.2004,397:211-215.
    [32] Murad S. The role of magnetic fields on the membrane-based separation ofaqueous electrolyte solutions. Chemical Physics Letters.2006,417:465-470.
    [33] Chang K S, Tung C C, Wang K S, Tung K L. Free volume analysis and gastransport mechanisms of aromatic polyimide membranes: a molecular simulationstudy. Journal of Physical Chemistry B.2009,113:9821-9830.
    [34] Karayiannis N C, Mavrantzas V G, Theodorou D N. Detailed atomisticsimulation of the segmental dynamics and barrier properties of amorphous poly(ethylene terephthalate) and poly (ethylene isophthalate). Macromolecules.2004,37:2978-2995.
    [35] Wang X Y, Lee K M, Lu Y, Stone M T, Sanchez I C, Freeman B D. Cavity sizedistributions in high free volume glassy polymers by molecular simulation. Polymer.2004,45:3907-3912.
    [36] Chang K S, Huang Y H, Lee K R, Tung K L. Free volume and polymericstructure analyses of aromatic polyamide membranes: A molecular simulation andexperimental study. Journal of Membrane Science.2010,354:93-100.
    [37] Wang X Y, Lu Y, Freeman B D, Sanchez I C. A molecular simulation study ofcavity size distributions and diffusion in para and meta isomers.Polymer.2005,46:9155-9161.
    [38] Cuthbert T R, Wagner N J, Paulaitis M E, Murgia G, D'Aguanno B. Moleculardynamics simulation of penetrant diffusion in amorphous polypropylene: diffusionmechanisms and simulation size effects. Macromolecules.1999,32:5017-5028.
    [39] Kotelyanskii M J, Wagner N J, Paulaitis M E. Atomistic simulation of waterand salt transport in the reverse osmosis membrane FT-30. Journal of MembraneScience.1998,139:1-16.
    [40] Brunello G, Lee S G, Jang S S, Qi Y. A molecular dynamics simulation study ofhydrated sulfonated poly (ether ether ketone) for application to polymer electrolytemembrane fuel cells: Effect of water content. Journal of Renewable and SustainableEnergy.2009,1:033101.
    [41] Hofmann D, Fritz L, Ulbrich J, Paul D. Molecular simulation of small moleculediffusion and solution in dense amorphous polysiloxanes and polyimides.Computational and Theoretical Polymer Science.2000,10:419-436.
    [42] Heuchel M, Hofmann D, Pullumbi P. Molecular modeling of small-moleculepermeation in polyimides and its correlation to free-volume distributions.Macromolecules.2004,37:201-214.
    [43] Yan H, Murad S, Enciso E. Molecular simulation of membrane basedseparations of ethanolic electrolyte solutions. Fluid Phase Equilibria.2001,183:279-287.
    [44] Zhou D, Choi P. Molecular dynamics study of water diffusivity at lowconcentrations in non-swollen and swollen polyurethanes. Polymer.2012,53:3253-3260.
    [45] Laguna M F, Guzmán J, Riande E, Saiz E. Experimental and simulation studieson the transport of argon through poly (pentaerythritoltribenzoate acrylate).Macromolecules.1998,31:7488-7494.
    [46] Mozaffari F, Eslami H, Moghadasi J. Molecular dynamics simulation ofdiffusion and permeation of gases in polystyrene. Polymer.2010,51:300-307.
    [47] Freeman B D. Novel fouling-reducing coatings for ultrafiltration, nanofiltration,and reverse osmosis membranes. Austin: The University of Texas at Austin Centerfor Energy&Environmental Resources and Department of Chemical Engineering,2008:1-43.
    [48] Xu J, Feng X, Gao C. Surface modification of thin-film-composite polyamidemembranes for improved reverse osmosis performance. Journal of MembraneScience.2011,370:116-123.
    [49] Yu S, Liu X, Liu J, Wu D, Liu M, Gao C. Surface modification of thin-filmcomposite polyamide reverse osmosis membranes with thermo-responsive polymer(TRP) for improved fouling resistance and cleaning efficiency. Separation andPurification Technology.2011,76:283-291.
    [50] Li Q, Pan X, Hou C, Jin Y, Dai H, Wang H, Zhao X, Liu X. Exploring thedependence of bulk properties on surface chemistries and microstructures ofcommercially composite RO membranes by novel characterization approaches.Desalination.2012,292:9-18.
    [51] Kwon Y N, Hong S, Choi H, Tak T. Surface modification of a polyamidereverse osmosis membrane for chlorine resistance improvement. Journal ofMembrane Science.2012,415-416:192-198.
    [52] Hashino M, Katagiri T, Kubota N, Ohmukai Y, Maruyama T, Matsuyama H.Effect of surface roughness of hollow fiber membranes with gear-shaped structureon membrane fouling by sodium alginate. Journal of Membrane Science.2011,366:389-397.
    [53] Louie J S, Pinnau I, Reinhard M. Effects of surface coating process conditionson the water permeation and salt rejection properties of composite polyamidereverse osmosis membranes. Journal of Membrane Science.2011,367:249-255.
    [54] Van Wagner E M, Freeman B D, Sharma M M, Hickner M A, Altman S J.Polyamide desalination membrane characterization and surface modification toenhance fouling resistance. Albuquerque: Sandia National Laboratories,2010:21-134.
    [55] Kim J, Hyung H, Wilf M, Park J S, Brown J. Boron Rejection By ReverseOsmosis Membranes: National Reconnaissance and Mechanism Study. Atlanta:Georgia Institute of Technology, School of Civil and Environmental Engineering,2009:3-104.
    [56] Pais J A G C R, Ferreira L M G A. Performance study of an industrial RO plantfor seawater desalination. Desalination.2007,208:269-276.
    [57] Geise G M, Park H B, Sagle A C, Freeman B D, McGrath J E. Waterpermeability and water/salt selectivity tradeoff in polymers for desalination. Journalof Membrane Science.2011,369:130-138.
    [58] Petit L, Vuilleumier R, Maldivi P, Adamo C. Ab Initio molecular dynamicsstudy of a highly concentrated LiCl aqueous solution. Journal of Chemical Theoryand Computation.2008,4:1040-1048.
    [59] Bruni F, Imberti S, Mancinelli R, Ricci M A. Aqueous solutions of divalentchlorides: Ions hydration shell and water structure. Journal of Chemical Physics.2012,136:064520.
    [60] Lightstone F C, Schwegler E, Hood R Q, Gygi F, Galli G. A first principlesmolecular dynamics simulation of the hydrated magnesium ion. Chemical PhysicsLetters.2001,343:549-555.
    [61] Du H, Rasaiah J C, Miller J D. Structural and dynamic properties ofconcentrated alkali halide solutions: A molecular dynamics simulation study. Journalof Physical Chemistry B.2007,111:209-217.
    [62] Larentzos J P, Criscenti L J. A molecular dynamics study of alkaline earthmetal chloride complexation in aqueous solution. Journal of Physical Chemistry B.2008,112:14243-14250.
    [63] Ibuki K, Bopp P A. Molecular dynamics simulations of aqueous LiCl solutionsat room temperature through the entire concentration range. Journal of MolecularLiquids.2009,147:56-63.
    [64]孙炜,陈中,黄素逸.浓度对NaCl水溶液影响的分子动力学模拟.武汉理工大学学报.2005,27:26-29.
    [65] Toledo E J L, Ramalho T C, Magriotis Z M. Influence of magnetic field onphysical-chemical properties of the liquid water: insights from experimental andtheoretical models. Journal of Molecular Structure.2008,888:409-415.
    [66] Chang K T, Weng C I. The effect of an external magnetic field on the structureof liquid water using molecular dynamics simulation. Journal of Applied Physics.2006,100:043917.
    [67] Chang K T, Weng C I. An investigation into the structure of aqueous NaClelectrolyte solutions under magnetic fields. Computational Materials Science.2008,43:1048-1055.
    [68] Viswat E, Hermans L J F, Beenakker J J M. Experiments on the influence ofmagnetic fields on the viscosity of water and a water-NaCl solution. Physics ofFluids.1982,25:1794-1796.
    [69] Cai R, Yang H, He J, Zhu W. The effects of magnetic fields on water molecularhydrogen bonds. Journal of Molecular Structure.2009,938:15-19.
    [70] Joshi K M, Kamat P V. Effect of magnetic field on the physical properties ofwater. Journal of the Indian Chemical Society.1966,43:620-622.
    [71] Szczes A, Chibowski E, Holysz L, Rafalski P. Effects of static magnetic fieldon water at kinetic condition. Chemical Engineering and Processing.2010,50:124-127.
    [72] Holysz L, Szczes A, Chibowski E. Effects of a static magnetic field on waterand electrolyte solutions. Journal of Colloid and Interface Science.2007,316:996-1002.
    [73] Al-Qahtani H. Effect of magnetic treatment on Gulf seawater. Desalination.1996,107:75-81.
    [74] Busch K W, Busch M A, Parker D H, Darling R E, McAtee Jr J L. Studies of awater treatment device that uses magnetic fields. Corrosion.1986,42:211-221.
    [75]黄征青,徐洪涛.磁处理对水溶液pH值和电导率的影响.水处理技术.2003,29:22-24.
    [76] Pang X F, Deng B. The changes of macroscopic features and microscopicstructures of water under influence of magnetic field. Physica B.2008,403:3571-3577.
    [77] Pang X F, Deng B. Investigation of changes in properties of water under theaction of a magnetic field. Science in China Series G.2008,51:1621-1632.
    [78]杨明,刘伟,徐革联.磁化对水的性质影响的研究.化工时刊.2007,21:14-17.
    [79] Alimi F, Tlili M, Ben Amor M, Gabrielli C, Maurin G. Influence of magneticfield on calcium carbonate precipitation. Desalination.2007,206:163-168.
    [80] Gryta M. The influence of magnetic water treatment on CaCO3scale formationin membrane distillation process. Separation and Purification Technology.2011,80:293-299.
    [81] Ji W, Huang H, Deng A, Pan C. Effects of static magnetic fields on Escherichiacoli. Micron.2009,40:894-898.
    [82] Fojt L, Klapetek P, Stra ák L, Vetterl V.50Hz magnetic field effect on themorphology of bacteria. Micron.2009,40:918-922.
    [83] Ueno S, Iwasaka M, Kitajima T. Redistribution of dissolved oxygenconcentration under magnetic fields up to8T. Journal of Applied Physics.1994,75:7174-7176.
    [84] Sakurai H, Yasui H, Kunitomi K, Kamatari M, Kaneko N, Nakayama A. Effectsof static magnetic field on dissolved oxygen levels in aqueous solutions containingcopper (II), iron (II), and heme iron (III) complexes. Pathophysiology.2000,7:93-99.
    [85]宫海龙.基于旋转耦合电磁理论海水淡化技术基础研究.哈尔滨:哈尔滨工业大学,2006:13-22.
    [86]郭斌,程树康,裴宇龙,柴凤,张鹏,于艳君.海水淡化器.哈尔滨:哈尔滨工业大学,2010.
    [87]陈磊.旋转式机电热换能器及其对水媒质磁化作用的研究.哈尔滨:哈尔滨工业大学,2011:19-102.
    [88]张鹏.基于旋转电磁效应的循环水系统抑垢缓蚀机制研究.哈尔滨:哈尔滨工业大学,2008:34-82.
    [89] Lewars E G. Computational chemistry: introduction to the theory andapplications of molecular and quantum mechanics. Dordrecht: Springer,2010:85-520.
    [90] Kalos M H, Whitlock P A. Monte carlo methods. Weinheim: Wiley-VCH,2009:1-6.
    [91] Schlick T. Molecular Modeling and Simulation: An Interdisciplinary Guide: AnInterdisciplinary Guide. New York: Springer,2010:1-405.
    [92]陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007:1-23.
    [93] Alder B J, Wainwright T E. Phase transition for a hard sphere system. Journalof Chemical Physics.1957,27:1208-1209.
    [94] Rahman A. Correlations in the motion of atoms in liquid argon. PhysicalReview.1964,136:405-411.
    [95] Rahman A, Stillinger F H. Molecular dynamics study of liquid water. Journal ofChemical Physics.1971,55:3336.
    [96] Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical integration of theCartesian equations of motion of a system with constraints: molecular dynamics ofn-alkanes. Journal of Computational Physics.1977,23:327-341.
    [97] Andersen H C. Molecular dynamics simulations at constant pressure and/ortemperature. Journal of Chemical Physics.1980,72:2384-2393.
    [98] Lees A W, Edwards S F. The computer study of transport processes underextreme conditions. Journal of Physics C: Solid State Physics.1972,5:1921-1929.
    [99] Gillan M J, Dixon M. The calculation of thermal conductivities by perturbedmolecular dynamics simulation. Journal of Physics C: Solid State Physics.2000,16:869.
    [100] Nosé. A unified formulation of the constant temperature molecular dynamicsmethods. Journal of Chemical Physics.1984,81:511-519.
    [101] Car R, Parrinello M. Unified approach for molecular dynamics anddensity-functional theory. Physical Review Letters.1985,55:2471-2474.
    [102] a in T, Pettitt B M. Molecular dynamics with a variable number ofmolecules. Molecular Physics.1991,72:169-175.
    [103]陈敏伯.计算化学:从理论化学到分子模拟.北京:科学出版社,2009:34-61.
    [104] Verlet L. Computer" experiments" on classical fluids. I. Thermodynamicalproperties of Lennard-Jones molecules. Physical Review.1967,159:98.
    [105] Makinen M W, TroyerHarm J M, Berendsen H J C, van Gunsteren F.Dynamical structure of carboxypeptidase A. Journal of Molecular Biology.1989,207:201-216.
    [106] Gear C W. Numerical initial value problems in ordinary differential equations.Prentice-Hall,1971:154-253.
    [107] Felderhof B U. Fluctuation theorems for dielectrics with periodic boundaryconditions. Physica A.1980,101:275-282.
    [108] Parrinello M, Rahman A. Polymorphic transitions in single crystals: A newmolecular dynamics method. Journal of Applied Physics.1981,52:7182-7190.
    [109] Ray J R, Rahman A. Statistical ensembles and molecular dynamics studies ofanisotropic solids. Journal of Chemical Physics.1984,80:4423.
    [110] Wu Y, Tepper H L, Voth G A. Flexible simple point-charge water model withimproved liquid-state properties. Journal of Chemical Physics.2006,124:024503.
    [111] Koneshan S, Rasaiah J C. Computer simulation studies of aqueous sodiumchloride solutions at298K and683K. Journal of Chemical Physics.2000,113:8125-8137.
    [112] Gavryushov S, Linse P. Effective interaction potentials for alkali and alkalineearth metal ions in SPC/E water and prediction of mean ion activity coefficients.Journal of Physical Chemistry B.2006,110:10878-10887.
    [113] Krems R V. Breaking van der Waals molecules with magnetic fields. PhysicalReview Letters.2004,93:13201.
    [114] Inaba H, Saitou T, Tozaki K, Hayashi H. Effect of the magnetic field on themelting transition of HO and DO measured by a high resolution and supersensitivedifferential scanning calorimeter. Journal of Applied Physics.2004,96:6127.
    [115] Hosoda H, Mori H, Sogoshi N, Nagasawa A, Nakabayashi S. Refractiveindices of water and aqueous electrolyte solutions under high magnetic fields.Journal of Physical Chemistry A.2004,108:1461-1464.
    [116] Chandra A. Static dielectric constant of aqueous electrolyte solutions: Is thereany dynamic contribution? Journal of Chemical Physics.2000,113:903.
    [117]常建华,董倚功.波普原理及解析.北京:科学出版社,2001:10-108.
    [118] Max J J, Chapados C. Infrared spectra of cesium chloride aqueous solutions.Journal of Chemical Physics.2000,113:6803-6814.
    [119] Max J J, Chapados C. IR spectroscopy of aqueous alkali halide solutions: Puresalt-solvated water spectra and hydration numbers. Journal of Chemical Physics.2001,115:2664-2675.
    [120] Stein G, Treinin A. Electron-transfer spectra of anions in solution. Part1.—Absorption spectra and ionic radii. Transactions of the Faraday Society.1959,55:1086-1090.
    [121] Liu W, Brugger J, McPhail D C, Spiccia L. A spectrophotometric study ofaqueous copper (I)–chloride complexes in LiCl solutions between100C and250C.Geochimica et Cosmochimica Acta.2002,66:3615-3633.
    [122] Fox M F, Barker B E, Hayon E. Far-ultraviolet solution spectroscopy ofchloride ion. Journal of the Chemical Society, Faraday Transactions1.1978,74:1776-1785.
    [123] Johansson K, Eriksson J C. γ and dγ/dT measurements on aqueous solutions of1,1-electrolytes. Journal of Colloid and Interface Science.1974,49:469-480.
    [124] Matubayasi N, Yoshikawa R. Thermodynamic quantities of surface formationof aqueous electrolyte solutions: VII. Aqueous solution of alkali metal nitratesLiNO3, NaNO3, and KNO3. Journal of Colloid and Interface Science.2007,315:597-600.
    [125] Ali K, Shah A H A, Bilal S. Surface tensions and thermodynamic parametersof surface formation of aqueous salt solutions: III. Aqueous solution of KCl, KBrand KI. Colloids and Surfaces A.2009,337:194-199.
    [126] Weissenborn P K, Pugh R J. Surface tension of aqueous solutions ofelectrolytes: Relationship with ion hydration, oxygen solubility, and bubblecoalescence. Journal of Colloid and Interface Science.1996,184:550-563.
    [127] Amiri M C, Dadkhah A A. On reduction in the surface tension of water due tomagnetic treatment. Colloids and Surfaces A.2006,278:252-255.
    [128] Tombacz E, Ma C, Busch K W, Busch M A. Effect of a weak magnetic fieldon hematite sol in stationary and flowing systems. Colloid and Polymer Science.1991,269:278-289.
    [129]章莉娟,郑忠.胶体与界面化学.广州:华南理工大学出版社,2006:12-17.
    [130] Hall D L, Sterner S M, Bodnar R J. Freezing point depression ofNaCl-KCl-H2O solutions. Economic Geology.1988,83:197-202.
    [131] Pruppacher H R. Some relations between the supercooling and the structure ofaqueous solutions. Journal of Chemical Physics.1963,39:1586-1594.
    [132] Wu Y C. Viscosity of mixtures of electrolyte solutions. Journal of PhysicalChemistry.1968,72:2663-2665.
    [133] Abdulagatov I M, Zeinalova A B, Azizov N D. Experimental viscosityB-coefficients of aqueous LiCl solutions. Journal of Molecular Liquids.2006,126:75-88.
    [134] K nigsberger E, K nigsberger L C, May P, Harris B. Properties of electrolytesolutions relevant to high concentration chloride leaching. II. Density, viscosity andheat capacity of mixed aqueous solutions of magnesium chloride and nickel chloridemeasured to90°C. Hydrometallurgy.2008,90:168-176.
    [135] Wu Y C. Viscosity of mixtures of electrolyte solutions. The Journal ofPhysical Chemistry.1968,72:2663-2665.
    [136] Higashitani K, Oshitani J. Measurements of magnetic effects on electrolytesolutions by atomic force microscope. Process Safety and Environmental Protection.1997,75:115-119.
    [137] Oshitani J, Yamada D, Miyahara M, Higashitani K. Magnetic effect onion-exchange kinetics. Journal of Colloid and Interface Science.1999,210:1-7.
    [138] Neyertz S, Brown D, Pandiyan S, Van der Vegt N F A. Carbon dioxidediffusion and plasticization in fluorinated polyimides. Macromolecules.2010,43:7813-7827.
    [139] Mi B, Cahill D G, Mari as B J. Physico-chemical integrity ofnanofiltration/reverse osmosis membranes during characterization by Rutherfordbackscattering spectrometry. Journal of Membrane Science.2007,291:77-85.
    [140] Wang X L, Lu Z Y, Li Z S, Sun C C. Molecular dynamics simulation study onadsorption and diffusion processes of a hydrophilic chain on a hydrophobic surface.Journal of Physical Chemistry B.2005,109:17644-17648.
    [141] Trewin A, Willock D J, Cooper A I. Atomistic simulation of microporestructure, surface area, and gas sorption properties for amorphous microporouspolymer networks. Journal of Physical Chemistry C.2008,112:20549-20559.
    [142] Hung W S, De Guzman M, Huang S H, Lee K R, Jean Y C, Lai J Y.Characterizing free volumes and layer structures in asymmetric thin-film polymericmembranes in the wet condition using the variable monoenergy slow positron beam.Macromolecules.2010,43:6127-6134.
    [143] Kotelyanskii M J, Wagner N J, Paulaitis M E. Molecular dynamics simulationstudy of the mechanisms of water diffusion in a hydrated, amorphous polyamide.Computational and Theoretical Polymer Science.1999,9:301-306.
    [144] Lipp P, Gimbel R, Frimmel F H. Parameters influencing the rejectionproperties of FT30membranes. Journal of Membrane Science.1994,95:185-197.
    [145] Krsti V, Obergfell D, Hansel S, Rikken G L J A, Blokland J H, Ferreira M S,Roth S. Graphene metal Interface: two-terminal resistance of low-mobilitygraphene in high magnetic fields. Nano Letters.2008,8:1700-1703.
    [146] Kim D H. A review of desalting process techniques and economic analysis ofthe recovery of salts from retentates. Desalination.2011,270:1-8.
    [147] Oshitani J, Uehara R, Higashitani K. Magnetic effects on electrolyte solutionsin pulse and alternating fields. Journal of Colloid and Interface Science.1999,209:374-379.
    [148] Wang J, Lai S Y, He Y. Research on reverse osmosis membrane materials forseawater desalination. Advanced Materials Research.2012,600:100-103.
    [149] Wijmans J G, Baker R W. The solution-diffusion model: a review. Journal ofMembrane Science.1995,107:1-21.
    [150] Herzberg M, Berry D, Raskin L. Impact of microfiltration treatment ofsecondary wastewater effluent on biofouling of reverse osmosis membranes. WaterResearch.2010,44:167-176.
    [151] Lind M L, Ghosh A K, Jawor A, Huang X, Hou W, Yang Y, Hoek E M V.Influence of zeolite crystal size on zeolite-polyamide thin film nanocompositemembranes. Langmuir.2009,25:10139-10145.
    [152] Wang C, Such G K, Widjaya A, Lomas H, Stevens G, Caruso F, Kentish S E.Click poly (ethylene glycol) multilayers on RO membranes: fouling reduction andmembrane characterization. Journal of Membrane Science.2012,409-410:9-15.
    [153] Hoang T, Stevens G, Kentish S. The effect of feed pH on the performance of areverse osmosis membrane. Desalination.2010,261:99-103.
    [154] Fairbrother F, Mastin H. CCCXII.—Studies in electro-endosmosis. Part I.Journal of the Chemical Society, Faraday Transactions.1924,125:2319-2330.
    [155] Wei X, Wang Z, Zhang Z, Wang J, Wang S. Surface modification ofcommercial aromatic polyamide reverse osmosis membranes by graftpolymerization of3-allyl-5,5-dimethylhydantoin. Journal of Membrane Science.2010,351:222-233.
    [156] Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coatinglayer on physiochemical properties of thin film composite polyamide RO and NFmembranes:: I. FTIR and XPS characterization of polyamide and coating layerchemistry. Desalination.2009,242:149-167.
    [157] Petersen R J. Composite reverse osmosis and nanofiltration membranes.Journal of Membrane Science.1993,83:81-150.
    [158] Elimelech M, Chen W H, Waypa J J. Measuring the zeta (electrokinetic)potential of reverse osmosis membranes by a streaming potential analyzer.Desalination.1994,95:269-286.
    [159] Jeong B H, Hoek E, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh A K,Jawor A. Interfacial polymerization of thin film nanocomposites: A new concept forreverse osmosis membranes. Journal of Membrane Science.2007,294:1-7.
    [160] Sagle A C, Van Wagner E M, Ju H, McCloskey B D, Freeman B D, Sharma MM. PEG-coated reverse osmosis membranes: Desalination properties and foulingresistance. Journal of Membrane Science.2009,340:92-108.
    [161] Kwon Y N, Tang C Y, Leckie J O. Change of chemical composition andhydrogen bonding behavior due to chlorination of crosslinked polyamidemembranes. Journal of Applied Polymer Science.2008,108:2061-2066.
    [162] Tang C Y, Kwon Y N, Leckie J O. Probing the nano-and micro-scales ofreverse osmosis membranes--A comprehensive characterization of physiochemicalproperties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, andstreaming potential measurements. Journal of Membrane Science.2007,287:146-156.
    [163] Koo J Y, Petersen R J, Cadotte J E. ESCA characterization ofchlorine-damaged polyamide reverse osmosis membrane. Polymer Preprint.1986,27:391.
    [164] Xie W, Park H B, Cook J, Lee C H, Byun G, Freeman B D, McGrath J E.Advances in membrane materials: desalination membranes based on directlycopolymerized disulfonated poly (arylene ether sulfone) random copolymers. WaterScience and Technology.2010,61:619-624.
    [165] Higashitani K, Oshitani J. Magnetic effects on thickness of adsorbed layer inaqueous solutions evaluated directly by atomic force microscope. Journal of Colloidand Interface Science.1998,204:363-368.
    [166] Van Wagner E M, Sagle A C, Sharma M M, La Y H, Freeman B D. Surfacemodification of commercial polyamide desalination membranes using poly (ethyleneglycol) diglycidyl ether to enhance membrane fouling resistance. Journal ofMembrane Science.2011,367:273-287.
    [167] Azari S, Zou L. Using zwitterionic amino acid l-DOPA to modify the surfaceof thin film composite polyamide reverse osmosis membranes to increase theirfouling resistance. Journal of Membrane Science.2012,401-402:68-75.
    [168] Do V T, Tang C Y, Reinhard M, Leckie J O. Degradation of polyamidenanofiltration and reverse osmosis membranes by hypochlorite. EnvironmentalScience&Technology.2012,46:852-859.
    [169] Talla-Nwafo A, Jones K L. Polyelectrolyte modification of nanofiltrationmembrane for selective removal of monovalent anions. Separation and PurificationTechnology.2011,77:367-374.
    [170] Van Wagner E M, Sagle A C, Sharma M M, Freeman B D. Effect of crossflowtesting conditions, including feed pH and continuous feed filtration, on commercialreverse osmosis membrane performance. Journal of Membrane Science.2009,345:97-109.
    [171] Sutzkover I, Hasson D, Semiat R. Simple technique for measuring theconcentration polarization level in a reverse osmosis system. Desalination.2000,131:117-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700