用户名: 密码: 验证码:
旋转超空泡蒸发器水动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对淡水持续增长的需求促进了海水淡化技术的不断发展。目前全球约95%的淡水是采用热方法和渗透膜技术这两大技术生产的。然而,这两种方法均存在一定的问题,热方法受限于结垢和传热系数,渗透膜技术则受限于渗透膜的污染和回收系数。大量研究一直致力于通过各种方法对热方法和渗透膜技术进行改进,如采用废热方法以及水处理初期时减少水垢和污垢方法等。然而,现代海水淡化技术则利用较新的物理现象来达到减少水垢、污垢、材料强度、能源消耗、环境影响、劳动力和技术支持等目的。本文主要对海水淡化的热方法进行研究和改进。
     本文首先对流体在固体壁面沸腾传热的过程进行了分析,认为过热流体在壁面处生成汽泡主要是由于汽泡内部的蒸汽压力大于环境流体压力。在圆管内部流动沸腾传热过程中,热流密度的增大使得汽液两相的流速增加。当传热不依赖于壁面的热流密度时,沸腾过程仅存在于对流区域,这就使得壁面处液体沸腾换热系数的热流指数值减少。因此,对海水淡化热方法的进一步改进需要更高的传热速率。通过大量的调研,发现超空化过程能在一定程度上很好地解决上述问题。
     早在30年前,Machinski就将锥形超空泡发生器引入到海水淡化的过程中,通过在超空泡区域内加入真空系统抽取超空泡内的低压蒸汽来获取淡化水。超空泡的汽液交界面处的蒸发过程与壁面处液体沸腾过程类似,其传热系数均由热流密度决定。然而,在超空泡蒸发过程中,增加液体的流速能使得超空泡的形态增大,同时也使得超空泡汽液界面的蒸发传热系数增大。因此,对应超空泡过程中液体蒸发换热系数的热流指数值也会相应升高。然而,将超空泡方法应用到工业中的海水净化过程中却遇到了一些问题。这种方法需要使用连续不断的大流量的过冷热源水循环通过包含级联配合的蒸发冷凝模块系统,这个系统的制造需要大量金属,而且超空泡的体积与水的总体积之比非常小,同时该系统采用的是能量密集型的水泵再循环系统,容量控制也十分复杂。为了解决这些问题,本文采用一种新型的旋转超空泡蒸发器(RSCE)来对海水的淡化过程进行研究。
     在超空泡发生过程中,水和蒸汽之间的高温和较大的速度梯度可以维持快速的蒸发。通常,在两相交界面上只允许水蒸气和溶解在水中的气体通过交界面进入超空泡内。然而,在远离空化器的后方发生的超空泡溃灭将产生非定常的回射流,其液滴会被夹带到抽取的蒸汽中并降低脱盐后的淡水质量。此外,在没有进行蒸汽抽取的情况下,超空泡蒸发器中的蒸汽生产率等于旋转超空泡内部的蒸汽发生率减去由于超空泡尾部脉动和尾涡引起的蒸汽损失,超空泡表面连续的纵向和径向振荡以及超空泡内部的低压将引起回射流并夹带蒸汽进入尾部区域。空化器的旋转运动引起的叶片末梢和轮毂的旋涡也会导致蒸汽的损失。因此,对于海水淡化应用,如何减少这些副作用从而有效回收最纯净蒸汽也是一个研究热点。
     为了达到以上所述的目标,本文自主研发了RSCE实验装置,对海水淡化新的热方法即旋转超空化蒸发法进行了研究和改进。
     RSCE的核心部件是具有特殊形状的高速旋转的空化器,用于生成超空泡和抽取的超空泡内的蒸汽。在设计空化器时需要解决以下问题:1)形成最大尺寸和体积超空泡的同时,确保操作的安全且不会造成气蚀破坏;2)蒸汽抽取的开口定位在超空化叶轮叶片的出口边缘上,以确保获得最高纯度的蒸汽。
     针对第一个问题,设计了具有两个叶片的超空泡旋转叶轮。每个叶片具有变化的出口边缘厚度,从而保证能够生成具有最大尺寸的超空泡,同时沿叶片长度方向在不同半径上均为安全尺寸。通过使用MathCAD-11.0b编程求解得到叶轮的尺寸比例,并根据对楔形空化器流动实验的初步分析实现了对这种叶轮的设计。两个叶片进口边的对称线穿过旋转轴线,并与旋转轴线垂直。由于不同半径处流动的速度矢量均垂直于叶片的进口边缘,因此可以通过楔形空化器流动的计算来进一步优化旋转叶轮。
     针对第二个问题,通过数值模拟软件对本文设计的叶轮进行模拟来预测其性能。为了得到较为准确的数值模拟结果,本文首先对网格、求解器的选择以及超空泡模拟方法进行了分析,并确定了数值模拟方法。通过大量的数值模拟,分析了蒸汽在空间中的分布、流态和回射流,从而确定了蒸汽抽取开口的合理位置。在数值模拟的基础上,设计和制造了数值模拟中较优工况的超空泡旋转叶轮并进行实验研究,通过多因素实验法分析了RSCE的实际性能。实验中,将真空系统通过中空轴连接至叶片的开口处来获得超空泡产生过程中的蒸汽。整个真空系统由旋风分离器、辅助容器、蒸汽冷凝器、真空泵和管道组成,以实现分离后的液滴和冷凝蒸汽的收集。为了达到叶轮5430转/分的转速,本文还设计了一个能自定义传动比的增速行星齿轮来与转速1440转/分电动机进行连接。由于叶轮处于高速旋转过程中,轴承密封的实现也是使得实验顺利进行的关键因素。
     RSCE实验系统还包括温度、压力和盐度传感器,以及用于实验记录的高速摄像系统。冷源水(25℃)为质量浓度3.5%的NaCl水溶液。本文选择了Box-Wilson统计方法来对实验工况进行最优设计,由于Box-Wilson统计方法能够通过一个最优的实验设计方法来使得在最少的实验次数的前提下获得统计上有效的结果,且允许将收集到原始仪器的数据和实验照片代入解析回归方程进行处理。因此本文选用这种方法来对实验次数进行最优化设计。在实验数据处理方面,自行设计了计算方法对实验获得的图像和其他数据进行处理,并基于软件,分别采用具有10个和6个参考半径的径向网格将叶片分成9和5等份,以更准确和方便地获得沿着叶片半径方向超空泡长度的分布。
     为了进一步验证实验的准确性,将由解析回归方程得到的转速和蒸汽发生率对叶片半径方向上超空泡长度分布的影响与数值模拟软件计算得到的结果以及经验公式进行了对比。
     在分析结果之前,本文对与RSCE研究直接相关的现有的前人研究结果进行了综述。超空泡是由流动惯性引起的高速蒸汽所产生,同时,由于超空泡内的蒸汽压力可能远低于平衡压力,从而进一步增加了超空泡内蒸汽的生成率。较长的超空泡显著地削弱了卷吸效应,同时也带来了更大的蒸发界面。由于在蒸发过程中是直接从源水中吸收潜热的,因此没有传统换热表面的热阻,从而具有较高的热质交换效率。理论上来说,两相交界面上的边界层可用于无水垢传热和无污垢矿物质去除,因此,超空化蒸发方法可以消除水蒸发过程中由固体导热壁面传热引起的低能量密度、水垢和污垢。
     通过采用ANSYS CFX-13.0软件进行数值模拟,计算获得了超空泡和周围流场的三维定常结构。基于模拟结果,选择叶片出口边缘区域作为蒸汽抽取的开口,此处的水蒸汽分数达到最大。此外,强制抽取蒸汽的模拟研究揭示了超空泡中蒸汽的不同流动状态可以减小蒸汽损失区域的体积。
     多因素实验结果揭示了冷凝液的盐度、超空泡内部蒸汽的温度以及超空泡的尺寸与蒸汽抽取率和叶轮转速之间的关系。较低叶轮转速下的实验结果表明该类型叶片形状能产生超出预期的超空化效果。同时,实验中也获得了较好的蒸汽抽取效果,表明蒸汽抽取开口位置设计是合理的。随后,基于实验结果,通过采用统计学上有效的回归方程获得了超空泡形态与转速和蒸汽抽取速率之间的经验关系。
     RSCE具有所有固定式超空化锥形蒸发器所具备的优点,同时也能在最小的工作容积内产生连续的蒸发过程。由于本实验设计的RSCE用于在大气压力下海水中运行,因而该装置只需要耐腐蚀金属制成的驱动器,对壳体的要求较低。此外,实验过程中也无需用到水质预处理的耗材。因此该RSCE系统具有很好的经济性及应用前景。
     本研究的理论贡献包括以下方面:
     1)提出了具有出口边厚度随半径变化的楔形叶片的超空泡旋转叶轮,因此能够在一个旋转平面内控制超空泡的尺寸;
     2)证明了通过楔形空化器形成的超空泡尺寸的经验公式来设计超空泡旋转叶轮的合理性;
     3)提出了控制旋转超空泡的尺寸的设想,研究了从超空泡中抽取蒸汽时的流动特性和热物性参数;
     4)提出利用旋转超空泡的最大空化研究部分相容性液体的混合、以及液体中含有固体颗粒时的混合效果,分别获得稳定和优良的乳化液和悬浮液;
     5)在从超空泡抽取蒸汽的过程中观察了稳定流动中的旋转空化器上叶片末端和轮毂处的旋涡。
     6)当空泡中的压强与通道内的蒸汽压强相平衡时,观察了两个叶片处生成的旋转超空化现象。
     本研究的实用创新性包括以下方面:
     1)设计的超空泡旋转叶轮,在旋转平面内能形成有最大体积的超空泡,同时对叶轮的气蚀破坏程度最小;
     2)设计的高速空心轴可以实现对介质的抽取或注射,并采用压紧螺栓和夹紧垫圈来实现轴的延伸,从而能够平衡和可靠地安装不同的旋转叶轮;
     3)采用MathCAD编写算法计算了旋转叶轮的形状及其形成的超空泡的尺寸;
     4)根据超空泡旋转蒸发器形成的超空泡的参数,对其数学模型采用ANSYS CFX-13.0软件进行了数值求解,验证了实验数据;
     5)设计和制造了高速旋转的超空化装置以及用于蒸汽抽取的真空系统;采用测量仪器监测了蒸汽温度、冷凝水盐度、蒸汽抽取率和抽取的真空压力;采用高速摄像机实现了旋转超空泡的可视化。
     本研究的理论价值包括以下方面:
     1)以回归方程的形式确定了超空泡旋转蒸发器的水动力学特性和热物性之间统计学上有效的经验关系;
     2)根据现有的大规模工业设备和最新的研究文献,提出了具有前景的海水淡化方法和技术;
     3)描述了Rayleigh-Plesset空化模型对超空泡动力学特性和热物性的建模具有更高的精度;
     4)进行了多因素极值实验,从而得出了在旋转超空泡中所观察到现象的回归方程。
     本研究的实用价值的研究包括以下方面:
     1)旋转空化器在工业应用中的运用,如海水淡化和脱氧;
     2)在初步提出的旋转空化器中,采用低温泵来实现流动的冷却和初始旋转流的适用性;
     3)采用旋转空化器生产高度均一、稳定且良好分布的高品质悬浮液和乳化液,可应用于热电、化学工程和建筑材料工程。
Growing demand in the fresh water has led to development of both conventional and modern seawater desalination methods. The thermal and membrane methods are today’s two major technologies covering about95%of worldwide fresh water production. However, the former is limited by the scale formation and thermal transfer coefficient; and the later by the membrane fouling and the recovery factor. Research and development has been continuously improving these major technologies, with the goal to develop the desalination method, which can use the waste heat, and also maintain the scaling and fouling free operation only supported by primary water treatment. The modern desalination methods use the previously unemployed physical phenomena to reduce scaling, fouling, material intensity, energy consumption, environmental effects, labour and technical support. We are interested in research and improving of the thermal desalination method.
     We have analyzed the boiling of liquid during the heat transfer from the wall, the process of overheating of a liquid to generate steam as a result of the phase change due to increase of the vapour pressure inside the bubble above the ambient liquid pressure. In case of liquid boiling inside the pipe, growth of heat-flux density increases the velocity of two-phase flow. This limits boiling to persist only in its convective regime, when heat transfer is not depended on heat-flux density on the wall. This decreases the exponent value of heat-flux in coefficient of heat transfer for liquid boiling on the wall. Therefore, the process with higher heat transfer rate is required for further improvement of the thermal desalination method. We have surveyed the literature on the subject and found that the process of supercavitation meets our requirements.
     Machinski30years ago has introduced the stationary supercavitating cone evaporator with ability to create a relatively stable steam generating interface, so called supercavity, between liquid water flow and the low pressure steam volume, which can be connected to vacuum system for steam extraction. The heat transfer coefficient of evaporation from the surface of supercavity also depends on the heat-flux density; the same as for boiling of liquid. However, during supercavitating evaporation, increase of flow velocity results in growth of the steam generating surface of supercavity, keeping heat transfer rate to rise. Therefore, the exponent value of heat-flux in coefficient of heat transfer for liquid evaporation during supercavitation will be comparatively high. However, the industrial application of this evaporator for water desalination requires continuous high-volume recirculation of the subcooled hot source water through the entire system of the cascading matching evaporation-condensation modules. This scheme is metal-intensive and the supercavity volume to the water bulk volume ratio is very small; it also uses energy-intensive pump recirculation system; and the capacity control is complicated. Therefore, we have made efforts into research and development of the device, called rotational supercavitating evaporator (RSCE) to eliminate these shortcomings.
     During supercavitation the high temperature and velocity gradients between water and steam maintain the rapid evaporation. The interphase boundary only let water steam and dissolved gases pass inside the supercavity. However, supercavity collapsing far behind the cavitator produces unsteady backward jet of the source water, and its droplets can be entrained during extraction of steam, thus reducing the quality of the desalinated water. In addition, without extraction of steam, the steam production rate of the supercavitating evaporator is equal to steam generation rate inside the supercavityless the steam loss through its pulsating end and trailing vortices. Continuous longitudinal and diametrical oscillations of the supercavity surface and low pressure inside the supercavity cause whirling backward water jet, which entrains steam downstream through the tail region. In RSCE, the steam is also lost through the tip and hub vortices generated by rotational movement of the cavitator. Therefore, for desalination application, the research of the ways to reduce these side effects for effective retrieving of the most pure steam is topical.
     Achieving above-stated goals we have researched the new thermal desalination method–rotational supercavitating evaporation–on the experimental facility designed from scratch.
     The major component of RSCE is the specially shaped high-speed rotating cavitator. This cavitator have been designed for both generation of supercavity, and extraction of steam from the supercavity volume. These requirements have raised the following problems:1) formation of the supercavity with maximum dimensions and volume, which ensures safety operation without cavitation damage;2) positioning of the steam extraction openings on the supercavitating impeller blade’s exit edge that ensures highest purity of steam extracted.
     The first problem, has led to development of the rotational supercavitating impeller with two blades. Each blade has the alternating thickness of the exit edge for generation of the supercavity with maximum, but safe dimensions on each radius along the blade’s length. This design has required programming of a solver in MathCAD-11.0b to get the proportions of the impeller, and has been based on preliminary analysis of experiments with flowing wedge-shaped cavitators. Symmetric alignment of the entrance edges of the two blades in line passing through the rotation axis, and laying in plane, perpendicular to the rotation axis. This technique has allowed use of calculations, made for flowing wedge-shaped cavitators, for designing of the rotational impeller; because flow velocity vectors are also perpendicular to the entrance edges of two blades on each radii.
     To find out the solution of the second problem, the predicted performance of newly designed impeller has been verified by industrial standard numerical simulation software. The preliminary mesh study, careful choice of the solver, and use of the best practices for supercavitation simulation have been combined to get the most accurate results. The spatial distribution of the steam, its flow regime, and backward water jet action has been analysed for reasonable positioning of the openings for steam extraction. To find out the accuracy of the above stated idealized calculations, we have designed and manufactured the experimental facility for experimental investigation of the rotational supercavitating impeller. The real performance of the RSCE have been tested during the multiply factor experiment. The extraction of steam requires connection of the steam volume of supercavity with the vacuum system through the specially designed hollow shaft. The vacuum system consists of cyclone separator, auxiliary vessels, steam condenser, vacuum pump, and piping for collecting of separated water droplets and condensed steam for analysis. The major effort has been put into reliable and leakless bearing assembly working with angular velocity of5430rpm. We have designed a custom multiplying planetary gear to achieve this high rotation speed while driving the shaft by the standard1440rpm electric motor.
     The experimental facility has been equipped with temperature, pressure and salinity sensors; and high-speed camera for photography. The cold (25°C) source water salinity has been35ppt totally dissolved solids. We have chosen the Box-Wilson’s statistical method for experimental planning, because it requires a minimum number of experiments and gives statistically valid results; and allows processing of the collected instrumentation indications and the data from photography, into analytical regression equations. Manual image analysis and automatic processing of the experimental data have been done by the in-house designed algorithms. The photography of blades has been software-based divided into9and5equal segments by the radial grid giving10and6reference radii respectively. The reading of distribution of the supercavity length along blade’s radii has been made more convenient and accurate depending of this grid.
     For drawing the valid conclusions, we have compared the results about influence of the rotation speed and steam extraction rate at the distribution of the supercavity length on the blade’s radii obtained by analytical regression equations, with the results calculated on the industrial standard numerical simulation software; and empirical equations.
     Prior to reporting of the results, we would like to present the following relevant information revealed during the literature survey that have been confirmed studying the RSCE. The supercavitation is caused by flow inertia and, during the high rate of steam extraction the steam pressure inside the supercavity may be much lower than equilibrium pressure, thus increasing the rate of steam generation. The longer supercavity considerably reduces the entraining effect and also gives larger evaporation surface. The higher heat-mass exchange is obtained by eliminating thermal resistance induced by conventional heat transfer surface, because evaporation process takes the latent heat directly from the source water. Literally, the two-phase boundary layer both operates as the scale free thermal transfer and fouling free demineralising mediums. Therefore, supercavitating evaporation method eliminates the low energy intensity, scaling and fouling associated with the heat transfer through the solid heat-conducting wall for evaporation of water.
     The solutions obtained in ANSYS CFX-13.0environment, has revealed the3-D steady structure of the supercavity and the ambient flow. Basing on this data, the area of the blade’s exit edge, where the water steam fraction has a maximum, has been considered for location of steam extraction openings. In addition, simulation of forced steam extraction has revealed the different flowing patterns of steam inside the supercavity that reduce the volume of the lost partitions of steam.
     The multiply factor experiments has revealed the salinity of the condensate; the temperature of steam inside the supercavity; and dependence of the shape of supercavity; on the rate of steam extraction and rotation speed of impeller. The shape of impeller, and the expected supercavitating effects it generates, has been confirmed by experimental results surpassing our expectations–at the much lower rotation speed. The design of the steam extraction openings has been approved by satisfactory performance during steam evacuation. The empirical dependencies of the shape of supercavity on rotating speed and the rate of steam extraction has been obtained in form of statistically valid regression equations.
     RSCE has all the advantages proper for stationary supercavitating cone evaporator, but also naturally maintains continuous evaporation process within a minimal working volume. Designed for operation with water under atmospheric pressure, this device requires only actuator made of incorrodible metal, while casing uses much less expensive materials. Also there is no need for the consumables for pretreatment of water during operation.
     Theory contribution of the research includes the following statements:
     1) the idea of the rotating supercavitating impeller with the wedge-shaped blades which exit edge has an alternating thickness along radii for control of the dimension of supercavity in a plane of rotation;
     2) applicability proof of the empirical formula for calculation of the supercavity dimensions, generated by flowing wedge-shaped cavitator, for designing of the rotational supercavitating impeller;
     3) the idea to control the rotational supercavity dimensions; hydrodynamic and thermal-physical parameters of the flow by extraction of steam from supercavity;
     4) the idea to use the rotational supercavity with maximum cavitation influence for mixing of liquids of partial miscibility; and solid particles with liquids, for production of stable and fine emulsions and suspensions respectively;
     5) observation of tip and hub vortices on the rotational supercavitator for steady flow and during the steam extraction from the supercavity;
     6) observation of the rotational supercavities generated by two blades, while the pressure inside the volumes has been equilibrated by the steam extraction channel.
     Practical novelty of the research includes the following statements:
     1) design of the rotational supercavitating impeller, which develops supercavity with maximum possible volume in a plane of rotation, while inducing minimum cavitation damage to the impeller;
     2) design of the high-speed hollow shaft allowing either extraction or injection of a medium, and possessing a shaft extension with a hold-down bolt and a clamping washer for balanced and reliable mounting of the different rotating impellers;
     3) in-house algorithm for calculation of the rotational impeller’s shape and dimensions of the supercavity it generates written in MathCAD-11.0b;
     4) numerical solution of the mathematical model made in ANSYS CFX-13.0based on the parameters of supercavity formed in RSCE for verification of experimental data;
     5) design and manufacturing of the high-speed rotational supercavitating facility with vacuum system for steam extraction; measurement instrumentation for monitoring of steam temperature, condensate salinity, steam extraction rate, and vacuum pressure of extraction; and high-speed photography for visualizing of the rotational supercavity.
     Theoretical value of the research includes the following statements:
     1) formulation of the statistically valid empiric dependencies between hydrodynamic and thermal-physical characteristics of rotational supercavitating evaporator in form of regression equations;
     2) suggestion of the most promising desalination methods and technologies basing on the review of the large-scale industrial facilities and state-of-the-art research and development publications;
     3) demonstration of higher accuracy of the Rayleigh-Plesset cavitation model for modeling of the hydrodynamic and thermal-physical characteristics of the supercavity;
     4) planning of the multiply factor extremal experiment, and handling of experimental data to derive a regression equations of processes observed during the rotational supercavitation.
     Practical value of the research includes the following statements:
     1) use of rotational cavitator in industrial applications such as desalination and deaeration;
     2) availability of the proposed rotational cavitator as the first stage of a cryogenic pump for cooling and preliminary swirling of the flow;
     3) availability of the proposed rotational cavitator for production of the highly uniform, stable and fine suspensions and emulsions with improved qualities for the thermal power, chemical, and construction material engineering.
引文
[1] MacMillanP. Human Development Report2006. Beyond scarcity: Power, povertyand the global water crisis[R]. UN: Global Reports,2006:12-155.
    [2] Koschikowski J. Water Desalination: When and where will it Make Sense?[R/OL].Fraunhofer ISE,2011[2011-03-11]. http://ec.europa.eu/dgs/jrc/downloads/jrc_aaas2011_energy_water_koschikowski.pdf.
    [3] Likhachev D S, Kulagina L V. Cavitating mixer[P]. Russian Patent, RU2356611C1B01F5/00/–2008108646/15,2009-05-27:1-8.
    [4] GWI, IDA Desalination Yearbook2011-2012[M]. London: Global WaterIntelligence,2012:133-281.
    [5] Frenkel V. Desalination Methods, Technology, andEconomics[M/OL].Kennedy/Jenks Consultants,2000[2011-02-12].http://www.idswater.com/common/paper/paper_90/desalination%20methods,%20technology,%20and%20economics1.htm.
    [6] Examining the Economics of Seawater Desalination Using the DEEP Code[R].Vienna: IAEA-TECDOC-1186, ISSN1011-4289,2000:1-88.
    [7] El-Ghonemy A M K. Future Sustainable Water Desalination Technologies for theSaudi Arabia: aReview[J]. Renew Sustainable Energy Rev,2012,16:6566-6597.
    [8] Winter T, Pannell D J, McCann L. The Economics of Desalination and its PotentialApplication in Australia, SEA Working Paper01/02[R].University of WesternAustralia, Perth,2006:1-23.
    [9] Hodson T D, Elliot M N, Jordan W S. Calcium Sulphate Scaling in Falling FilmEvaporators[J]. Desalination,1974,14:77-91.
    [10] MicaleG,Rizzuti G L,Cipollina A. Conventional Thermal Processes. Green Energyand Technology. Seawater Desalination, Conventional and Renewable EnergyProcesses[M]. Springer-Verlag Berlin Heidelberg,2009:17-40.
    [11] Hou H, Bi Q C, Zhang X L. Numerical simulation and performance analysis ofhorizontal-tube falling-film evaporators in seawater desalination[J]. IntComm HeatMass Transfer,2012,39:46-51.
    [12] Yang L,Shen S,Hu H, et al. Thermal Analysis of Internal Condensation Process ina Horizontal Tube of Falling Film Evaporation[J]. Desal Water Treat,2010,24:101-108.
    [13] Galal T, Kalendar A, Al-Saftawi A, et al. Heat Transfer Performance of CondenserTubes in an MSF Desalination System[J]. J MechSciTechnol,2010,24:2347-2355.
    [14] Yang L P, Shen S Q and Hu H W. Thermodynamic Performance of a LowTemperature Multi-Effect Distillation Experimental Unit with Horizontal-TubeFalling Film Evaporation [J]. Desal Water Treat,2011,33:202-208.
    [15] Hornayoonfal M, Akbari A. Preparation of Polysulfone Nano-StructuredMembrane for Sulphate Ions Removal from Water [J]. Iranian J Environ HealthSciEng,2010,7:407-412.
    [16] Khedr A G. Membrane Methods in Tailoring Simpler, More Efficient, and CostEffective Wastewater Treatment Alternatives [J]. Desalination,2008,222:134-145.
    [17] Low S C, Cheng L P, Hee L S. Water Softening Using a Generic Low CostNano-Filtration Membrane [J]. Desalination.2008,221:168-173.
    [18] Zarkadas D M, Li B, Sirkar K K. Polymeric Hollow Fiber Heat Exchangers(PHFHEs): a New Type of Compact Heat Exchanger for Lower TemperatureApplications [C/OL]. Proceedings of the ASME summer Heat Transfer Conference2005, San Francisco, CA, the USA.2005,4:429-438.
    [19] Christmann J B P, Kratz L J, Bart H J. Novel Polymer Film Heat Exchangers forSeawater Desalination [J]. Desal Water Treat,2010,211:162-174.
    [20] Peutlier J, Baudu V, Boillot P, et al. News Trends in Selection of Metallic MaterialFor Desalination Industry [C]. IDA World Congress, Dubai, the UAE.2009:1-15.
    [21] Ettouney H, Rizzuti L. In: Rizzuti L, et al. Solar Desalination for the21st Century,NATO Security through Science Series [R/OL]. Solar desalination: a challenge forsustainable fresh water in the21st century,2007:1-18.
    [22] Chaibi M T, El-Nashar A M. Solar Thermal Processes: a Review of Solar ThermalEnergy Technologies for Water Desalination [R/OL]. In: Micale G, Rizzuti L,Cipollina A, Seawater Desalination, Green Energy and Technology,2009:131-163.
    [23] Banat F, Qiblawey H. In: Rizzuti L, et al. Solar Desalination for the21st Century,NATO Security through Science Series, Membrane desalination driven by solarenergy [R/OL].2007:271-291.
    [24] Dev R, Tiwari G N. Solar distillation [M/OL]. In: Chittaranjan R, Ravi J, DrinkingWater Treatment: Focusing on Appropriate Technology and Sustainability,2011:159-210.
    [25] Leblanc J, Andrews J. Low-Temperature Multi-Effect Evaporation DesalinationSystems Coupled with Salinity-Gradient Solar Ponds [C/OL]. Proceedings of ISESWorld Congress2007.2009,5:2151-2157.
    [26] Adel M, Abdel D. A Pioneer System of Solar Water Desalination [C/OL].Proceeding of ISES World Congress2007(VOL.I-VOL.V).2009,5:1923-1928.
    [27] Al-Karaghouli A, Renne D, Kazmerski L L. Solar and Wind Opportunities forWater Desalination in the Arab Regions [J]. Renew Sustainable Energy Rev,2009,13:2397-2407.
    [28] Greenlee L F, Lawler D F, Freeman B D, et al. Reverse Osmosis Desalination:Water Sources, Technology, and Today’s Challenges [J]. Water Res,2009,43:2317-2348.
    [29] Al-Hawaj O M. Theoretical Analysis of Sliding Vane Energy Recovery Device [J].DesalWater Treat,2011,36:354-362.
    [30] Sharqawy M H, Zubair S M, Lienhard J H. Second Law Analysis of ReverseOsmosis Desalination Plants: an Alternative Design Using Pressure RetardedOsmosis [J]. Energy,2011,36:6617-6626.
    [31] Li M H. Reducing Specific Energy Consumption in Reverse Osmosis (RO) waterDesalination: an Analysis from First Principles [J]. Desalination,2011,276:128-135.
    [32] Kurth C J, Koehler J A, Zhou M, et al. Making Thin Film Composite Membrane,by Introducing First and Second Monomers in Polar and Non-Polar LiquidsRespectively, Introducing Partially Hydrolyzed Third Monomer in Non-PolarLiquid, and Contacting Polar and Non-Polar Liquids [P]. Patent N.WO2010120327-A1.2010-N19341.
    [33] Misdan N, Lau W J, Ismail A F. Seawater Reverse Osmosis (SWRO) Desalinationby Thin-Film Composite Membrane–Current Development, Challenges andFuture Prospects. Desalination,2012,287:228-237.
    [34] Wang P, Teoh M M, Chung T S. Morphological Architecture of Dual-LayerHollow Fiber for Membrane Distillation with Higher Desalination Performance [J].Water Res,2011,45:5489-5500.
    [35] Ji Y L, An Q F, Zhao Q, et al. Novel Composite Nanofiltration MembranesContaining Zwitterions with High Permeate Flux and Improved Anti-FoulingPerformance [J]. J MembrSci,2012,390:243-253.
    [36] Functionalization methods of membrane surfaces [M]. In: Xu Z K, Huang X J,Wan L S, Surface Engineering of Polymer Membranes, Advanced Topics inScience and Technology in China,2009:64-79.
    [37] McCloskey B D, Park H B, Ju H, et al. A Bioinspired Fouling-Resistant SurfaceModification for Water Purification Membranes [J]. J MembrSci,2012,413-414:82-90.
    [38] McCloskey B D, Park H B, Ju H, et al. Influence of Polydopamine DepositionConditions on Pure Water Flux and Foulant Adhesion Resistance of ReverseOsmosis, Ultrafiltration, And Microfiltration Membranes [J]. Polymer,2010,51:3472-3485.
    [39] Miller D J, Araujo P A, Correia P B, et al. Short-Term Adhesion and Long-TermBiofouling Testing of Polydopamine andPoly(Ethylene Glycol) SurfaceModifications of Membranes and Feed Spacers for Biofouling Control [J]. WaterRes,2012,46:3737-3753.
    [40] Yu H J, Cao Y M, Kang G D, et al. Tethering Methoxy Polyethylene Glycols toImprove the Antifouling Property of PSF/PAA-Blended Membranes [J]. J ApplPolymer Sci,2012,124: E123-E133.
    [41] Azari S,Zou L. Using Zwitterionic Amino Acid L-DOPA to Modify the Surface ofThin Film Composite Polyamide Reverse Osmosis Membranes to Increase theirFouling Resistance [J].J MembrSci,2012,401-402:68-75.
    [42] Lee J. In: Kim S. Microbial Community in Seawater Reverse Osmosis and RapidDiagnosis of Membrane Biofouling [J]. Desalination,2011,273:118-126.
    [43] Johnson J, Busch M. Engineering Aspects of Reverse Osmosis Module Design [J].DesalWater Treat,2010,15:236-248.
    [44] Kim S, Cho D, Lee M S, et al. SEAHERO R&D Program and Key Strategies forthe Scale-Up of a Seawater Reverse Osmosis (SWRO) System [J]. Desalination,2009,238:1-9.
    [45] Kim S, Oh B S, Hwang M-H, et al. An Ambitious Step to the Future DesalinationTechnology: SEAHERO R&D program (2007-2012)[J]. Appl Water Sci,2011,1:11-17.
    [46] Curcio E, Drioli E. Membranes for Desalination. Seawater Desalination [J]. GreenEnergy and Technology,2009,41-75.
    [47] Scientific Production Company “Mediana-filter”. Comparison of WaterDesalination Methods [R].2010:1-5(in Russian).
    [48] Guler E, Ozakdag D, Arda M, et al. Effect of Temperature on SeawaterDesalination-Water Quality Analyses for Desalinated Seawater for its use asDrinking and Irrigation Water [J]. Environ Geochem Health,2010,32:335-339.
    [49] Supaiman A-O, Efrem C, Francesca M. Potential of Membrane Distillation inSeawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation[J]. J Membrane,2008,323:85-98.
    [50] Halpern D F, McArble J, Antrim B. UF Pretreatment for SWRO: Pilot Studies [J].Desalination,2005,182:323-332.
    [51] Bonnelye V, Sanz M. A, Durand J-P, et al. Reverse Osmosis on Open IntakeSeawater: Pre-Treatment Strategy [J]. Desalination,2004,167:191-200.
    [52] Davis R A, Southwell G. Practical Considerations in Ensuring Cost Minimizationin the Design and Operation of Sulphate-Removal Systems [C]. Society ofPetroleum Engineers-2nd International Oil Conference and Exhibition in Mexico2007:539-542.
    [53] Elguera A M, Perez Baez S O. Development of the Most Adequate Pre-Treatmentfor High Capacity Seawater Desalination Plants with Open Intake [J]. Desalination,2005,184:173-183.
    [54] Bonnelye V, Guey L, Castillo J D. UF/MF as RO Pre-Treatment: the Real Benefit[J]. Desalination,2008,222:59-65.
    [55] Jeong S, Choi Y, Nguyen T V, et al. Submerged Membrane Hybrid Systems asPretreatment in Seawater Reverse Osmosis (SWRO): Optimisation and FoulingMechanism Determination [J]. J MembrSci,2012,411-412:173-181.
    [56] Chae S-R, Yamamura H, Ikeda K, et al. Comparison of Fouling Characteristics ofTwo Different Poly-Vinylidene Fluoride Microfiltration Membranes in aPilot-Scale Drinking Water Treatment System UsingPre-Coagulation/Sedimentation, Sand Filtration, and Chlorination [J]. Water Res,2008,42:2029-2042.
    [57] Zheng X, Ernst M, Jekel M. Pilot-scale Investigation on the Removal of OrganicFoulants in Secondary Effluent by Slow Sand Filtration Prior to Ultrafiltration [J].Water Res,2010,44:3203-3213.
    [58] Jeong S, Park Y, Lee S, et al. Pre-treatment of SWRO Pilot Plant for DesalinationUsing Submerged MF Membrane Process: Trouble Shooting and Optimization [J].Desalination,2011,279:86-95.
    [59] Choi Y H, Kweon J H. Impacts of Highly Turbid Water on Microfiltration withCoagulation Pretreatment [J]. KSCE J Civil Eng,2010,14:273-280.
    [60] Xie R J, Tan E K, Lim S K, et al. Pre-treatment Optimisation of SWRO MembraneDesalination Under Tropical Conditions [J]. Desal Water Treat,2009,3:183-192.
    [61] Peters T, Pinto D. Seawater Intake and Pre-Treatment/Brine Discharge–Environmental Issues [J]. Desalination,2008,221:576-584.
    [62] Perez-Gonzalez A, Urtiaga A M, Ibanez R, et al. State of the Art and Review onthe Treatment Technologies of Water Reverse Osmosis Concentrates [J]. Water Res,2012,46:267-283.
    [63] Wei C-H, Huang X, Aim R B, et al. Critical Flux and Chemical Cleaning-in-placeDuring the Long-Term Operation of a Pilot-Scale Submerged MembraneBioreactor for Municipal Wastewater Treatment [J]. Water Res,2011,45:863-871.
    [64] Ken G, Somenath M. Carbon Nanotube Enhanced Membrane Distillation forOnline Preconcentration of Trace Pharmaceuticals in Polar Solvents [J]. Analyst,2011,136:2643-2648.
    [65] Anderssen R S, Braddock R D and Newham L T H. Disinfectant Dosing ofBlended Drinking Waters [C].18th World IMACS Congress and MODSIM09International Congress on Modelling and Simulation, Cairns, the Australia.2009:4461-4466.
    [66] Wittholz M K, O’Neill B K, Colby C B, et al. Estimating the Cost of DesalinationPlants Using a Cost Database [J]. Desalination,2008,229:10-20.
    [67] Molina V G, Taub M, Yohay L, et al. Long Term Membrane Process andperformance in Ashkelon Seawater Reverse Osmosis Desalination Plant [J]. DesalWater Treat,2011,31:115-120.
    [68] Drami D, Yacibi Y Z, Stabmler N, et al. Seawater Quality and MicrobialCommunities at a Desalination Plant Marine Outfall. A Field Study at the IsraeliMediterranean Coast [J]. Water Res,2011,45:5449-5462.
    [69] Molina V G, Taub M, Yohay L, et al. Long Term Membrane Process andPerformance in Ashkelon Seawater Reverse Osmosis Desalination Plant [J]. DesalWater Treat,2011,31:115-120.
    [70] Hamed O A. Evolutionary Developments of Thermal Desalination Plants in theArab Gulf Region [C]. R&D Center, SWCC,–Beirut Conference,2004:1-15.
    [71] Drioli E, Macedonio F. New Trends and Technologies for Membrane Desalination
    [M]. In: Drioli E, Criscuoli A, Macedonio F. Membrane Based Desalination: AnIntegrated Approach, Inaugural KAUST Economics Development InternationalSymposium at the China Water Show in Shanghai. May6,2010.
    [72] Kim S J, Ko S H, Kang K H, et al. Direct Seawater Desalination by IonConcentration Polarization [J]. Nature Nanotechnol,2010,5:297-301.
    [73] Shannon M A. Water Desalination: Fresh for Less [J]. NatureNanotechnol,2010,5:248-250.
    [74] Gong X J, Li J Y, Lu H K, et al. A Charge-Driven Molecular Water Pump [J].NatureNanotechnol,2007,2:709-712.
    [75] Chay L S, Juan H H. White Paper: Low Cost Seawater Desalination [R]. ForwardOsmosis Membrane, WateReuse Association,2010-04-30.
    [76] McCutcheon J R, McGinnis R L, Elimelech M. A Novel Ammonia-CarbonDioxide Forward (Direct) Osmosis Desalination Process [J]. Desalination.2005,174:1-11.
    [77] Arena J T, McCloskey B, Freeman B D, et al. Surface Modification of thin FilmComposite Membrane Support Layers with polydopamine: Enabling Use ofreverse Osmosis Membranes in pressure Retarded Osmosis, J MembrSci,2011,375:55-62.
    [78] Cath T Y,Childress A E, Elimelech M. Forward Osmosis: Principles, Applicationand Recent Developments, Review [J]. J MembrSci,2006,281:55-70.
    [79] McGinnis R L, McCutcheon J R, Elimelech M. A Novel Ammonia–CarbonDioxide Osmotic Heat Engine for Power Generation, J MembrSci,2007,305:13-19.
    [80] Ge Q C, Su J C, Amy G L, Chung T-S. Exploration of Polyelectrolytes as DrawSolutes in Forward Osmosis Processes, Water Res,2012,46:1318-1326.
    [81] Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S. A Novel Low EnergyFertilizer Driven Forward Osmosis Desalination for direct Fertigation: Evaluatingthe Performance of Fertilizer Draw Solutions, J MembrSci,2011,375:172-181.
    [82] Achilli A, Cath T Y, Childress A E. Selection of Inorganic-Based Draw Solutionsfor Forward Osmosis Applications, J MembrSci,2010,364:233-241.
    [83] Kim T-W, Kim Y, Yun C, et al. Systematic Approach for Draw Solute Selectionand Optimal System Design for Forward Osmosis Desalination [J]. Desalination,2012,284:253-260.
    [84] McGinnis R L, Elimelech M. Energy Requirements of Ammonia-Carbon DioxideForward Osmosis Desalination [J]. Desalination,2007,207:370-382.
    [85] Wei J, Qiu C Q, Tang Y, et al. Synthesis and characterization of flat-Sheet ThinFilm Composite Forward Osmosis Membranes [J]. J MembrSci,2011,372:292-302.
    [86] Modern Water to Build First Forward Osmosis Desalination Plant [J]. Pump IndAnal,2011,2011:1-3.
    [87] Modern Water Awarded contract for Commercial FO Desalination Plant [J].MembrTechnol,2011,2011:6-7.
    [88] Mi B, Elimelech M. Gypsum Scaling and Cleaning in Forward Osmosis:Measurements and Mechanisms [J]. Environ SciTechnol,2010,44:2022-2028.
    [89] Van Driessche A E S, Benning L G, Rodriguez-Blanco J D, et al. The Role andImplications of Bassaniteas a Stable Precursor Phase to Gypsum Precipitation [J].Science,2012,336:69-72.
    [90] Zhao S F, Zou L, Tang C Y, et al. Recent Developments in Forward Osmosis:Opportunities and Challenges [J]. J MembrSci,2012,396:1-21.
    [91] Wei J, Liu X, Qiu C Q, et al. Influence of Monomer Concentrations on thePerformance of Polyamide-Based Thin Film Composite Forward OsmosisMembranes [J]. J MembrSci,2011,381:110-117.
    [92] Li W Y, Gao Y B, Tang C Y. Network Modeling for Studying the Effect of SupportStructure on Internal Concentration Polarization During Forward Osmosis: ModelDevelopment and Theoretical Analysis with FEM [J]. J MembrSci,2011,379:307-321.
    [93] Cornelissen E R, Harmsen D, de Korte K F, et al. Membrane Fouling and ProcessPerformance of Forward Osmosis Membranes on Activated Sludge [J]. J MembrSci.2008,319:158-168.
    [94] Mi B X, Elimelech M. Chemical and Physical Aspects of Organic Fouling ofForward Osmosis Membranes [J]. J MembrSci,2008,320:292-302.
    [95] Yong J S, Phillip W A, Elimelech M. Coupled Reverse Draw Solute PermeationAnd Water Flux in Forward Osmosis With Neutral Draw Solutes [J]. J MembrSci,2012,392-393:9-17.
    [96] She Q H, Jin X, Tang C Y. Osmotic Power Production from Salinity GradientResource by Pressure Retarded Osmosis: Effects of Operating Conditions andReverse Solute Diffusion [J]. J MembrSci,2012,401-402:262-273.
    [97] Xiao D Z, Li W Y, Chou S R, et al. A Modeling Investigation on Optimizing theDesign of Forward Osmosis Hollow Fiber Modules [J]. J MembrSci,2012,392-393:76-87.
    [98] SuJ C, Yang Q, Teo J F, et al. Cellulose Acetate Nanofiltration Hollow FiberMembranes for Forward Osmosis Processes [J]. J MembrSci,2010,355:36-44.
    [99] Kim T-W, Kim Y, Yun C, et al. Systematic Approach for Draw Solute Selectionand Optimal System Design for Forward Osmosis Desalination [J]. Desalination,2012,284:253-260.
    [100]Phuntsho S, Shon H K, Hong S, et al. A Novel Low Energy Fertilizer DrivenForward Osmosis Desalination for Direct Fertigation: Evaluating the Performanceof Fertilizer Draw Solutions [J]. J MembrSci,2011,375:172-181.
    [101]Achilli A, Cath T Y, Childress A E. Selection of Inorganic-Based Draw SolutionsFor Forward Osmosis Applications [J]. J MembrSci,2010,364:233-241.
    [102]Jung D H, Lee J, Kim D Y, et al. Simulation of Forward Osmosis MembraneProcess: Effect of Membrane Orientation and Flow Direction of Feed and DrawSolutions [J]. Desalination,2011,277:83-91.
    [103]Oren Y. Capacitive Deionization (CDI) for Desalination and Water Treatment–Past, Present and Future [J]. Desalination,2008,228:10-29.
    [104]Welgemoed T J, Schutte C F. Capacitive Deionization Technologytm: anAlternative Desalination Solution [J]. Desalination,2005,183:327-340.
    [105]Dietz S. Improved Electrodes for Capacitive Deionization [C]. Proceedings of the2004NSF Design, Service and Manufacturing Grantees and Research Conference,Birmingham, AL, the USA,2004:1-5.
    [106]Kim Y-J, Choi J-H. Improvement of Desalination Efficiency in CapacitiveDeionization Using a Carbon Electrode Coated With an Ion-Exchange Polymer [J].Water Res,2010,44:990-996.
    [107]Li H, Zou L. Ion-Exchange Membrane Capacitive Deionization: a New Strategyfor Brackish Water Desalination [J]. Desalination.2011,275:62-66.
    [108]Yang J, Zou L, Song H. Preparing MnO2/PSS/CNTs Composite Electrodes byLayer-By-Layer Deposition of MnO2in the Membrane Capacitive Deoinisation[J].Desalination,2012,286:108-114.
    [109]Ryu J-H, Kim T-J, Lee T-Y, et al. A Study on Modeling and Simulation ofCapacitive Deionization Process for Wastewater Treatment [J]. J Taiwan InstituteChemEng,2010,41:506-511.
    [110]Atlas R, Wendell J. Low-Power Capacitive Deionization Method Shows Promisefor Treating Coalbed Methane Produced Water [J]. World Oil,2008,229:231-234.
    [111]Gethard K, Sae-Khow O, Mitra S. Water Desalination UsingCarbon-Nanotube-Enhanced Membrane Distillation [J]. ACS Appl MaterInterface,2011;3(2):98-110.
    [112]Corry B. Designing Carbon Nanotube Membranes for Efficient WaterDesalination [J]. J PhysChem B,2008,112(5):1427-1434.
    [113]Majeed S, Fierro D, Buhr K, et al. Multi-walled Carbon Nanotubes (MWCNTs)Mixed Polyacrylonitrile(PAN) Ultrafiltration Membranes [J]. J Membr Sci.2012,403-404:101-109.
    [114]Kim E-S, Hwang G, El-Din M G. Development of Nanosilverand Multi-WalledCarbon Nanotubes Thin-Film Nanocomposite Membrane for Enhanced WaterTreatment [J]. J Membr Sci.2012,394-395:37-48.
    [115]Gethard K, Sae-Khow O, Mitra S. Carbon Nanotube Enhanced MembraneDistillation for Simultaneous Generation of Pure Water and ConcentratingPharmaceutical Waste [J]. SeparPurTechnol,2012,90:239-245.
    [116]Ahn C H, Baek Y, Lee C, et al. Carbon Nanotube-Based Membranes: Fabricationand Application to Desalination [J]. J IndEng Chem.2012,18:1551-1559.
    [117]Kamal I. Myth and Reality of the Hybrid Desalination Process [J]. Desalination.2008,230:269-280.
    [118]Machinski A S. Hydrodynamics and Thermal Transfer Characteristics ofSupercavitating Evaporators for Water Desalination [D] Ph. D Thesis:05.17.08.–Moscow: Russian State Library,2007:1-285(in Russian).
    [119]Rudenko B. How to Make Up Water Resources [J/OL]. J Sci. Life,2007,12,
    [2011-10-2]. http://www.nkj.ru/archive/articles/12366/(in Russian).
    [120]Afonasiev V S. Complex for Desalting of Water and Water Purification of anyDegree of Pollution [R/OL].[2011.11.21] http://www.teros-mifi.ru/category/desalination.
    [121]Euler L. Histoire de l’Academie Royale des Sciences et Belle Letters [J]. Memo.1754:266-267.
    [122]Ackeret J. Experimentelle undTheoretischeUntersuchungenuberHohlraumbildungimWasser[J].TechnMechanikThermodynamik.1930:1.
    [123]Pierce C. Erosion [M]. Springer-Verlag,1982:430-464.
    [124]Ivchenko V M. Cavitation Technology [M]. Krasnoyarsk: Krasnoyarsk UniversityPress,1990:14-200.
    [125]Xiao C, Heyes D M. Cavitation in Stretched Liquids [J]. Proc R SocLond A,2002,458:889-910.
    [126]Artyushkov L S. Marine Propulsion [M]. Leningrad: Shipbuilding,1988:55-296
    [127]Pozdunin V L. On the Working of Supercavitating Screw Propellers [V]. DokladyAN SSSR,1944, XXXIX:334-339(in Russian).
    [128]Birkhoff G, Zarantonello E H. Jets, Wakes, and Cavities [M]. Academic Press,1957.
    [129]Alekseenko S. Introduction to the Theory of Concentrated Vortices [M].Moscow-Izhevsk,2005:23-504.
    [130]Pernik A D. Cavitation in Pumps [M]. Leningrad: Sudostroenie,1966:321-439(inRussian).
    [131]Léala L, Miscevica M, Lavieillea P, et al. An Overview of Heat TransferEnhancement Methods and New Perspectives: Focus on Active Methods UsingElectroactive Materials [J]. Int J Heat Mass Transfer,2013,61:505–524.
    [132]De Giorgi M G, Ficarella A, Tarantino M. Evaluating Cavitation Regimes in anInternal Orifice at Different Temperatures Using Frequency Analysis andVisualization [J]. Int J Heat Fluid Flow,2013,39:160–172.
    [133]Nesteruk I. Supercavitation: Advances and Perspectives [M]. Ukraine: Institute ofHydromechanics,2012:160-230.
    [134]Tulin M P. Fifty Years of Supercavitating Flow Research in the United States:Personal Recollection [J]. Int J Fluid Mech Rec,2001,6.
    [135]Street R L. A Linearized Theory for Rotational Supercavitating Flow [J]. J FluidMechanics,1963,17:513-545.
    [136]Street R L. Symmetric, Rotational, Supercavitating Flow Abouta Slender Wedge(Drag Coefficient and Cavity Length in Symmetric Rotational SupercavitatingFlow Around Slender Wedge)[J]. J Basic Eng,1964,86:569-576.
    [137]Ivchenko V M. Hydrodynamic Theory of Supercavitating Pumps orHydroturbines [J]. Fluid Dynamics,1976,11:153-158.
    [138]Miloh T. Mathematical Approaches in Hydrodynamics. SIAM,1991:351-499.
    [139]Vasin A D. Slender Axisymmetric Cavities in a Supersonic Flow [J]. FluidDynamics,1989,24:153-155.
    [140]Ho H-T. The Linearized Theory of a Supercavitating Hydrofoil with a Jet Flap [R].Technical report.1961:1-16.
    [141]Nesteruk I G. Determination of the Form of a Thin Axisymmetric Cavity on theBasis of an Integrodifferential Equation [J]. Fluid Dynamics,1985,10:83-90.
    [142]Kinnas S A, Supercavitating3-D Hydrofoils and Propellers: Prediction ofPerformance and Design [R]. Defense Technical Information Center CompilationPart Notice ADP012091.2001:1-25.
    [143]Fine N E, Nonlinear Analysis of Cavitating Propellers in Nonuniform Flow.Dissertation for the Doctoral Degree [D]. USA: Massachusetts Institute ofTechnology,1992:150-164.
    [144]Sisto F. Linearized Theory of Nonstationary Cascades at Fully Stalled orSupercavitated Conditions [J]. J Appl Math Mech,1967,47:531-542.
    [145]Antipov Y A, Silvestrov V V. Double Cavity Flow Past a Wedge [J]. Proc R Soc A,2008,464:3021-3038.
    [146]Serebryakov V, Kirschner I,Schnerr G. High Speed Motion in Water withSupercavitation for Sub-, Trans-, Supersonic Mach Numbers [C]. CAV2009,7thInternational Symposium on Cavitation, Ann Arbor, the USA,2009:1-18.
    [147]Faltinsen O M. Review of Hydrodynamics of High-Speed Marine Vehicles.J. Waterw [J]. Port Coastal Ocean Eng.,2006,132:1-2.
    [148]Savchenko Y. Supercavitation-Problems and Perspectives. In: CAV2001:Fourth International Symposium on Cavitation [C/OL]. USA,2001,resolver.caltech.edu/CAV2001:lecture.003.
    [149]Yalamanchili K. A Linearized Theory for Potential and Rotational SupercavitatingFlow Over a Wedge in a Two Dimensional Open Channel [M]. University ofMinnesota,1965,284.
    [150]Terentiev A G. Mathematical Modeling of Cavitating Flows [C]. In: CAV2003,5th International Symposium on Cavitation. Japan,2003.
    [151]Hoffmann K A. Computational Fluid Dynamics for Engineers [M]. Austin: APublication of Engineering Education System,1989.
    [152]Roache P J. Fundamentals of Computational Fluid Dynamics [M]. NM: HrmosaPublishers,1998.
    [153]Wilcox D C. Turbulence Modeling for CFD (Third Edition)[M]. Dcw Industries,Inc.,2006.
    [154]Kirschner I, Chamberlin R, Arzoumanian S. A Simple Approach to EstimatingThree-Dimensional Supercavitating Flow Fields [C]. Proceeding of the7thInternational Symposium on Cavitation CAV2009, Ann Arbor, the USA,2009.
    [155]Young Y L, Kinnas S A. Numerical Modeling of Supercavitating Propeller Flows[J]. J Sh Res,2003,47:48-62.
    [156]Young Y L, Kinnas S A. Analysis of Supercavitating and Surface-PiercingPropeller Flows via BEM [J]. ComputMech,2003,32:269-280.
    [157]Young Y L, Kinnas S A. Fluid and Structural Modeling of Cavitating PropellerFlows.5th International Symposium on Cavitation (CAV2003)[C], Osaka, theJapan,2003.
    [158]Pereira F, Salvatore F, Felice F D. Measurement and Modeling of PropellerCavitation in Uniform Inflow [J]. J Fluids Eng,2004,126:671-680.
    [159]White E R, Miller. T F. A Serendipitous Application of Supercavitation Theory tothe Water-Running Basilisk Lizard [J]. J Fluids Eng,2010,132:113-145.
    [160]Kunz R F, Lindau J W, Billet M L, et al. Multiphase CFD Modeling of Developedand Supercavitating Flows [J]. Fluid Mech,2001:155-171.
    [161]Motley M R, Liu Z, Young Y L. Utilizing Fluid-Structure Interactions to ImproveEnergy Efficiency of Composite Marine Propellers in Spatially Varying Wake [J].Compos Struct,2009,90:304-313.
    [162]Pereira F, Salvatore F, Felice F D. Recent Developments on Marine PropellerCavitation Investigations at INSEAN [J]. Jahrbuch derSchiffbautechnischenGesellschaft,2003,97:25-34.
    [163]D’Epagnier K P. AUV Propellers: Optimal Design and Improving ExistingPropellers for Greater Efficiency [C]. OCEANS2006, Boston, the USA,2006.
    [164]Cameron P J K, Rogers P H, Doane J W, et al. An Experiment for the Study ofFree-Flying Supercavitating Projectiles [J]. J Fluids Eng,2011,133.
    [165]Chen Y, Chuanjing L, Chen X. Quadratic and Cubic Eddy-Viscosity Models inTurbulent Supercavitating Flow Computation [J]. TheorApplMechLett1,2011,032006(5pages).
    [166]Shi H, Itoh M. High-speed Photography of Supercavitation and MultiphaseFlows in Water Entry [C]. CAV2009,7th International Symposium on Cavitation,2009, Ann Arbor, the USA. hdl.handle.net/2027.42/84316.
    [167]Franc J-P, Michel J-M. Fundamentals of Cavitation. Fluid Mechanics and itsApplication [M]. Kluwer Academic Publishers,2005:190-293.
    [168]Knepp R, Daily J, Hemmit F. Cavitation [M]. Moscow: Mir,1974.678.
    [169]Egorov I T. Artificial Cavitation [M]. Joint Publications Research Service,1971.335-362.
    [170]Shah Y T. Cavitation Reaction Engineering. In: Shah Y T, Pandit A B, Moholkar VS. Plenum chemical engineering [M], New York, the USA,1999:203-349.
    [171]Oledal M, Cavitation in Complex Separated Flows [D]. Dissertation for theDoctoral Degree. Norwegian University of Science and Technology,2002:97-33.
    [172]Brennen C E. Fluid Dynamics of Cavitation and Cavitating Turbopumps [C].CISM Courses and Lectures,2007:23-496.
    [173]Brujan E-A. Cavitation in Non-Newtonian Fluids: With Biomedical andBioengineering Applications [M]. University Politechnica of Bucharest,Department of Hydraulics: Springer,2011:221-265.
    [174]Stinebring D R, Billet M L, Lindau J W, et al. Developed Cavitation–CavityDynamics [J]. Appl Res Lab,2001:11-18.
    [175]Biskoup B A, Russetsky A, Sadovnikov Y M. Survey of the Krylov InstituteResearch Works in the Area of Shipbuilding Problems Concerning PropulsorCavitation [C]. PROPCAV '95, Intl Conf on Propeller Cavitation Research,Newcastle upon Tyne, the UK,1995:103-112.
    [176]Takahashi H, Kadoi H. Comparison of Cavitation Phenomena Between the Actualand Model Propellers, and Erosion Survey on the Actual Propeller [C].Proceedings of the14th International Towing Tank Conference, Ottawa, theCanada, September,1975.
    [177]Michel J-M. Introduction to Cavitation, Supercavitation [C]. RTO AVT/VKIspecial course: supercavitating fows, von Karman Institute for Fluid Dynamics,RhodeSaintGenèse. Belgium,2001.
    [178]Tulin M P. Supercavitation: An Overview [R]. RTO AVT/VKI Special Course onSupercavitating Flows, von Karman Institute for Fluid Dynamics, Rhode SaintGenèse. Belgium,2001.
    [179]Fridman G M, Achkinadze A S. Review of Theoretical Approaches to NonlinearSupercavitating Flows [M]. Saint Petersburg State Marine Technical University,2001(in Russian).
    [180]Achkinadze A S, Supercavitating Propellers [R]. Defense Technical InformationCenter Compilation Part Notice ADP012090.2001:1-23.
    [181]Streeter V L. Handbook of Fluid Dynamics [M]. London: McGraw-Hill,1961:60-321.
    [182]Zhang X B, Qiu L M, Gao Y, et al. Computational Fluid Dynamic Study onCavitation in Liquid Nitrogen [J]. Cryogenics,2008,48:432-438.
    [183]Grazia D G M, Daniela B, Antonio F. Analysis of Thermal Effects in a CavitatingOrifice Using Rayleigh Equation and Experiments [J]. J Eng Gas Turbines Power,2010,132.
    [184]Hosangadi A, Ahuja V. Numerical Study of Cavitation in Cryogenic Fluids [J]. JFluids Eng,2004,127:267-281.
    [185]James L C. Liquid Propulsion: Propellant Feed System Design [M]. John Wiley&Sons,2010.
    [186]Zhmakin A I. Fundamentals of Cryobiology: Physical Phenomena andMathematical Models [M]. Springer,2009:244-277.
    [187]Zarchan P. Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, andDesign [J]. Progress Astronaut Aeronaut,2004;544-625.
    [188]Yoshiki Y, Kengo K, Satoshi H. Thermodynamic Effect on a Cavitating Inducer inLiquid Nitrogen [J]. J. Fluids Eng,2007,129:273-278.
    [189]Naoki T, Toshio N. Cryogenic Cavitating Flow in2D Laval Nozzle [J]. JThermSci,2003,12:157-161.
    [190]Tokumasu T, Sekino Y, Kamijo K. The Numerical Analysis of the Effect of FlowProperties on the Thermodynamic Effect of Cavitation [J]. JpnSoc AeronauticalSpSci,2004,47:146-152.
    [191]Baidakov V G. Explosive Boiling of Superheated Cryogenic Liquid [M].WILEY-VCH Verlag GmbH&Co. KGaA,2007:334-337.
    [192]Yoshiki Y, S. Yoshifumi, W. Mitsuo. Thermodynamic Effect on RotatingCavitation in an Inducer [J]. J Fluids Eng,2009,131.
    [193]Pearsall I S. Supercavitating Pumps for Cryogenic Liquids [J]. Cryogenics,1972,12:422-426.
    [194]Kuklinski R, Castano J, Henoch C. Experimental Study of Ventilated Cavities onDynamic Test Model [C]. In: CAV2001: Fourth International Symposium onCavitation. USA,2001.
    [195]Kawakami E, Arndt R E A. Investigation of the Behavior of VentilatedSupercavities [J]. J Fluids Eng,2011:133.
    [196]Ji B, Luo X-W, Peng X-X, et al. Numerical Investigation of the VentilatedCavitating Flow Around an Under-Water Vehicle Based on a Three-ComponentCavitation Model [J]. J HydrodynSer B,2010,22:753-759.
    [197]Amromin E, Karafiath G, Metcalf B. Ship Drag Reduction by Air BottomVentilated Cavitation in Calm Water and in Waves [J]. J Sh Res,2011,55:196-207.
    [198]Matveev K I, Miller M J. Air Cavity with Variable Length Undera Model Hull [J].J EngMarit Environ,2011,225:161-169.
    [199]Arndt R E A, Balas G J, Wosnik M. Control of Cavitating Flows: a Perspective [J].JSME Int J,2005,48:334-341.
    [200]Vanek B, Bokor J, Balas G J, et al. Longitudinal Motion Control of a High-SpeedSupercavitation Vehicle [J]. J Vib Control,2007,13:159-184.
    [201]Ruzzene V, Kamada R, Bottasso C L, et al. Trajectory Optimization Strategies forSupercavitating Underwater Vehicles [J]. J Vib Control,2008,14:611-644.
    [202]Califano A, Steen S. Identification of Ventilation Regimes of a Marine Propellerby Means of Dynamic-Loads Analysis [J]. Ocean Eng.,2011,38:1600–1610.
    [203]Califano A, Steen S. Numerical Simulations of a Fully Submerged PropellerSubject to Ventilation [J]. Ocean Eng,2011,38:1582–1599.
    [204]Kinnas S A, Young Y L. Modeling of Cavitating or Ventilated Flows Using BEM[J]. Int J Numerical Methods Heat Fluid Flow,2003,13:672-697.
    [205]Xiang M, Lin M D, Zhang W H, et al. On the Numerical Study of VentilatedCavitating Flow Based on Two-Fluid Model [J]. Transactions Beijing Inst.Technol.2011,31:768-771.
    [206]Guzevsky V A. Research of Supercavitating Flows [R]. Krasnoyarsk PolytechnicInstitute,1988(in Russian).
    [207]Farhat M, Chakravarty A, Field J E. Luminescence from HydrodynamicCavitation [J]. Proc R Soc A,2011,467:591-606.
    [208]Wang G, Senocak I, Shyy W, et al. Dynamics of Attached Turbulent Cavitatingflows [J]. ProgAerospSci,2001,37:551-581.
    [209]Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics,the Finite Volume Method [M]. Longman,1995.
    [210]Shaw C T. Using Computational Fluid Dynamics [M]. Prentice Hall,1992.
    [211]Patankar S V. Numerical Heat Transfer and Fluid Flow [M]. Taylor&Francis,1980.
    [212]Massey B. Mechanics of Fluids [M]. Spon Press,1998.
    [213]White F M. Viscous Fluid Flow [M]. McGraw Hill,2005.
    [214]Green D W, Perry R H. Perry's Chemical Engineer's Handbook (8th Edition)[M].McGraw Hill,2008.
    [215]Van Dyke M. An Album of Fluid Motion [M]. The Parabolic Press,1982.
    [216]Redlich O, Kwong J N S. On the Thermodynamics of Solutions. An Equation ofState. Fugacities of Gaseous Solutions [J]. Chem Rev,1949,44:225-233.
    [217]Aungier R H. A fast, Accurate Real Gas Equation of State for Fluid DynamicAnalysis Applications [J]. J Fluids Eng,1995,117:277-281.
    [218]Peng D Y, RobinsonD B. A New Two-Constant Equation of State [M].IndEngChemFundam,1976,15:59-64.
    [219]Grigull U, Schmidt E. Properties of Water and Steam in SI-Units,4th Revised andUpdated Printing [M]. Springer,1981.
    [220]Wagner W. The IAPWS Industrial Formulation1997for the ThermodynamicProperties of Water and Steam [J]. ASME J Eng Gas Turbines Power,2000,122:150-182.
    [221]Wagner W. ASME Steam Tables and Properties of Water and Steam. Springer,1998.
    [222]Bakir F, Rey R, Gerber A G, et al. Numerical and Experimental Investigations ofthe Cavitating Behaviorof an Inducer [J]. Int J Rotating Machinery,2004,10:15-25.
    [223]Spalart P R, Shur M. On the Sensitization of Turbulence Models to Rotation andCurvature [J]. Aerospace SciTechnol,1997,1:297-302.
    [224]Smirnov P E, Menter F R. Sensitization of the SST Turbulence Model to Rotationand Curvature by Applying the Spalart-Shur Correction Term [C]. ASME PaperGT2008-50480, Berlin, the Germany,2008.
    [225]Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for EngineeringApplications [J]. AIAA-Journal,1994,32:1598-1605.
    [226]Launder B E, Spalding D B. The Numerical Computation of Turbulent Flow [J].Comp Math ApplMechEng,1974,3:269-289.
    [227]Grotjans H, Menter F R. Wall Functions for General Application CFD Code [C].In: Papailiou K D, ECCOMAS98Proceedings of the Fourth EuropeanComputational Fluid Dynamics Conference. John Wiley&Sons,1998.1112-1117.
    [228]Henkes R A W M, van der Flugt F F, Hoogendoorn C J. Natural Convection Flowin a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models[J]. Int J Heat Mass Transfer,1991,34:1543-1557.
    [229]Apsley D D, Leschziner M A. A New Low-Reynolds-Number NonlinearTwo-Equation Turbulence Model for Complex Flows [J]. Int J Heat Fluid Flow,1998,19:209-222.
    [230]Ng S L, Brennen C. Experiments on the Dynamic Behaviour of Cavitating Pumps [J]. J Fluids Eng,1978,100:166-175.
    [231]Rapposelli E, Cervone A, d’Agostino L. A New Cavitating Pump RotordynamicTest Facility [C].38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,2002.
    [232]Ehrlich D A. CAV2009, A Water Test Facility for Liquid Rocket EngineTurbopump Cavitation Testing [C]. Proceedings of the7th InternationalSymposium on Cavitation,2009.
    [233]Martignoni WP, Bernardo S,Quintani CL. Evaluation of Cyclone Geometry and itsInfluence on Performance Parameters by CFD [J], Brazil J ChemEng,2006,24:83-94.
    [234]Zhao B T. Prediction of Gas-Particle Separation Efficiency for Cyclones: ATime-of-flight Model [J]. Sep Pur Tech,2012,85:171-177.
    [235]Qian F P, Wu Y P. Effects of the inlet Section Angle on the SeparationPerformance of a Cyclone [J]. ChemEng Res Des,2009,87:1567-1572.
    [236]Chu K W, Wang B, Yu A B. Computational Study of the Multiphase Flow in aDense Medium Cyclone: Effect of Particle Density [J]. ChemEngSci,2012,73:123-140.
    [237]Ye J-M, Xiong Y, Li F, et al. Experimental Study of Effects of Air Content onCavitation and Pressure Fluctuations [J]. J HydrodynSer B,2010,22:634-638.
    [238]Morch K A. Cavitation Nuclei: Experiments and Theory [J]. J HydrodynSer B,2009,21:176-189.
    [239]Park K, Seol H, Choi W, et al. Numerical Prediction of Tip Vortex CavitationBehaviour and Noise Considering Nuclei Size and Distribution [J]. ApplAcoust,2009,70:674-680.
    [240]Riley G A. Particulate Organic Matter in Sea Water [J]. Adv Mar Biol,1971,8:1-118.
    [241]Spiridonov A A, Vasiliev N G. Planing an Experiment [M]. Sverdlovsk,1975:54-112(in Russian).
    [242]Vega F A, Covelo E F, Andrade M L. Impact of Industrial and Urban Waste on theHeavy Metal Content of Salt Marsh Soils in the Southwest of the Province ofPontevedra (Galicia, Spain)[J]. J GeochemExplor.2007,96:148-160.
    [243]Pastor J, Hernandez A J. Heavy Metals, Salts and Organic Residues in old SolidUrban Waste Landfills and Surface Waters in their discharge Areas: Determinantsfor Restoring their Impact [J]. J Environ Manage.2012,95: S42-S49.
    [244]Gerhart V J, Kane R, Glenn E P. Recycling Industrial Saline Wastewater forLandscape Irrigation in a Desert Urban Area [J]. J Arid Environ,2006,67:473-486.
    [245]Beier N, Sego D, Donhue R, et al. Laboratory Investigation on Freeze Separationof Saline Mine Waste Water [J]. Cold RegSciTechnol,1997,36:397-405.
    [246]Glenn E P, Mckeon C, Gerhart V, et al. Deficit Irrigation of A LandscapeHalophyte for Reuse of Saline Waste Water in a Desert City [J]. Landscape UrbanPlann,2009,89:57-64.
    [247]Oliveros E, Legrini O, Hohl M, et al. Industrial Waste Water Treatment: LargeScale Development of a Light-Enhanced Fenton Reaction [J]. ChemEng Process,1997,36:397-405.
    [248]Gilli M, Maringer D, Schumann E. Numerical Methods and Optimization inFinance [M/OL]. Chapter Six–Generating Random Numbers,2011:119-158.
    [249]Harper J F. Precise Calculation of the Cumulative Distribution Function and itsInverse Function for Fisher's F and Student's t Tests [J]. Comput Meth ProgramBiomed,1985,21:127-129.
    [250]Nalimov V V, Chernova N A. Statistical Methods for Planning ExtremalExperiments [M]. Moscow,“Nauka”,1965(in Russian).
    [251]Lapin V A. Experimental Research of Developed Cavitation Flows: Abstract of aThesis, Candidate of Technical Science [J]. Kaliningrad,1975:1-27.
    [252]Mohaghegh A. Effects of Hydraulic and Geometric Parameters on DownstreamCavity Length of Discharge Tunnel Service Gate [J]. J HydrodynSer B,2009,21:774-778.
    [253]Shafaghat R, Hosseinalipour S M, Lashgari I, et al. Shape Optimization ofAxisymmetric Cavitators in Supercavitating Flows, Using the NSGA II Algorithm[J]. Appl Ocean Res,2011,33(3):193–198.
    [254]Fard M B, Nikseresht A H. Numerical Simulation of Unsteady3D CavitatingFlows Over Axisymmetric Cavitators [J]. ScientiaIranica,2012,19(5):1258–1264.
    [255]Holl J W, Billet M L, Weir D S. Thermodynamic Effects on Developed Cavitation[J]. J Fluids Eng,1975,97(4):226-234.
    [256]Billet M L, Holl J W, Weir D S. Correlations of Thermodynamic Effects forDeveloped Cavitation [J]. J Fluids Eng,1981,103(12):119-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700