用户名: 密码: 验证码:
基于浮游生物群落的变化建立水环境生态学基准值
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对环境管理的不断深化,我国水污染控制由浓度控制和目标总量控制向着容量总量控制的方向转变,由化学污染控制向水生态环境管理的方向转变。在该过程中,水生态学标准的科学性、可行性、合理性和可操作性成为了水生态环境管理能否成功实施的关键要素之一。生态学基准不仅是制定其标准的理论基础,还能为生态环境保护的管理决策提供数据支撑,找出其它水质基准评价分析可能忽视的潜在问题。因此尽快开展我国水环境生态学基准理论方法的研究是提高我国环境标准体系的科技水平、促进我国环境管理战略目标的实现和提升我国环境科技国际声誉的重要需求。
     本文参考美国环境保护局的生物学基准和营养物基准计算方法,基于浮游生物群落的变化,建立河流与湖泊两种流域类型的生态学基准技术体系。并采用了本课题组前期实验数据、太湖和辽河流域的3次野外调研数据(2009年和2010年)以及历史资料,以浮游生物群落(组成、生物密度和多样性指数)、营养物(总氮和氨氮)、叶绿素a、重金属(Cr、Cd、Cu、Pb和Zn)、溶解氧为基准指标,采用双值基准法、综合指数法和频数分布法三种方法来研究两种流域类型(湖泊与河流)在生态学基准值计算过程和结果中的差异,用实例验证该技术框架的可行性。
     本文主要研究结论如下:
     一、通过双值基准法、综合指数法和频数分布法均可以计算出生态学基准值。但是双值基准法与综合指数法和频数分布法相比较,只能计算出有毒性效应的污染物的生态学基准值,不适宜作为计算生态学基准值的方法。
     二、流域生态学基准的技术框架主要包括5个部分:流域水环境生态学基准指标变量的调查;流域生态环境参照状态的选择方法与技术;基于浮游生物生态完整性基准主要指标与应用;生态学基准值的推导方法;RTAG专家验证。框架的核心内容是生态学基准值的推导方法。通过太湖与辽河的实际案例研究,验证了流域生态学基准的技术框架的可行性。
     三、野外采样数据表明,太湖的四个湖区中,梅梁湾的浮游生物物种数量最多,生物密度的波动也是最大的,水质也最差,而湖东滨岸区的水质较好。在辽河流域内,浮游生物物种数量和生物密度在空间分布格局上,从上游到下游呈现先增加后减少的趋势。其中浑河水质最好,大辽河的水质最差。
     四、采用综合指数法计算出生态学基准值如下:太湖流域夏、冬季的生态完整性指数基准值分别为94.7和86.7,辽河流域夏、冬季的生态完整性指数基准值分别为100和96.4,太湖叶绿素a的生态学基准值为4.90μg/L,太湖流域的总氮和氨氮的生态学基准值分别为2.21和1.43mg/L,太湖表层水的溶解氧生态学基准值为10.09mg/L,太湖浮游植物多样性指数H的生态学基准值为2.72,太湖浮游动物多样性指数H的生态学基准值为3.44,太湖浮游植物多样性指数D的生态学基准值为2.21,辽河浮游植物多样性指数D的生态学基准值为2.03。
     五、采用频数分布法计算出生态学基准值如下:太湖浮游动物D的生态学基准值为7.70,辽河浮游动物D的生态学基准值为7.02,太湖浮游动物H的生态学基准值为3.86,辽河浮游动物H的生态学基准值为3.41,太湖浮游植物D的生态学基准值为2.03,辽河浮游植物D的生态学基准值为2.08,太湖浮游植物H的生态学基准值为2.77,辽河浮游植物H的生态学基准值为3.65,太湖流域氨氮的生态基准值为1.50mg/L,辽河流域的氨氮的生态学基准值为1.03mg/L,太湖总氮的生态基准值为1.83mg/L,太湖流域叶绿素a的生态学基准值为5.87μg/L,太湖流域溶解氧的生态学基准值为10.09mg/L,辽河流域溶解氧的生态学基准值为8.40mg/L。
     六、将综合指数法和频数分布所计算出来的生态学基准值与国内外基准标准进行分析比较,大部分基准指标的生态学基准值都是合理的。由于稀有物种的影响,太湖和辽河浮游植物D的生态学基准值偏小;由于采样数据主要来源于太湖和辽河的表层,所以两个流域的溶解氧生态学基准值均偏大。
With the improvement of environmental management in China, the target ofwater pollution control from concentration control and goal amount control tocapacity amount control, and from chemical pollution control to water ecologicalenvironmental management. In the process, the key factors to decide water ecologicalenvironmental management failures or success are scientific, rational, advisable andfeasibility of water ecological benchmarks and standards. Ecological criteria are notonly the theoretical basis for developing its standards, but also can provide data tosupport management decisions and identify potential problems. Therefore, ecologicalcriteria theoretical and methods research should be developed as soon as possible. Itcan improve the scientific and technological level of environmental standards system,promote the realization of the strategic objectives of environmental management andenhance the international reputation of environmental technology.
     This article based on the calculation of biological criteria and nutrient criteria byUnited States Environmental Protection Agency. Two ecological criteria technologysystem (rivers and lakes) were establish based on the changes of the planktoncommunity. And the calculation data came from experimental data, investigation datain Taihu and Liaohe River (2009and2010), and historical data. The main ecologicalindex are plankton community (composition, biological density and diversity index),nutrients (total nitrogen and ammonia), chlorophyll a, heavy metals (Cr, Cd, Cu, Pband Zn), dissolved oxygen. There were three methods to calculate ecological criteria:dual-value standards, multimeric indexes and frequency distribution. To study thedifferences on calculation process and results in two watershed type (lakes and rivers),and test the feasibility of technology framework by examples.
     The main conclusions of this article are as follows:
     ①The ecological criteria can be calculated by dual-value standards, multimericindexes and frequency distribution. Compared with multimeric indexes and frequencydistribution, dual-value standards can be used when the pollutants have toxic effects to the target. So the dual-value standards are not suitable as a method of calculatingthe ecological criteria.
     ②The watershed ecological criteria technology framework mainly includes fiveparts: the investigation of watershed environmental of ecological criteria indicator,the selection method and technology of reference sites; ecological integrity indicatorsand application based on plankton; the calculation of ecological criteria; verificationby RTAG. The core of framework is ecological criteria calculation. The feasibility ofthe watershed ecological criteria technology framework is tested through the study inTaihu and Liaohe case.
     ③The sampling data show that the number of plankton species, the largestbiological density fluctuation and worst water quality of Taihu’s four districts isMeiliang Bay. The best the water quality of Taihu’s four districts is east shore area.The number of plankton species and biological density in the space distribution ofLiaohe were first increase and then decrease from upstream to downstream. The bestwater quality is Hun River, and the worst water quality is Da Liaohe.
     ④The results of ecological criteria calculated by multimeric indexes are asfollows: the value of IEI ecocriteria of Taihu were94.7(summer) and86.7(winter);the value of IEI ecocriteria of Liaohe were100(summer) and96.4(winter); the valueof Chl a ecocriteria of Taihu were4.90μg/L; the value of TN ecocriteria of Taihu were2.21mg/L; the value of ammonia nitrogen ecocriteria of Taihu were1.43mg/L; thevalue of DO ecocriteria of Taihu were10.09mg/L; the value of phytoplankton H ofTaihu were2.72; the value of phytoplankton H of Taihu were2.72; the value ofzooplankton D of Taihu were2.21; the value of phytoplankton D of Taihu were2.03.
     ⑤The results of ecological criteria calculated by frequency distribution are asfollows: the value of zooplankton D ecocriteria were7.70(Taihu) and7.02(Liaohe);the value of zooplankton H ecocriteria were3.86(Taihu) and3.41(Liaohe); the valueof phytoplankton D ecocriteria were2.03(Taihu) and2.08(Liaohe); the value ofphytoplankton H ecocriteria were2.77(Taihu) and3.65(Liaohe); the value of Chl aecocriteria of Taihu were5.87μg/L; the value of TN ecocriteria of Taihu were1.83mg/L; the value of ammonia nitrogen ecocriteria were1.50mg/L (Taihu) and1.03 mg/L (Liaohe); the value of DO ecocriteria were10.09mg/L (Taihu and Liaohe).
     ⑥Compared the ecological criteria with the domestic and internationalbenchmark standard which is calculated by frequency distribution and multimericindexes, most of the ecological criteria are reasonable. Due to the impact of rarespecies, the values of phytoplankton D ecocriteria were small. And the values of DOecocriteria were large because of sampling data mainly derived from the surface ofTaihu and Liaohe.
引文
[1] US EPA(United States Environmental Protection Agency). Ambient water quality criteria(series). Washington DC:US EPA,1980
    [2] USEPA(United States Environmental Protection Agency). Methodology for DerivingAmbient USEPA(United States Environmental Protection Agency). Water QualityCriteriafor the Protection of Human Health, EPA-HQ-OW-2002-0054,2000
    [3] USEPA(United States Environmental Protection Agency). GUIDELINES FOR DERIVINGNUMERICAL NATIONAL WATER QUALITY CRITERIA FOR THE PROTECTIONOF AQUATIC ORGANISMS AND THEIR USES. PB85-227049,1985
    [4] USEPA(United States Environmental Protection Agency). TECHNICAL BASIS FORDERIVING SEDIMENT QUALITY CRITERIA FOR NONIONIC ORGANICCONTAMINANTS FOR THE PROTECTION OF BENTHIC ORGANISMS BY USINGEQUILIBRIUM PARTITIONING. EPA-HQ-RCRA-2001-0022,2001
    [5] USEPA(United States Environmental Protection Agency). Estuarine and Coastal MarineWaters:Bioassessment and Biocriteria Technical Guidance. EPA-822-B-00-024,2000
    [6] US Department of the Interior. Report of the subcommittee or water quality criteria.Washington DC:US Department of the Interior,1968
    [7] NAS. NAE.Water quality criteria. Washington DC:National Academy Press,1972
    [8] US EPA. Quality criteria for water. Washington DC:US EPA,1976
    [9] US EPA. Quality criteria for water. Washington DC:US EPA,1986
    [10] US EPA. Guidelines for deriving numerical national water quality criteria for the protectionof aquatic organisms and their uses (PB85-227049). Washington DC:US EPA,1985
    [11] CCME. A Protocol for the Derivation of Water Quality Guidelines for the Protection ofAquatic Life. Canadian Environmental Quality Guidelines. Ottawa, Canada:CanadianCouncil of Ministers of the Environment,1999
    [12] RIVM. Guidance Document on Deriving Environmental Risk Limits in the Netherlands.Report No.601501012. Bilthoven, The Netherlands:National Institute of Public Health andthe Environment.2001
    [13] ANZECC&ARMCANZ. Australian and New Zealand Guidelines for Fresh and MarineWater Quality. Canberra, Australia:Australian and New Zealand Environment andConservation Council and Agriculture and Resource Management Council of Australia andNew Zealand.2000
    [14] OECD. Guidance Document for Aquatic Effect Assessment. Paris, French:Organization forEconomic Cooperation and Development.1995
    [15] PNEC. Technical guidance document on risk assessment, TGD. European Union. EU:European Commission Joint Reserarch Centre.2003
    [16]张彤,金洪钧.美国对水生态基准的研究.上海环境科学,1996,15(3):7-9
    [17]程惠民,金洪钧,杨璇.推导保护水生环境质量标准的方法研究.上海环境科学,1998,17(4):10-13
    [18]张彤,金洪钧.丙烯腈水生态基准研究.环境科学学报,1997,17(1):75-81
    [19]吴丰昌,孟伟,曹宇静等.镉的淡水水生生物水质基准研究.环境科学研究,2011,(02):172-184
    [20]闫振广,孟伟,刘征涛等.我国典型流域镉水质基准研究.环境科学研究,2010,(10):1221-1228
    [21] USEPA. Great Lakes Water Quality Initiative Technical Support Document for WildlifeCriteria. Washington D C:Office of Water,1995
    [22] USEPA. The Incidence and Severity of Sediment Contamination in Surface Waters of TheUnited States. EPA-823-R-01-01. Washington D C:Office of Water,2001
    [23]孟伟,张远,郑丙辉等.生态系统健康理论在流域水环境管理中应用研究的意义、难点和关键技术——代“流域水环境管理战略研究”专栏序言.环境科学学报,2007,(06):906-910
    [24]孟伟.中国流域水环境污染综合防治战略.中国环境科学,2007,(05):712-716
    [25]孟伟,吴丰昌.水质基准的理论与方法学导论.北京:科学出版社,2010
    [26]洪鸣.金属铅与三丁基锡化合物海水水质基准研究.导师:王菊英.大连海事大学,2008
    [27] Canadian Council of Ministers of the Environment. Protocol for Derivation of WaterQuality Guidelines for the Protection of Aquatic Life. Winnnipe, Manitoba:CanadianCouncil of Ministers of the Environment,1999
    [28] Natio W, Miyamoto, Nakanishi J et al. Evaluation of an Ecosystem Model in EcologicalRisk Assessment of Chemical. Chemosphere,2003,53:363-375
    [29] USEPA(United States Environmental Protection Agency). Biological Monitoring andAssessment:Using Multimetric Indexes Effectively, EPA-235-R97-001,1997
    [30]胡鸿钧,魏印心.中国淡水藻类-系统、分类及生态.北京:科学出版社,2006
    [31]周凤霞,陈剑虹.淡水微型生物图谱.北京:化学工业出版社,2008
    [32]韩茂森,淡水浮游生物图谱.北京:农业出版社,1983
    [33]国家环保局《水生生物监测手册》编委会.水生生物监测手册.南京:东南大学出版社,1993
    [34]张觉民,何志辉.内陆水域渔业自然资源调查手册.北京:农业出版社,1991
    [35]王家楫.中国淡水轮虫志.北京:科学出版社,1961,1-288
    [36]蒋燮治,堵南山.中国动物志(淡水枝角类).北京:科学出版社,1979
    [37]中国科学院动物研究所甲壳动物研究组.中国动物志(淡水桡足类).北京:科学出版社,1979
    [38]周凤霞,陈剑虹.淡水微型生物图谱.北京:化学工业出版社,2005
    [39]陈清朝,黄良民,尹建强等.南沙群岛海域的浮游植物多样性研究.中国科学院南沙综合科学考察队,南沙群岛及其临近海区海洋生物多样性研究Ⅰ.北京:海洋出版社,1994
    [40]沈韫芬,章宗涉,龚循矩等.微型生物监测技术.北京:中国建筑工业出版社,1990
    [41]杨桂军,潘洪凯,刘正文等.太湖不同营养水平湖区轮虫季节变化的比较.湖泊科学,2007,19(6):652-657
    [42] Porter K G, Gerritsen G, Orcutt J D. The effect of food concentration on swimming behavior,ingestion, assimilation and respiration by Daphnia. Limnol oceanogr,1982,27:935-949
    [43] Anderson D H, Benke A C. Growth and reproduction of the cladeceran Ceriodaphnia dubiafrom a forested floodplain swamp. Limnol Ocean ogr,1994,39(7):1517-1527
    [44]杨桂军.太湖三个湖区浮游动物群落结构周年变化比较.华中农业大学,2005
    [45]陈伟民,秦伯强.太湖梅梁湾冬末春初浮游动物时空变化及其环境意义.湖泊科学,1998,1(4):10-16
    [46]杨桂军,潘洪凯,刘正文等.太湖不同营养水平湖区轮虫季节变化的比较.湖泊科学,2007,19(6):652-657
    [47]王荐.太湖浮游植物与富营养化.无锡教育学院学报.2000,20(3):90-92.
    [48]谭啸,孔繁翔,曾庆飞等.太湖微囊藻群落的季节变化.生态与农村环境科学.2009,25(1):47-52.
    [49] Scheffer M. Ecology of shallow lakes. Dordrecht Boston London:Kluwer AcademicPublishers,1998.
    [50] Dokulil M, Teubner K. Cyanobacterial dominance in lakes. Hydrobiolgoia,2000,438:1-12.
    [51] Jensen J P, Jeppesenk, Olrik P et al. Impact of mumbers and physical factors on the shiftCyanobacteria to Chlorophytea in shallow Dunish lakes. Canadian Journal of Fisheries andaquatic Sciences.1994,51:1692-1699
    [52]商兆堂,任健,秦铭荣等.气候变化与太湖蓝藻爆发的关系.生态学杂志,2010,29(1):55-61
    [53]谢进金,许友勤,陈寅山等.晋江流域水质污染与浮游动物四季群落结构的关系.动物学杂志,2005,40(5):8-13.
    [54]张红龄,孙丽娜,罗庆等.浑河流域水体污染的季节性变化及来源.生态学杂志,2011,30(1):119-125.
    [55]王雅梅,孙晓怡,张翊峰等.浑河源区水生生物与水质评价.中国环境监测,2001,17(3):56-59
    [56]赵娜,朱琳,冯鸣凤.不同pH条件下Cr~(6+)对3种藻的毒性效应.生态毒理学报,2010,(05):657-665
    [57]赵娜,冯鸣凤,朱琳.不同pH值条件下Cr~(6+)对小球藻和斜生栅藻的毒性效应.东南大学学报(医学版),2010,(04):382-386
    [58]况琪军,夏宜琤,惠阳.重金属对藻类的致毒效应.水生生物学报,1996,20(3):277~283
    [59] Rai L C, Gaur J P, Kumar H D. Phycology and heavy-metal pollution. Biol Rev.Cambridge Philos. Soc.,1981,56:99~151
    [60]邱昌恩.六种常见重金属对藻类的毒性效应概述.重庆医科大学学报,2006,31(5):776~778
    [61]陈家长,孟顺龙,尤洋等.太湖五里湖浮游植物群落结构特征分析.生态环境学报,2009,18(04):1358-1367
    [62]王金辉,徐韧,秦玉涛等.长江口基础生物资源现状及年际变化趋势分析.中国海洋大学学报(自然科学版),2006,23(1):821-828
    [63]李祚泳,张辉军.我国若干湖泊水库的营养状态指数TSIc及其与各参数的关系.环境科学学报,1993,13(4):391-397
    [64]李云.不同时间尺度长江口及毗邻海域浮游生物群落变化过程的初步研究.上海:华东师范大学,2008
    [65]陈亚瞿,徐兆礼,李志诚等.杭州湾北岸上海石化总厂附近海域浮游动物生态的初步研究.海洋环境科学,1992(01):9-13
    [66]李雅琴,程兆第.金德祥厦门港浮游硅藻生态的研究.厦门大学学报:自然科学版,1990(3):358-360
    [67] Office of Science and Technology Office of Water. Biological monitoring and assessment:using Multimetric Indexes Effectively. Washington, D.C:United States EnvironmentalProtection Agency,1997
    [68]苏丹,王彤,刘兰岚等.辽河流域工业废水污染物排放的时空变化规律研究.生态环境学报,2010,19(12):2953-2959
    [69]乌爱军,杨晓波,马力等.辽河流域人发中重金属元素分布特征.岩矿测试,2007,26(4):305-308
    [70] Office of Science and Technology Office of Water. Estuarine and Coastal Marine Waters:Bioassessment and Biocriteria Technical Guidance. Washington, D.C:United StatesEnvironmental Protection Agency,2000
    [71] SUSAN P, DAVIES, SUSAN K. JACKSON. The biological condition gradient:adescriptive model for terpretingchange in aquatic ecosystems. Ecological Applications,2006,16(4):1251-1266
    [72] THEODORE J S, DAVID G B. Nutrient and plankton dynamics in Narragansett Bay.Germany:Springer Series on Environmental Management,2008:431-484
    [73]孟顺龙,陈家长,胡庚东等.2008年太湖梅梁湾浮游植物群落周年变化.湖泊科学,2010,22(4):577-584
    [74] Atsushi Yamaguchi, Yuji Watanabe, Hiroshi Ishida, et al. Latitudinal Differences in thePlanktonic Biomass and Community Structure Down to the Greater Depths in theWestern North Pacific. Journal of Oceanography,2004,60(4):773-787
    [75] EGGEN R I, BEHRA R, BURKHARDT-HOLM P, et al. Chanllenges in ecotoxicology.Environ Sci Technol,2004,38(3):58A-64A
    [76]段梦,朱琳,冯剑丰等.基于浮游生物群落变化的生态学基准值计算方法初探.环境科学研究,2012,(02):125-132
    [77] Richard A. Batiuk, Denise L. Breitburg, Robert J. Diaz. Derivation of habitat-specificdissolved oxygen criteria for Chesapeake Bay and its tidal tributaries. Journal ofExperimental Marine Biology and Ecology,2009(381):S204–S215
    [78] VAN STRAALEN, N. M., DENNEMAN, C. A. J. Ecotoxicological evaluation of soilquality criteria. Ecotoxicol. Environ. Saf,1989,(18):241-251
    [79] ECB.2003. Technical Guidance Document on Risk Assessment in Support of CommissionDirective93/97/EEC on Risk Assessment for New Notified Substances, CommissionRegulation (EC)No.1488/94on Risk Assessment for Existing Substances and Directive98/8/EC of the European Parliament and of the Council Concerning the Placing of BiocidalProducts on the Market. Part II. Environmental Risk Assessment[R]. Ispra, Italy:European Chemicals Bureau, European Commission Joint Research Center, EuropeanCommunities
    [80] USEPA(United States Environmental Protection Agency). Nutrient Criteria TechnicalGuidance Manual Rivers and Streams. Water Quality Criteriafor the Protection of HumanHealth, EPA-822-B-00-002,2000
    [81] USEPA(United States Environmental Protection Agency). Nutrient Criteria TechnicalGuidance Manual Lakes and Reservoirs. Water Quality Criteriafor the Protection of HumanHealth, EPA-822-B-00-001,2000
    [82]刘鸿亮.湖泊富营养化控制.北京:中国环境科学出版社,2011
    [83]况琪军,马沛明,胡征宇等.湖泊富营养化的藻类生物学评价与治理研究进展.安全与环境学报,2005,02:87-91
    [84]董玉波,王轲,王林同.氨氮对水生生物毒性的研究进展.天津水产,2011, Z1:6-11.
    [85]王轲,王林同,牛海凤等.低温下氨氮对淡水浮游藻生长及群落结构影响的生态模拟研究.环境科学学报,2012,03:731-738
    [86]黄慧坤.环境样品监测中总氮低于氨氮的原因.云南环境科学,2004, S1:219-220
    [87]邵芹,潘建明.环境监测水样总氮低于氨氮的问题.江西化工,2007,03:83-84
    [88]宋艳.齐齐哈尔嫩江段水中总氮与氨氮相关性分析.黑龙江水利科技,2012,07:22-23
    [89]郑孝艳.水中总氮、氨氮测定中出现的问题和解决办法.辽宁化工,2012,06:637-638
    [90]李文杰,王冰.地表水中氨氮和总氮的相关性分析.环境保护科学,2012,03:79-81
    [91]沙鸥,马卫兴,徐国想等.地表水中溶解氧监测及变化规律.环境监测管理与技术,2008,01:48-50
    [92]沈治蕊,卞小红,赵燕等.南京煦园太平湖富营养化及其防治.湖泊科学,1997,04:377-380
    [93] GAO X L, SONG J M. Phytoplankton distributions and their relationship with theenvironment in the Changjiang Estuary, China. Marine Pollution,2005,03(50):327-335
    [94]姚恩亲,张海燕,徐云等.2008秋季南太湖入湖口浮游植物及营养现状评价.环境科学与技术,2010, S1:418-422
    [95]曾庆飞,谷孝鸿,周露洪等.东太湖水质污染特征研究.中国环境科学,2011,08:1355-1360
    [96]毛新伟,陆铭锋,高琦等.三次样条插值方法在太湖水质评价中的应用.水资源保护,2011,04:58-61+78
    [97]陈润,钱磊,申金玉等.2007年水危机后太湖水质评价.水电能源科学,2012,02:32-34+72
    [98]李森,丁贤荣,潘进等.基于主成分分析的太湖水质时空分布特征研究.环境科技,2012,03:44-47
    [99]代影君,冯琳,闻绍珂,农业灌溉期辽河水质演变分析.水土保持应用技术,2011,01:42-44
    [100]姜雪,卢文喜,张蕾等.基于WASP模型的东辽河水质模拟研究.中国农村水利水电,2011,12:26-30
    [101] Karr, J.R, K.D. Fausch, P.L. Angermeier, et al. Assessing biological integrity in runningwaters:A method and its rationale. Special publication Illinois Natural History Survey,1986
    [102] Fore, L.S., J.R. Karr, R.W. Wisseman. Assessing invertebrate responses to humanactivities: Evaluating alternative approaches. Journal of the North AmericanBenthological Society,1996,15(2):212-231
    [103] Barbour, M.T., J. Gerritsen, G.E. Griffith, et al. A framework for biological criteria forFlorida streams using benthic macroinvertebrates. Journal of the North AmericanBenthological Society,1996,15(2):185-211
    [104] Ohio EPA. Ohio Water Resource Inventory. Volume I: Summary, Status and Trends.Ohio EPA, Columbus, Ohio,1992
    [105] DeShon, J.E.1995. Development and application of the invertebrate community index (ICI).Pages217-243in W.S. Davis and T.P. Simon (editors). Biological ssessment and criteria:Tools for water resource planning and decision making. Lewis Publishers, Boca Raton,Florida
    [106] Maxted, J.R., M.T. Barbour, J. Gerritsen, et al. In Press. Assessment framework formid-Atlantic coastal plain streams using benthic macroinvertebrates. Submitted to Journalof North American Benthological Society
    [107] Hughes, R.M., P.R. Kaufmann, A.T. Herlihy, et al. A process for developing and evaluatingindices of fish assemblage integrity. Canadian Journal of Fisheries and Aquatic Sciences,1998,55:1618-1631
    [108]孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略.环境科学研究,2006.03:1-6
    [109]孟伟,闫振广,刘征涛.美国水质基准技术分析与我国相关基准的构建.环境科学研究,2009,07:757-761
    [110] Marsh MC. The effect of some jndustrial wastes on fishes US Geological Survey. WaterSupply and Irrigation,1907,192:337—348
    [111] Shelford VE. An experimental study of the effects of gas wastes upon fishes, with especialreference to stream pollution. Bulletin of the Illinois State Laboratory of Natural history,1917,11:381—412
    [112] California State Water Pollution Control Board. Water quality criteria. Sacramento:Califomia State Water Pollution Control Board.1952.
    [113] Crump KS. A new method for determining allowable daily intakes. Fundame ntal andApplied Toxicology,1984,4:854—871
    [114] NAS(National Academy of Science and National Academy of Engineering). WaterQuality Criteria. Washington DC:US Government Printing0mce,1974
    [115]徐宗仁.水质评价标准.北京:中国建筑工业出版社,1981.
    [116]夏青,张旭辉.水质标准手册.北京:中国环境科学出版社,1990.
    [117]张彤,金洪钧.硫氰酸钠的水生态基准研究,应用生态学报,1997,8(1):99-103
    [118]张彤,金洪钧.乙腈的水生态基准.水生生物学报,1997,21(3):226—233
    [119] USEPA. Terms of Environment:Glossary. Abbreviations and Acronyms. Water QualityCriteria and Standards Plan:Priorities for Future. Wash. ington DC:Offce of Water,1998
    [120] USEPA. National Recommended Water Quality Criteria:Correction. Washington DC:Oficeof Water,1999
    [121] USEPA. Nutrient criteria development:Notice of ecoregional nutrient criteria. WashingtonDC:USEPA.2001
    [122]聂湘平,蓝崇钰,林里,等.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究.中山大学学报,2002,41(1):68-71
    [123]石瑛,杜青平,谢树莲.1,4-二氯苯对蛋白核小球藻的毒性效应.环境科学研究,2007,20(3):133-136
    [124]熊丽,吴振斌,况琪军,等.氯氰菊酯对斜生栅藻的毒性研究.水生生物学报,2002,26(1):66-73
    [125]袁春营,崔青曼,邵强.4种杀虫药物对斜生栅藻生长的影响.水产科学,2009,28(9):525-527
    [126]郑忠明,白培峰,陆开宏,等.铜绿微囊藻和四尾栅藻在不同温度下的生长特性及竞争参数计算.水生生物学报,2008,32(5):720-728
    [127]郑春艳,张庭廷.鞣花酸对铜绿微囊藻和斜生栅藻的生长抑制作用.安徽师范大学学报(自然科学版),2008,31(5):469-472

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700