用户名: 密码: 验证码:
加硼低合金高强度H型钢的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型钢是一种截面面积分配更加优化、强重比更加合理的经济断面高效型材,具有抗弯能力强、施工简单、节约成本和结构重量轻等优点,已被广泛应用于高层建筑、工业厂房、桥梁结构、船舶港口、石油钻井平台等方面,所以H型钢是我国提倡发展的型材品种之一。随着低温地带资源开发和高技术领域应用,用户对高强度、高韧性(特别是良好的低温韧性)H型钢的需求量越来越大。
     本课题研究的开展是鉴于在成分和工艺优化前,企业试制的原Q345E H型钢存在低温冲击韧性波动较大且-40℃冲击韧性不合要求的问题。为了找到一条适合当前生产条件的成分和工艺路线,本研究尝试从成分设计上寻求突破,首次将硼引入到低温用H型钢的开发中。经历原生产钢分析、实验室冶炼钢研究和实际生产线应用,成功开发出了具有自主知识产权的新型加硼Q345E大H型钢及其生产技术。生产出来的H型钢在热轧态即可满足-40℃低温应用的要求,为企业带来了丰厚的经济效益和社会效益,提升了我国高端H型钢的竞争力。
     在本研究中,综合利用了常温拉伸试验、系列温度冲击试验、热模拟试验、光学显微镜、体视显微镜、电子探针、扫描电镜、透射电镜等试验方法和检测手段,系统研究了不同条件下的试验钢的组织和性能。本研究的重点是硼对组织和性能的影响。在以往的研究中,硼主要用来提高钢的淬透性,而在本研究中通过添加微量的硼,来达到改善低温冲击韧性的目的。
     本文的研究步骤为:第一步,以企业当时试制的原Q345E H型钢为研究对象,对钢材的性能和组织进行了测试和分析,评估了其低温冲击性能,探讨影响其韧性的组织和冶金因素。第二步,提出加硼改善低温冲击韧性的思路,在实验室冶炼不同硼含量的试验钢,研究微量硼对试验钢组织和性能的影响,探寻加硼思路的可行性,并初步探讨韧化机理。第三步,对含硼试验钢进行热力物理模拟试验,研究此新钢种的相变行为,为工业化生产提供工艺参考,也为热处理工艺提供知识储备。第四步,在实验室研究的基础上指导工业化应用,并对工业化新产品进行组织和性能的研究,综合探讨韧化机理。
     通过对实验室冶炼钢研究发现,硼的加入显著降低了钢的韧脆转变温度,使得钢在-40℃时的低温冲击韧性获得大幅度的提高,其冲击功远大于国标要求。强度及延伸率也没有因为硼的加入而降低。硼的加入改变了Nb(C,N)粒子的尺寸和分布,使之更均匀且弥散化,细化了转变后的铁素体晶粒,达到细晶强化的目的。钢中大部分的硼以固溶状态存在,只发现极少量的Fe23(C,B)6。硼在晶界的偏聚能够防止P、S等杂质元素的晶界偏聚,加上硼自身具有提高晶界结合力的作用,从而降低了材料的韧脆转变温度,提高材料的低温冲击韧性。
     通过热力物理模拟试验,研究了含硼钢的相变行为,制定了适合当前生产条件的轧制工艺,以指导实际生产应用。加硼Q345E大H型钢的生产工艺路线为:钢坯在1250-1300℃进行均热,并保证出钢温度在1250℃以上。钢材的终轧温度范围在890-930℃之间,轧后可快冷至750℃上冷床再自然冷却。轧制过程中的总变形量、道次变形量等参数保持不变。
     通过工业生产发现,生产的含硼H型钢的低温冲击性能获得大幅度的提高,证明工业化生产加硼H型钢的可行性。加硼后的H型钢中仍然存在有带状组织,但是其低温冲击功却有明显的提高,特别是在-40℃时的低温冲击功远高于国标规定值,说明带状组织不是决定H型钢冲击功高低的主要因素。通过对比同等晶粒度的含硼钢和无硼钢的低温冲击韧性,证实了硼的晶界强化对低温韧性的有效作用。因此,微量硼提高低温冲击韧性的机理归结为:(1)晶粒细化:硼和铌的复合作用使晶粒细化提高韧性;(2)晶界强化:硼在晶界的偏聚可抑制硫磷的沿晶偏聚及其引起的低温脆断,硼自身也能够提高晶界结合力,从而提高了低温冲击韧性。
H-beam, as an economic and efficient section-steel due to optimized cross-sectional area distribution and reasonable ratio of strength to weight, has been widely used in high-rise buildings, industrial plants, bridge structures, ship ports, oil drilling platforms, with the advantage of good flexural capacity, simple construction, saving cost and light structure weight. Therefore the development of H-beam is advocated in China. With the resource development in low temperature zone and the application in high-tech field, the demand of high strength and toughness (especially good low-temperature toughness) H-beam is growing.
     Before the research, the low temperature impact toughness of original H-beam fluctuates large and the impact toughness at-40℃is unsatisfactory. In order to find a composition and process route which is appropriate for current production conditions, boron is introduced to the development of cryogenic H-beam. After analysis of original product, research on experimental steels in lab and application on practical production line, a new type of boron-added H-beam as well as the production technology was successfully developed with proprietary intellectual property rights, which not only brings substantial economic benefits and social benefits, but also improves competitiveness of high-end H-beam of our country.
     In this research, through the comprehensive utilization of tensile test at room temperature, series of impact test, thermal simulation, optical microscope, stereomicroscope, electron probe, scanning electron microscope and TEM, etc, the structures and properties of experimental steels are studied systematically. The emphasis of the research is the effect of boron on structure and properties. Boron is usually used to improve the hardenability of steel in the former research, whereas it is used to improve the low temperature impact toughness in this study.
     The process of this research is divided into four steps. Firstly, the properties and microstructures of previous H-beams were analyzed to estimate its impact toughness at low temperature, factors of structure and metallurgy which effect the flexible of it were been discussed at the same time. Secondly, improving low temperature impact toughness by adding boron element is suggested, in order to check whether the method is feasible or not, effects of trace boron element on structure and property were researched through different boron content steelmaking in lab. Thirdly, thermal simulation test was used to research the phase transformation behavior of the new type steel, providing knowledge reserve to industrialization production and heating processing technology. Forthly, industrial application was proceeded based on study of lab, and research on structures and properties was carried out to study the malleableize mechanism of the new production.
     The introduction of boron reduced the brittle transition temperature of the steel much higher as well as improving low temperature impact toughness, meanwell, the impact toughness was made more than national standard, strength and elongation were maintained. As that the size and distribution of Nb(C,N) was changed to be more uniform and dispersive, ferrite grain size was refined, which lead to crystallization strength. Most of the boron element existed in solution condition, only very few in Fe23(C,B)6-The segregation of boron in grain boundary could prevent the segregation of phosphorus and sulphur, in consideration of the improvement on boundary bond of itself, brittle transition temperature was reduced and low temperature impact toughness was improved at the same time.
     By means of thermal simulation tests, phase transformation behavior of the new type steel was studied, and process route which was appropriate for current production conditions was developed to direct industrial production. Processing route of boron-added H-beam was just like this:soaking the billet at1250-1300℃, make sure the tapping temperature is above1250℃and finishing rolling temperature between890-930℃, cooling fast to750℃after rolling, then natural cooling on cooling bed. Rolling parameters just as total deformation, deformation per pass remain unchanged.
     The impact toughness at low temperature was improved in the commercial process under industrial production's guidance, which proved the feasibility of industrial production. Although the banded structure still existed, but impact toughness in low temperature was improved obviously, especially the impact toughness at-40℃was much more than national standard, which proved that banded structure is not the determinant of impact toughness. By comparing the low temperature impact toughness between boron-added steel and non-boron steel with the same grain size, intercrystalline strengthening of boron beneficial to low temperature impact toughness was confirmed. Thus the mechanism is summarized as follows:
     (1) Grain refinement:compound action of boron and niobium refines the grain size, which improves the toughness.
     (2) Intercrystalline strengthening:segregation of boron at grain boundaries prevents the segregation of phosphorus and sulphur and stops the low temperature brittleness induced by the segregation of phosphorus and sulphur, together with the improvement of boundary bond by boron itself, so that the low temperature impact toughness is improved.
引文
[]] 高海潮,颜根发.高强度热轧H型钢的开发[J].炼钢,2001,17(6):21-24.
    [2]高海建,奚铁,孙飞飞.热轧H型钢的轧制及其工程应用[J].建筑结构进展,2002,4(1):33-44.
    [3]李锋,侯崎.我国热轧H型钢的应用现状及发展趋势[J].建筑结构进展,2002,(9):54-56.
    [4]Teruyuki, NAKANISHI,等.H型钢的控制轧制[J].钢铁译文集,1996,(2):41-55.
    [5]谢世红,阮本龙,范杨.热轧H型钢控制冷却工艺研究[J].钢铁研究,2004,41(6):37-39.
    [6]冯建眸.H型钢控制冷却的试验研究[J].钢铁钒钛,2003,24(3):1-5.
    [7]段玉玲.H型钢的控制轧制技术[J].江西冶金,1999,19(2):14-17.
    [8]小指军大.控制轧制控制冷却——改善材质的轧制技术发展[M].北京:冶金工业出版社.2002:23-35.
    [9]石井匠.柱材TMCP极厚H型钢(RIVER-TOUGH355)的韧性特性[J].钢铁译文集,1998,(2):21-28.
    [10]长谷川博行.建筑结构用TMCP极厚H型钢(NSCH)的开发[J].钢铁译文集,1999,(2):54-62.
    [11]山本定弘.NKK公司开发成功建筑用TMCP型高韧性超厚H型钢HIBUIL—H[J].鞍钢技术,2000,(1):37-38.
    [12]Wenzhi Zhang, Qingtian Zhou, Chunqing Zhu, et al. Calculation of temperature and determination of deformation resistance in H-beam rolling (2) Total change of temperature and deformation resistance[J]. Journal of Materials Processing Technology,1999,94(2-3): 128-132.
    [13]钱健清.H型钢及其微合金化的进展[J].马钢科研,1998,(1):36-40.
    [14]顾建国.海洋石油平台用H型钢的开发研究[J].钢铁,2001,36(2):29-33.
    [15]苏世怀,孙维,汪开忠,Nb微合金化H型钢控制轧制技术研究[J].钢铁,2002,37(2):35-38.
    [16]钱健清.吴结才.控轧技术在H型钢生产中的应用[J].钢铁,2003,38(3):21-24.
    [17]谢震清,丁维.莱钢H型钢钢结构节能住宅建筑体系的开发和实践[J].建筑钢结构进展,2003,5(4):68-74.
    [18]Shun-ichi Nakama, Yoshiyuki Momiyama, Tetsuya Hosaka, et al. New technologies of steel/concrete composite bridges[J]. Journal of Constructional Steel Research,2002,58(1): 99-130.
    [19]F. S Kelly, W. Sha. A comparison of the mechanical properties of fire-resistant and S275 structural steel[J]. Journal of Constructional Steel Research,1999,50(3):223-233.
    [20]钱健清.对H型钢特点的进一步分析[J].钢结构,2001,16(1):16-18.
    [21]Wenzhi Zhang, Qingtian Zhou, Yanwen Li, et al. Hot rolling technique and profile design of tooth-shape rolls Part 1. Development and research on H-beams with wholly corrugated webs[J]. Journal of Materials Processing Technology,2000,101(1-3):110-114.
    [22]Wenzhi Zhang, Yanwen Li, Qingtian Zhou, et al. Optimization of the structure of an H-beam with either a flat or a corrugated web Part 3. Development and research on H-beams with wholly corrugated webs[J]. Journal of Materials Processing Technology, 2000,101(1-3):119-123.
    [23]曲成平,卢文静.多层H型钢钢结构住宅的性能分析[J].建筑技术,2005,36(7):546-547.
    [24]董志洪.世界H型钢与钢轨生产技术[M].北京:冶金工业出版社,1999.
    [25]廖桂兵.H型钢控制冷却过程应力应变场与组织场的研究[D].鞍山:辽宁科技大学,2008.
    [26]刘英瑞.莱钢H型钢的开发研制[J].钢铁,2003,38(1):28-30.
    [32]Kazushige,IKUTA. etc. Calculation Method of Loads on Skew Roll Mill for Web Expansion of H-beam[J]. ISIJ Internation,1995,35(9):1089-1093.
    [33]古川遵.外部尺寸一定的H型钢生产技术[J].钢铁译文集,1997,(1):5-13.
    [34]中岛浩卫.型钢轧制技术——技术改进研究到白主技术开发[M].北京:冶金工业出版社,2004.
    [36]英钢公司开发不对称H型钢(简讯)[J].轧钢,1997,(5):53.
    [37]赵文才,胡秀丽,陈玉良.H型钢立辊轴心可变式万能轧制法的实验研究[J].重型机械,1997,(2):21-24.
    [38]赵文才,胡秀丽,王哲.H型钢立辊轴心可变式万能轧制法的立辊轴心偏移量的确定[J].钢铁,1997,32(7):35-38.
    [39]林镇钟.马钢H型钢生产线的新工艺和新技术[J].马钢技术,1998,(5):20-24.
    [40]查五生,徐勇.马钢H型钢生产工艺及设备主要特点[J].轧钢,1998,(5):20-24.
    [41]曹心圣.液压自动辊缝控制在H型钢轧制中的应用[J].液压与气动,1999,(5):26-28.
    [42]钱健清.万能轧机AGC技术分析[J].钢铁技术,2002,(3):22-24.
    [43]高峰,钱健清.AGC技术在H型钢生产线的应用[J].钢铁研究,2003,(3):38-40.
    [44]刘英瑞,王奉县,袁鹏举.莱钢H型钢生产工艺及设备特点[J].中国冶金,2000,(1):42-44.
    [45]G. Malakondaiah, M. Srinivas, P. Rama Rap. Ultrahigh-strength low-alloy steels with enhanced fracture toughness[J]. Progress in Materials Science,1997,42(1-4):209-242.
    [46]C. J. Earls. On the inelastic failure of high strength steel I-shaped beams[J]. Journal of Constructional Steel Research,1999,49(1):1-24.
    [47]肖大恒,吴清明,李曲全,等.HYE36海洋石油钻井平台钢的试制[J].材料与冶金学报,2009,8(2):84-87.
    [48]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.
    [49]那顺桑,姚青芳.金属强韧化原理与应用[M].北京:化学工业出版社,2006.
    [50]C. Richard, J. Rieu, C. Goux. The influence of oxygen and sulfur on the intergranular brittleness of iron[J]. Metall Trans A,1976,7:1811-1815.
    [51]K. S. Shin, M. Meshii. Effect of sulfur segregation and hydrogen charging on intergranular fracture of iron[J]. Acta Metall,1983,31:1159-1163.
    [52]M. Tacikowski, G. A. Osinkolu, A. Kobylanski. Segregation-induced intergranular brittleness of ultra-high-purity Fe-S alloys[J]. Mater Sci Technol,1986,2:154-157.
    [53]C. M. Liu, T. Iyama, H. Suenaga, et al. Effects of sulfur segregation at grain boundaries on hot ductility of high purity iron[J]. In:Abiko K, Hirokawa K, Takaki S.eds. Proc of UHPM-94. Sendai:JIM.1994,500.
    [54]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006.
    [55]廖景娱.金属构件失效分析[M].北京:化学工业出版社,2003.
    [56]封常福.Ti-Nb微合金处理对Q345B厚钢板组织结构和性能的影响[D].济南:山东大学,2007.
    [57]翁宇庆.超细晶钢——钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003.
    [58]蒋国昌.纯净钢及二次精炼[M].上海:上海科学技术出版社,1996.
    [59]赵增武,王新华,常国威.硫对低合金洁净钢强度与冲击韧性的影响[J].钢铁钒钛,2004,25(2):63-65.
    [60]李智博,郭建,张贺宗,等.精炼钢与非精炼钢对冲击功的影响[J].理化检验-物理分册,2004,40(9):448-460.
    [61]孙贤文,柏明卓,柳得橹,等.低碳锰钢的带状组织及其对钢板冷弯性能的影响[J].电 子显微学报,2004,23(4):447.
    [62]朱伟华,王玲玲.低碳合金钢中带状组织的形成机理和消减方法[J].莱钢科技,总第127期:14-22.
    [63]杨作宏,付剑梅.减轻16Mn专用板的带状组织[J].宽厚板,7(2):21-25.
    [64]蒲玉梅,李忠义.优化工艺改善H型钢的横向冲击韧性的研究[J].钢铁,2002,37(3):52-54.
    [65]贾书君,曲鹏,翁宇,等.磷和晶粒尺寸对低碳钢力学性能的影响[J].钢铁,2005,40(6):59-63.
    [66]李长龙,陈言俊,梁如国,等.Q345钢在低温下的力学性能研究[J].山东建筑工程学院学报,2003,18(1):82-84.
    [67]许中波,E L.Gammal钢中夹杂物含量及其形态对钢力学性能的影响[J].钢铁研究学报,1994,6(4):18-23.
    [68]M. Djahazi, X. L. He, J. J. Jonas, et al. Nb(C, N) Precipitation and Austenite Recrystallization in Boron-containing High-strength Low-alloy Steels[J]. Metallurgical Transactions A,1992,23(8):2111-2120.
    [69]R. Lagneborg, T. Siwecki, S. Zajac, et al. The role of Vanadium in microalloyed steels[J]. Scandinavian Journal of Metallurgy,1999,(28):186-241.
    [70]Adem Bakkalog. Effect of processing parameters on the microstructure and properties of an Nb micro-alloyed steel[J]. Materials Letters,2002,56(3):200-209.
    [71]P. Korczak. Influence of controlled rolling condition on microstructure and mechanical properties of low carbon micro-alloyed steels[J]. Journal of Materials ProcessingTechnology,2004,157-158(20):553-556.
    [72]刘微.加热温度对含铌Q345钢第二相粒子固溶析出及晶粒长大的影响[J].宽厚板,2004,10(2):24-27.
    [73]B.R.Lawn著,陈颙,尹祥础译.脆性固体断裂力学[M].北京:高等教育出版社,1985.
    [74]余启明.桥梁钢断裂韧性CTOD试验与仿真分析研究[D].武汉:武汉理工大学,2010.
    [75]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [76]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [77]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995.
    [78]苗张木.厚钢板焊接接头韧度CTOD评定研究[D].武汉:武汉理工大学,2005.
    [79]戴起勋.金属材料学[M].化学工业出版社,2005:133-134.
    [80]冶金部钢铁研究总院.硼钢研究文集[M].北京:冶金工业出版社,1981:23-42.
    [81]贺信莱,褚幼义,张秀林,等.硼在钢中的分布[J].金属学报,1977,13(4):235-244.
    [82]M. Kurban, et al. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel[J]. Scripta Materialia,2006, (54): 1053-1058.
    [83]X.X. Yao. On the grain boundary hardening in a B-bearing 304 austenitic stainless steel[J]. Materials Science and Engineering A,1999,271:353-359.
    [84]贺信莱,褚幼义,等.硼钢淬透性与硼偏聚[J].北京钢钢铁学院学报,1983,1:155-161.
    [85]贺信莱,褚幼义,柯俊.硼向奥氏体晶界的非平衡偏聚[J].金属学报,1982,18(1):1-9.
    [86]宋余九.金属的晶界与强度[M].陕西:西安交通大学出版社,1987:48-53.
    [87]郭达人.50B钢的晶界析出物及脆化机理的初步探讨[J].金属热处理,1996,(10):37-38.
    [88]张扬,赵宗鼎.硼含量及其分布对40MnB钢冲击韧性的影响[J].天津理工学院学报,2000,16(1):23-27.
    [89]贾善顺,吕迎.ZG40MnB钢的制备及组织研究[J].煤炭技术,2010,29(2):187-1 88.
    [90]孙珍宝,朱谱藩,林慧国,等.合金钢手册[M].北京:冶金工业出版社,1984.
    [91]康显澄.试论硼在钢中的作用[J].特钢通讯,1990,4:1-10.
    [92]S.K.巴纳吉J.E.莫罗尔.钢中的硼[M].北京:冶金工业出版社,1985.
    [93]B.C.Sharma, G.R.Purdy. Nucleation Limitation and Hardenability[J]. Metall Trans.,1973, 4(10):2303.
    [94]H. Asahi. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels[J]. ISIJ International,2002,42(10):1150-1155.
    [95]T. Hara, H. Asahi. Role of combined addition of niobium and boron and of molybdenum and boron on hardenability in low carbon steels[J]. ISIJ International,2004,44(8): 1431-1440.
    [96]S. Suzuki, S. Tanii, K. Abiko, et al. Site competition between sulfur and carbon at grain boundaries and their effects on the grain boundary cohesion in iron[J]. Metall Trans A, 1987,18A:1109.
    [97]S. Suzuki, K. Abiko, H. Kimura. Phosphorus segregation related to the grain boundary structure in an Fe-P alloy[J]. Scripta Metall,1981,15:1139.
    [98]祖荣祥.12CrNi3MoV钢低温韧性与硼含量的关系[J].钢铁研究总院学报,1988,8(3):31-35.
    [99]刘春明,周燕岛,安彦兼次,等.微量硼对高纯铁硫合金沿晶断裂和硫沿晶偏析的影响[J].东北大学学报(白然科学版),1999,20(1):57-60.
    [100]井上毅(日).晶界磷偏析和添加硼对超高强度钢韧性的影响[J].赵兴武,译.国外钢铁钒钛,1995,02:1-5.
    [101]H. J. Jun, J. S. Kang, D. H. Seo, et al. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steel[J]. Materials science and engineering,2006,422(1-2):157-162.
    [102]Seung Hyun Lee, Seung Uk Lee, Kyoung 11 Moon, et al. A study on the improvement of the fracture toughness of L12-type Cu-added zirconium trialuminide intermetallics synthesized by mechanical alloying[J]. Materials Science and Engineering A,2004,382(1-2):209-216.
    [103]M. Hashimoto, Y. Ishida, R. Yamamoto, et al. Atomistic studies of grain boundary segregation in Fe-P and Fe-B alloys-I. Atomic structure and stress distribution[J]. Acta Metall,1984,32:1-6.
    [104]M. Hashimoto, Y. Ishida, S. Wakayama, et al. Atomistic studies of grain boundary segregation in Fe-P and Fe-B alloys-II. Electronic structure and intergranular embrittlement[J]. Acta Metall,1984,32:13-18.
    [105]赵黎明.微量元素硼对1Cr17不锈钢组织和性能的影响[D].兰州:兰州理工大学.
    [106]叶飞,陈伟庆,周新龙.硼对低碳钢中夹杂物形态的影响[J].钢铁,2007,42(10):76-79.
    [107]X.L. He, M. Djahazi, J.J. Jonas, et al. The non-equilibrium segregation of boron during the recrystallization of Nb-treated HSLA steels[J]. Acta Metallurgica et Materialia,1991, 39(10):2295-2308.
    [108]赵振华,陈伟庆.硼对低碳钢晶粒尺寸的影响[J].钢铁,2006,41(3):67-70.
    [109]范鼎东,张建平,肖丽俊,等.硼微合金化对SPHC钢组织、析出物以及屈服强度的影响[J].钢铁,2006,41(9):60-64.
    [110]P. Mession, V. Leroy. Scavenging additions of boron in low C low Al steels[J]. Steel Research,1989,60:320-325.
    [111]D. Anjana, K. D. Saikat, B. K. Jha. Strain hardening behavior and cold reducibility of boron-added low-carbon steel[J]. Journal of Materials Engineering and performance,2009, 18(1):109-115.
    [112]符寒光.含硼铸钢的研究和应用[J].铸造技术,2006,27(1):87-89.
    [113]张祖临.硼在中碳马氏体铸钢中作用的研究[J].水利电力机械,1999,(5):62-64.
    [114]Li Yanjun, Jiang Qichuan, Zhao Yuguang, et al. Improvement of the microstructure and mechanical properties of M2 cast high speed steel by modification[J]. Journal of Materials Science Letters,1996,15(18):1584-1586.
    [115]Xu Zhenming, Jiang Qichuan, Zhao Yuguang, et al. New type of wear resistant austenite-bainite steel with granular carbides modified by boron and cerium rare earth[J], Journal of Materials Science Letters,1995,14(20):1410-1411.
    [116]谭佃龙,章三红,贺信莱,等.超低碳贝氏体钢的焊接热影响区研究[J].焊接学报,1996,17(3):124.
    [117]Perlus, et al. United States Patent,4168181.1979-09-18.
    [118]M. Miyahara, N. Nakajima, K. Kuramoto. Thin hot rolled steel sheet with superior formability[J]. R&D Kobe Steel Engineering Reports,1990,36(3):61-64.
    [119]霍光瑞,张俊旭,付学满.微量B对440MPa级焊条熔敷金属低温冲击韧性的影响[J].材料开发与应用,2006.21(2):18-23.
    [120]杨军,吴鲁海,茅及放.低合金高强钢焊缝熔敷金属强韧化机理[J].焊接学报,2006,27(3):86-90.
    [121]F. Abe, M. Tabuchi, M. Kondo, et al. Suppression of type IV fracture and improvement of creep strength of 9Cr steel welded joins by boron addition[J]. Pressure vessels and piping. 2007.84(1-2):44-52.
    [122]M. Tabuchi. Improvement of creep strength for 9Cr steel weldment boron addition[J]. Welding Research Abroad,2004,50(8-9):1-8.
    [123]K. Laha, J. Kyono, S. Kishimoto, et al. Beneficial effect of B segregation on creep cavitation in a type 347 austenitic stainless steel[J]. Scripta Materialia,2005,52(7): 675-678.
    [124]杨义文,吴建生,李白刚,等.热变形和冷却速率对Nb-Ti微合金钢相变行为和显微组织的影响[J].理化检验,2004,40(5):221-224.
    [125]S. Hiroyuki. Grain Refinement Through Deformation on Heating[J]. CAMP-ISIJ,1999, 12(6):1135.
    [126]Y. Tomoyuki. Effect of 1 Pass Warm Reduction Ratio on Reversed Austenite Grain Size of 0.3% C 29% Ni Steel[J]. CAMP-ISIJ,1999,12(6):1137.
    [127]M. Torkizane, N. Mat sumura, K. Tsuzaki. Recrystallization and Formation of Austenite in Deformed Lath Martensitic Structure of Low Carbon Steels[J]. Metallurgical Transactions A,1982,13(8):1979-1985.
    [128]张希旺.微合金钢Q345的CCT曲线及断裂韧性研究[D].长沙:中南大学,2008.
    [129]张世中.钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社,1993:1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700