用户名: 密码: 验证码:
海洋工程用低合金高强度超厚钢板的淬透性与强韧性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大力发展海洋油气业是国家战略层面的重要产业转型,实现海洋油气工业装备及关键材料的国产化对促进我国海洋工程科技的进步、实现海洋强国的目标具有重大意义。本文从高性能海洋工程用钢开发的目标出发,采用Thermo-Calc热力学分析与实验观察相结合、ANSYS数值模拟计算与工艺实验分析相结合、理论推导与微观统计分析相结合的研究方法,借助OM、SEM、TEM、正电子湮没(PAT)、AES、Jominy端淬等实验手段对低合金高强度超厚钢板的淬透性和强韧性进行了研究,并重点研究了B微合金化与超厚钢板淬透性的作用关系及热处理工艺、组织亚结构对超厚板强韧性的影响。
     研究发现,微Ti和稍高含量的A1可以有效抑制BN析出,确保B的有效固溶,强化B微合金化效果;而V对BN的抑制作用则很弱。合适的晶界B偏聚量是获得理想淬透性的前提,而钢中B的晶界偏聚受淬火工艺影响明显。单次淬火条件下,当温度较低时(≤920℃)提高温度或适当延长保温时间均有利于B的晶界偏聚,但当温度过高时,B的晶界偏聚量反而下降;循环淬火条件下,只有在一次淬火温度较低时(≤920℃),合理的两次循环淬火才可促进B的晶界偏聚。
     淬火温度、保温时间、循环淬火以及回火温度等热处理工艺参数都对低合金超厚钢板的强韧性能有很大影响,对于本成分体系下的超厚钢板,最佳淬火区间为890-920℃,最佳回火区间为600-640℃;适当延长保温时间与合理的循环淬火可以同时有效改善超厚板的淬透性和强韧性。ANSYS模拟结果表明,在淬火过程中,增大表面冷速对心部冷却能力的提升作用是有限的,厚度越大这一局限越明显。
     低合金超厚钢板经调质处理后,表面即使获得高温回火的马氏体组织,其冲击韧性水平仍较低,和传统认为该组织具有良好韧性的规律有明显不同,尤其是钢板表面15mm区域内,冲击韧性反常恶化;初步分析认为马氏体组织中相对粗大的板条束和板条块以及较高的位错密度是钢表面韧性恶化的微观材料学原因。结合经典形核理论进一步研究发现,过快的冷速(过高的过冷度)可以使得表面区域马氏体相变形核率降低,导致板条束和板条块相对粗化并具有高密度位错,从而成为引发超厚钢板表面效应的重要原因之一。
To develop the offshore oil and gas industry is an important industrial transformation of the national strategic level. At present, making localization of the offshore oil industry equipments and key materials is greatly significant to promote the progress of China's marine engineering technology and to achieve the goal of strong country in marine economy. Starting from the goal of developing high-performance steels for marine engineering, the hardenability, strength&toughness of the ultra-heavy plate steel with high strength low alloy for marine engineering were studied with different research methods such as Thermo-Calc thermodynamic analysis combined with experimental observations, ANSYS numerical simulation combined with process experimental analysis and theoretical derivation combined with the microscopic statistical analysis with the help of the testing means such as OM, SEM, TEM, positron annihilation technique(PAT), AES and Jominy testing. The relationship between boron microalloyed technology and the hardenability of the low alloyed ultra-heavy plate steels, the effects of the sub-structures and heat treatment processes on the strength&toughness of the ultra-heavy plate steels were studied throughly in this paper.
     The study found that micro Ti and slightly higher content of Al could effectively inhibit BN to precipitate, ensure the solid solution of boron effectively, and strengthen the boron microalloying effect.But the inhibition of V on BN was very weak. The right segregation amount of boron on grain boundary was a precondition to obtain the desired hardenability of the steel, and the grain boundary segregation behavior of boron was affected by the quenching process. There was an optimal fit interval of quenching process, deviating from this optimal range, the amount of grain boundary segregation of boron was insufficient or excess, which would make a poor performance of hardenability adversely. During the single quenching, when the temperature was low (<920℃), the higher quenching temperature or appropriately extend the soaking time were conducive to the segregations of boron on the grain boundary, but when the temperature was too high, the segregation of boron declined. During the double quenching, only at the lower quenching temperature (≤920℃), reasonable double quenching could promote the segregation of boron.
     The quenching temperature, austenitizing soaking time, the double quenching and tempering temperature all had significantly influence on the strength&toughness of the steel. For the ultra-heavy plate steel with current component system, the best quenching temperature interval was890-920℃and the tempering interval was600-640℃, extending the soaking time appropriately and reasonable double quenching could effectively improve the hardenability and get a better matching of toughness and strength of the steel at the same time. ANSYS simulation results showed that the cooling rate of the center of the steel enhanced by increasing the surface cooling rate was limited during the quenching, the thickness was larger the limitation of the role was more obvious.
     In addition, after quenching and tempering, even if the surface of low alloy ultra-heavy steel got the high-temperature tempered martensite, the impact toughness level was still low. It was significantly different from the traditional law that high-temperature tempered martensite had a nice toughness, especially the toughness was extremely deteriorate in15mm of the surface zone in the steel. Combining with classical nucleation theory, a further study found that rapid cooling rate could make the nucleation rate of martensite phase transformation significantly reduce, which induced the sub-structures such as packets and blocks relatively crude and produced high density of dislocations. So it was one of most important causes for the surface effects of the ultra-heavy plate steel.
引文
[1]汪张棠,赵建亭.我国自升式钻井平台的发展与前景.中国海洋平台.2008.23(4):8-13
    [2]陈宏,李春祥.自升式钻井平台的发展综述.中国海洋平台,2007,22(6):1-6
    [3]全国海洋经济发展规划纲要.http://www.gov.cn/gongbao/content/2003/content_62156.html
    [4]杨才福,苏航.高性能船舶及海洋工程用钢的开发.钢铁.2012.47(12):1-8
    [5]罗宏志,蒙占彬.国内深水自身式钻井平台发展概况.中国海洋平台.2010.25(4):4-7
    [6]狄国标,刘振宇,郝利强等.海洋平台用钢的生产现状及发展趋势.机械工程材料.2008,32(8):1-3
    [7]潘涛.海洋工程用高性能超厚钢板研究报告.钢铁研究总院内部资料.2009
    [8]Heller S R, Fioriti I,Vasta J.An evaluation of HY-80 steel as a structural material for submarines, part I. Naval Engineers Journal,1965,2:9-44,193-200
    [9]Alloy D. HY-80 (Armor Plate Steel), Filing Code SA-197, Engineering Alloy Digest Inc., Montclair, NJ (June 1966)
    [10]Alloy D. HY-100 (High Strength, Tough Plate Steel), Filing Code SA-255, Engineering Alloy Digest Inc., Montclair, NJ, August 1970. Brockenbrough, R.L., and B.G. Johnston, Steel Design Manual, United States Steel Corp. Pitts. PA, (1968)
    [11]US Military Specification, Mil-S-24371B(SH), Steel Plate, Structural, High Yield Strength (HY130), Aug.,1989
    [12]Tobe Y. Past, present and future of materials for submarine main hull, Defense Technique,1990,11:18-39
    [13]Gorynin I V, Malyshevsky V A, Legostaev Y L, et al. High strength steels for ship hulls, offshore structures and deep-water engineering. Advanced Materials and Processes, Central Research Institute of Structural Materials,1996,2:23-34
    [14]沈俊昶,杨才福,张永权.船体结构用高强韧特厚钢板的研究.材料开发与应用,2004,19(5):1-4
    [15]张永权.国内外舰船用钢的发展.钢铁研究总院.内部资料.1992
    [16]杨才福.国内外舰船用钢的开发和应用.钢铁研究总院.内部资料.2002
    [17]喻肇坤,田亥,程建华等.海上采油平台用钢[M].北京:冶金工业出版社.1988
    [18]Kozaburo O.Development of ultraheavy-gauge 800N/mm2tensile strength plate steel for racks of jack-up rigs. Nippon Kokan technical report.1993(58):1-8
    [19]Nobuhiro I.Properties of class 80kgf/mm2gradehigh strength heavy section steel plates for jack-up rig racks.Nippon Kokan technical report.1980(30):1-12
    [20]王祖滨,东涛等.低合金高强度钢[M].北京:原子能出版社,1996,31-75
    [21]崔风平,孙玮,刘彦春等.中厚板生产与质量控制[M].北京:冶金工业出版社,2008
    [22]沈俊昶.Ni-Cr-Mo系高强度高韧性钢强韧热处理工艺的研究[D].钢铁研究总院.2007
    [23]Melloy G F, Slimmon P R, Podgursky P P. Optimizing the boron effect. Metallurgical Transactions.1973,4(10):2279-2289
    [24]Paju M. Effects of boron protection methods on properties of steel. Ironmaking and Steelmaking.1992.19(6):494-500
    [25]Yunoshin H.On the mechanism of boron hardenability.The 795th report of the Research Insitute for Iron,Steel and Other Metals,1955:249-261
    [26]Spretnak J W, Speicer R. Trans.Amer.Soc.Met.1953,20
    [27]Schwartzkopf P, Kieffer R. Refractory Hard Metals:Borides, Carbides, Nitrides and Silicides, New York:McMillan Co.,1953:12
    [29]Xu T D, Cheng B Y. Kinetics of non-equilibrium grain-boundary segregation. Progress in Materials Science 2004(49):109-208
    [30]Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries. Materials Science and Engineering A,2002, 335:49-61
    [31]Xiao H, Chaturvedi M C, Richards N L, et al.The effect of grain boundary segregation of boron in cast alloy 718 on HAZ microfissuring-a SIMS analysis. Acta mater.1997.45(8):3095-3107
    [32]Aust K T, Hanneman R K, Niessem P, etal. Solute induced hardening near grain boundaries in zone refined metals.Acta Met.,1968,16(3):291-302
    [33]Okamono P R, Rehn L E. Radiation-induced segregation in binary and ternary alloys. J.Nucl.Mater.,1979,83(1):2-23
    [34]Thelning K E.Evaluation and practical application of the hardenability of boron steel.Banerji S K, Morral J E.Boron in steel.New York:The Metallurgical Society of AIME.1980:127-146
    [35]Hitoshi A. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels. ISIJ International,2002,42(10):1150-1155
    [36]Takuya H, Hitoshi A, Ryuji U, et al. Role of combined addition of niobium and boron and of molybdenum and boron on hardnenability in low carbon steels. ISIJInternational,2004,44(8):1431-1440
    [37]Hiroshi T, Masahiko M, et al. Optimum microalloying of niobium and boron in HSLA ateel for thermomechanical processing. Transactions ISIJ, 1987(27):120-129
    [38]沈继刚,李宏图,王勇.浅论我国大单重特厚钢板的轧制生产技术.宽厚板.2011.17(2):23-26
    [39]姚连登.改善特厚钢板内部质量的工艺对策.宽厚板,1998.4(6):11-14
    [40]Chiaki O. Development of steel plates by intensive use of TMCP and direct quenching processes.ISIJ International.2001.41(6):542-553
    [41]Seiichi W, Hiroo O, Tatsuro K. The influence of hot rolling and heat treatments on the distribution of boron in steel. Tansactions ISIJ,1983(23):31-37
    [42]Seiichi W.Hiroo O, Tatsuro K, et al. The influence of dissolution and precipitation behavior of M23 (C, B)6 on the hardenability of boron steels.Tansactions ISIJ,1983(23):120-127
    [43]Morral J E,Cameron T B.Boron hardenability mechanisms.Banerji S K, Morral J E.Boron in steel.New York:The Metallurgical Society of AIME.1980:19-32.
    [44]Seiichi W.Hiroo O.Precipitation behavior of boron in high strength steel. Tansactions ISIJ,1983(23):38-42
    [45]Ryuichi H, Masasuke M, Shinogu T,et al. Improvement of hardenability of steel containing aluminum and boron by double quenching. Tansactions ISIJ, 1983(23):176-183
    [46]徐洲,赵连城.金属固态相变原理.北京:科学出版社,2004:76-94
    [47]徐祖耀,李学敏.低碳马氏体形成时碳的扩散.金属学报.1983.19(2):A83-88
    [48]徐祖耀.马氏体与马氏体相变.北京:科学出版社,1999:213
    [49]师昌绪,李恒德,周廉.《材料科学与工程手册》上卷第三篇:组织结构篇(第一版),北京:化学工业出版社,2004,45-50.
    [50]刘宗昌,任慧平,宋义全.金属固态相变教程[M].北京:冶金工业出版社,2003:87
    [51]席慧智,傅宇东,方双全.固态转变[M].北京:国防工业出版社,2010:101
    [52]孟庆平,戎咏华,徐祖耀.马氏体相变的形核问题.金属学报,2004,40(4):337-341
    [53]徐祖耀.马氏体相变研究的进展(一).上海金属,2003,25(3):1=8
    [54]刘宗昌,计云萍,任慧平.近几年马氏体相变研究的进展.热处理,2011,26(6):1-8
    [55]刘宗昌,袁长军,计云萍,等.马氏体的形核及临界晶核的研究.金属热处理,2010,35(11):17-22
    [56]陈奇志,吴杏芳,柯俊.马氏体相变的形核机制.中国科学(E辑),1996,26(6):488-495
    [57]Porter D A,Easterling K E著.李长海,余永宁译.金属和合金中的相变[M].北京:冶金工业出版社,1988:404-407
    [58]吴承建,陈国良,强文江等.金属材料学[M].北京:冶金工业出版社,2009:42
    [59]Marder A R, Krauss G. The formation of low-carbon martensite in Fe-C alloys. Transactions of American Society for Metals,1969,62(4):957-964
    [60]Morito S, Tanaka H, Konishi R,et al. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Materialia,2003,51(6):1789-1799
    [61]Maki T, Tsuzaki K, Tamura I. The morphology of microstructure composed of lath martensites in steels. Transactions ISIJ,1980,20(4):207-211
    [62]Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis. Scripta Materialia,2009,60:1113-1116
    [63]Sandvik B P J, Wayman C M. Characteristics of lath martensite:Part I. Crys-tallographic and substructural features. Metall. Trans. A,1983,14(4):809-822
    [64]Sandvik B P J. The Bainite reaction in Fe-Si-C Alloys:The primary stage. Metall. Trans. A,1982,13(5):777-787
    [65]Wang C F, Wang M Q, Shi J,et al. Effect of microstructure on the toughness of low alloy martensitic steel. Scripta Mater,2008;58(6):492-495
    [66]罗志俊,沈俊昶,苏航等.10CrNi5MoV钢板条M/B组织亚单元对强韧性的影响.材料热处理学报.2010.31(10):63-69
    [67]Bag A, Ray K K, Dwarakadasa E. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metallurgical and Materials Transactions A; 1999; 30(5):1193-1202
    [68]Bag A, Ray K K, Dwarakadasa E S. Influence of martensite content and morphology on the toughness and fatigue. Metallurgical and Materials Transactions A,2001; 32(9):2207-2217
    [69]Klebe X, Hug-amalric A, J Merlin. Evaluation of the proportion of phases and mechanical strength of two-phase steels using barkhausen noise measurements: Application to commercial dual-phase steel. Metallurgical and Materials Transactions A; 2008; 39(6):1308-1316
    [70]Tyagi R, Nath S K, Ray S. Effect of martensite content on friction and oxidative wear behavior of 0.42 pct carbon dual-phase steel. Metallurgical and Materials Transactions A,2002; 33(11):3479-3488
    [71]Mazinani M, Poole W J. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metallurgical and Materials Transactions A,2007; 38(2):328-339
    [72]Gunduz S, Demir B, Kacar R. Effect of aging temperature and martensite by volume on strain aging behavior of dual phase steel. Ironmaking & Steelmaking; 2008; 35(1):63-68
    [73]Tyagi R, Nath S K, Ray S. Development of wear resistant medium carbon dual phase steels and their mechanical properties. Materials Science and Technology. 2004,20(5):645-652
    [74]Erdogan M. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. Journal of materials science,2002,37:3623-3630
    [75]Kumar A, Singh S B, Ray K K.Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Materials Science and Engineering A,2008,474:270-282
    [76]Waterschoot T, Decooman B C, Vanderschueren D. Influence of run-out table cooling patterns on transformation and mechanical. Ironmaking & Steelmaking; 2001;28(2):185-190
    [77]Sankaran S, Malakondaiah G, Gouthama S S, et al. Static and dynamic fracture toughness of a medium carbon microalloyed steel of steel of three different microstructures. Metal and Mater Trans A; 2006,37(4):1191-1200
    [78]Sankaran S, Malakondaiah G, Gouthama S S, et al. Transmission electron microscopy studies of thermomechanically control.Processed multiphase medium-carbon microalloyed steel:forged, rolled, and low-cycle fatigued microstructures. Metallurgical and Materials Transactions A.2006,37(11): 3259-3273
    [79]姚忠凯等编译.钢的组织转变[M].第一版.北京:机械工业出版社,1980
    [80]方鸿生,郑燕康,周欣.中碳贝氏体/马氏体复相组织强韧性的研究.金属热处理学报,1986,7(1):10-18
    [81]张树松,仝爱莲.钢的强韧化机理和技术途径[M].北京:兵器工业出版社,1995
    [82]解振林,田薇.获得复合组织(马氏体加下贝氏体)的热处理工艺.河北理工学院学报,2002,24(1):19-23
    [83]马永杰.马氏体-贝氏体钢复相组织的力学性能.铸造设备研究,2005,(4):20-21
    [84]章立群,刘自成,刘东雨等.Mn系贝氏体/马氏体复相钢的研究及应用进展.金属热处理,2006,31(12):1-3
    [85]黄维刚,徐蓉,方鸿生等.中低碳含硅空冷贝氏体钢的冲击韧性.钢铁研究学报.1997,17(2):35-38
    [86]宋余九,芦锦堂,刘静华等.马氏体贝氏体复合组织的强度与韧性.金属热处理学报.1982,3(1):11-27
    [88]张永权,张荣久,苏航等.粒状贝氏体对10MnNiCr微合金钢力学性能的影响.钢铁,2003,38(11):45-47
    [89]雍岐龙.钢铁中的第二相[M].北京:冶金工业出版社,2006:37
    [91]刘禹门.结构钢的形变位错结构和强度.钢铁研究学报,2007;19(4):1-5
    [92]Cottrell A H. Theory of brittle fracture in steel and similar metals. Trans Met Soc, AIME,1958;212:192-203
    [93]Cottrell A H. Fracture.New York:Technology Press MIT and John Wiley, 1959:20
    [94]Imanaka M, Terasima H,Siga C, et al.Relationship between distribution of boron and quenching hardenability of boron-bearing 80kgf/mm2 grade steel plate in direct quenching and tempering process, Iron & Steel,1988,74(1):167-174
    [95]Choi Y S,Kim S J,Park I M,et al. Boron distribution in a low-alloy steel. Met and Mater,1997,3(2):118-124
    [96]Titova T I, Shulgan N A, Malykhina Y. Effect of boron microalloying on the structure and hardenability of building steel. Met Sci and Heat Trea,2007, 49(1-2):39-44
    [97]苏航,杨才福,柴锋等.热力学、动力学计算技术在钢铁材料研究中的应用,北京:科学出版社,2012:109-188
    [98]李培松,肖丽俊,谢植.低碳钢中A1N和BN竞相析出热力学分析.钢铁研究学报.2009.21(5):16-18,50
    [99]Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels, Metal Mater Trans A,2006,37A:2147-2157
    [100]张槐,陈天明.钢中氮含量控制的研究及探讨,四川冶金,2009,31(1):7-11
    [101]He X L, Chu Y Y. The application of 10B(n,a)7Li fission reaction to study boron hehaviour in materals. Phys.D:Appl.Phys,1983,16:1145-1158
    [102]贺信莱,褚幼义,张秀林等.’硼在钢中的分布.金属学报,1977,13(4):235-245,337-356
    [103]吴平,于栋友,贺信莱.硼径迹显微照相技术图像分析软件设计.物理实验,2005,25(10):21-27
    [104]John F W, John W. An Introduction to Surface Analysis by XPS and AES. New York:John Wiley & Sons,2003:11
    [105]Thomas A, Carlson. Photoelectron and Auger Spectroscopy [M]. New York: Plenum Press,1975:20
    [106]白玉光,刘春明.高纯Fe-0.2%P-2%Cr-C合金晶界的高分辨俄歇能谱分析.东北大学学报:自然科学版,2003,24(4):373-376
    [107]李莉,李庆芬,郑磊,等.磷在12Cr1MoV钢中非平衡晶界偏聚动力学的实验研究.钢铁研究学报,2005,17(6):47-50
    [108]章三红.溶质原子向晶界非平衡偏聚机理研究—硼在Fe-30% Si晶界偏聚规律[D].北京科技大学,1992:4-10
    [109]王小勇,潘涛,王华,等.淬火工艺对Ni-Cr-Mo-B超厚钢板心部力学性能的影响.钢铁,2012,47(6):79-83
    [110]He X L, Chu Y Y, Jonas J J. Grain boundary segregation of boron during continuous cooling. Acta metall,1989,37(1):147-161
    [111]肖纪美.合金相与相变[M].北京:冶金工业出版社.1982:35-36
    [112]章守华,吴承建.钢铁材料学[M].北京:冶金工业出版社,1980:86-99
    [113]张永权.奥氏体化温度对低碳钢硼化物析出的影响.钢铁.1982.17(7):44-50
    [114]韩立新.宽厚板热处理生产线.热处理.2003.18(4):22-24
    [115]牛珏,王长胜.中厚板淬火冷却过程温度场热应力场数值模拟.冶金能源.2009.28(4):25-28
    [116]牛珏,温治,王俊升.中厚板无约束淬火冷却过程温度场有限元模拟.热加工工艺.2006.35(22):66-70
    [117]李南,杨才福,张永权等.有限元法分析控轧控冷厚板的截面效应.上海金属.2006.28(1):48-52
    [118]刘国勇,张少军,朱冬梅等.中厚板控冷及淬火冷却形式选用分析.钢铁研究学报.2008.20(11):59-62
    [119]崔乃忠,王邦文,靳哲.基于ANSYS平台的中厚板空冷过程的温度场有限元模拟及分析.冶金设备.2004.5:21-23
    [120]郭明清,曹建刚,李建超.中厚板辊式淬火温度场的有限元模拟.内蒙古科技大学学报.2011.30(4):338-341
    [121]Janik M, Dyja H. Modelling of three-dimensional temperature field inside the mould during continuous casting of steel. Journal of Materials Processing Technology,2004,157-158(20):177-182
    [122]Qu S P, Zhang Y C, Pang X L, et al. Influence of temperature field on the microstructure of low carbon microalloyed ferrite-bainite dual-phase steel during heat treatment. Materials Science and Engineering A,2012,536(28): 136-142
    [123]Shen H, Yao Z Q,Shi Y J,et al. Study on temperature field induced in high frequency induction heating. Acta Metallurgica Sinica (English Letters), 2006,19(3):190-196
    [124]Carlone P, Palazzo G S, Pasquino R. Finite element analysis of the steel quenching process:Temperature field and solid-solid phase change. Computers & Mathematics with Applications,2010,59(1):585-594
    [125]Kong F, Santhanakrishnan S, Lin D, et al. Modeling of temperature field and grain growth of a dual phase steel DP980 in direct diode laser heat treatment. Journal of Materials Processing Technology,2009,209(19):5996-6003
    [126]Wang J L, CAO J, LIN Q K, et al. Study on numerical simulation of laser quenching based on ANSYS. Materials Processing Technology 11,2012, 538-541:1862-1865
    [127]J.R.威尔蒂.工程传热学[M].任泽霈,罗棣庵等译.北京:人民教育出版社,1982.19-34
    [128]于明.中厚板轧后冷却过程温度场解析研究与应用[D].沈阳:东北大学,2008.16-30
    [129]汪贺模,蔡庆伍,余伟等.中厚板加速冷却和直接淬火时冷却能力研究.材料科学与工艺.2012.20(2):12-15
    [130]陈爱志,牛继承,邓晚平.现有10NiSCrMoV钢成分对其厚板组织与力学性能的影响.材料开发与应用,2010;25(1):9-12
    [131]王任甫,徐科,薛钢.9Ni3CrMoV船体钢大厚板显微组织研究.热加工工艺,2007;36(16):43-46
    [132]罗志俊,沈俊昶,苏航等.10CrNi5Mo船体高强韧特厚钢板的研究.材料开发与应用,2009;24(5):1-6
    [133]Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels. Metall Trans A,1986;176(7):1203-1209
    [134]Inoue T, Matsuda S, Okamura Y,et al. The fracture of a low carbon tempered martensite. Transactions of JIM,1970; 11(1):36-43
    [135]Park Y K, Waber J T. Positron annihilation method for determining dislocation densities in deformed single crystals of iron. Mater Lett,1985;3(5,6):181-186
    [136]Shirai Y, Araki H, Mori T, et al. Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials. J Alloys Compd,2002;330-33:125-131
    [137]Kuramoto E, Tsutsumi T, Ueno K,et al. Positron lifetime calculations on vacancy clusters and dislocations in Ni and Fe Comput Mater Sci,1999; 14:28-35
    [138]Eldrup M. Positron methods for the study of defects in bulk materials.J Phys IV(C1),1995; 5:93-109
    [139]Mohamed H F M, Kwon J, Kim Y M, et al. Vacancy-type defects in cold-worked iron studied using positron annihilation techniques. Nucl Instrum Methods Phys Res, Sect B,2007;258:429-434
    [140]吴奕初,朱梓英,伊东芳子等.不同方式变形时高纯铁的正电子寿命研究.核技术,1998;21(3):135-137
    [141]王少阶,吴奕初,陈志权等.应用正电子谱学[M].武汉:湖北科学技术出版社,2008:77
    [142]Christian J W. The Theory of Transformations in Metals and Alloys, Part 1,2nd Ed., Oxford:Pergamon Press,1975:525
    [143]徐祖耀.马氏体相变的分类.金属学报,1997,33(1):45-52
    [144]徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2004:94
    [145]陶正兴.第四讲-经典形核理论(二).上海钢研,1982,4:39-56
    [146]Zhao X Q, Han Y F. Kinetics of homogeneous martensitic nucleation in iron-based alloys.Metall and Mater Trans A,1999,30(3):884-887
    [147]Magee C L.The kinetics of martensite formation in small particles.Metall Trans, 1971,2:2419-2430
    [148]Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater Sci Technol,2000,16:26-40
    [149]Hiromoto K, Rintaro U, Nobuhiro T, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater,2006,54:1279-1288
    [150]由洋,王学敏,尚成嘉.奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响.金属学报,2012,48(11):1290-1298
    [151]王小勇,潘涛,苏航,等.Ni-Cr-Mo-B低合金钢模拟焊接热影响区的组织和性能.材料热处理学报.2012.33(8):69-73
    [152]李桂芬,董瀚,高伟,等.水冷终止温度对自回火马氏体钢组织和性能的影响.钢铁研究学报,1996,8(5):42-47
    [153]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1988:280-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700