用户名: 密码: 验证码:
热处理以及等温压缩过程中TC18钛基复合材料组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究来源于973中期研制项目,为C919大飞机研制可供选用的钛基复合材料。本文选用TC18钛合金为基体,采用原位自生法制备出微量TiB短纤维和TiC颗粒增强的复合材料,然后进行了热加工和热处理。
     研究的重点,是揭示未被报道过的组织特点,以及微量增强体的作用。首先揭示出热处理条件下,初生α相的球化是在晶粒的生长过程中形成的,而非析出的结果。此外,发现了热处理条件下α晶粒的分裂现象,α晶粒内位错密度低,既有利于球化,也是晶粒分裂的前提条件。α相边球化边分裂,意味着热处理过程中,β→α相变和α→β相变可以同时进行。球化对分裂有促进作用。研究发现,产生上述现象的根本原因,在于α晶粒具有高能非共格界面。由于α相具有球化的趋势,所以无法形成典型的双态组织或等轴组织。由于球化程度不同,α相表现得形貌各异。
     热处理过程中,微量TiB和TiC大幅细化了β晶粒,但是随着增强体含量的增加,β晶粒尺寸下降逐渐变缓。本研究认为,当热处理温度超过相变点时,是由于β再结晶形核率增幅的下降快于辛纳力增幅的下降造成的。此时,由于α相的生长受到β晶粒尺寸的约束,所以α相表现出和β相相似的细化趋势。而当热处理温度低于相变点时,原因则是β晶界迁移驱动力增幅的下降慢于辛纳力增幅的下降。此时,由于α晶粒弥散分布,熟化在晶粒生长中起了决定作用,因此复合材料中α晶粒的平均尺寸和合金中的相差不大。计算评估显示,在提高复合材料室温拉伸强度方面,组织细化和TiB的承载以及TiC的弥散强化起到了同等重要的作用。
     研究发现,溶质原子偏聚对位错运动的钉扎作用,是阻碍α相球化的主要原因。热处理后,复合材料中α相的球化率高于合金,增强体通过促进扩散,以及钉扎β晶界迁移等作用加速了α相球化。但同时,由于增加晶格畸变,诱发溶质原子偏聚,增强体对α相球化也会产生阻碍作用,所以,随着增强体含量增加,α相球化率没有明显提高。
     等温压缩过程中,微量增强体在促进α相球化、细化β晶粒以及提高组织均匀性方面起了很大的作用。本研究是将热处理之后的材料用于压缩实验。当初始组织为α-β组织时,复合材料可以容易地得到α相全部球化的组织。在提高组织均匀性方面,微量增强体的作用主要表现在三个方面:1.加速α相的球化;2.TiB的承载作用;3.对β晶粒的细化作用。由于α相具有非共格界面,本文中的球化机制不同于以往文献报道过的球化机制。
     通过对微观组织特点以及变形行为的研究,证明了TC18/(TiB+TiC)复合材料设计先进,极具推广价值。为TC18钛基复合材料的工业应用奠定了良好的理论基础。
The research is financially supported by973Program. The objective is to developnew kind of Ti matrix composite for C919Plane Program. TC18Ti matrix compositesreinforced with trace TiB and TiC are fabricated by in situ synthesis method in thiswork. The as cast ingots are subjected to thermo mechanical processing and heattreatment.
     The research emphases are the microstructural characteristics, which have not beenreported in previously published works, as well as the effects of trace reinforcements.It is revealed that the spheroidization of primary α is not the result of precipitation.The spheroidized α is formed during its growth. Moreover, the splitting of α duringheat treatment is observed. It is favorable for the spheroidization of α when thedislocation density in α is low. Also is low density dislocation the precondition for thesplitting of α. α may separate during its spheroidization process. This means that β→αphase transformation and α→β can concur under the heat treatment. Thespheroidization of α can accelerate the splitting of α. The essential reason for themicrostructure phenomena is that α has non coherent interface. Since α has thetendency to be spheroidized, typical bimodal structure and equiaxed structure can notbe formed. Owing to the difference in the extent of spheroidization, α phase presentsmorphology diversity.
     The trace TiB and TiC have significant effects on refining microstructure duringheat treatment. However, the decrease of β grain size gradually decreases withincreasing the reinforcements. It is suggested that the increase rate for the nucleationrate drop faster than that for the Zener drag. This is the primary reason for theabove mentioned microstructure phenomenon when the temperature of heat treatmentexceeds β transus temperature. Since the growth of α is restricted by β, the refinementof α phase presents similar tendency as that of β. When the temperature of heattreatment is lower than β transus temperature, the reason is that the increase rate of thedriving force for boundary migration of β grain drops slower than that of the pinningforce on boundary migration. Since α are evenly dispersed in β, and ripening plays acritical role in the growth of α. The sizes of α in the alloy and composites show littledifference. According to assessment, the microstructure refinement plays anidentically important role in improving the strengths of the composites comparing with load bearing of TiB and dispersion strengthening of TiC.
     It is revealed that the primary reason for the retardation to the spheroidization of αis the pining effects of the segregation of alloying elements on dislocation motion.The spheroidization rates of α in the composites are higher than that in alloy. Tracereinforcements accelerate the spheroidization rate of α by accelerating diffusion andpining boundary migration of β grain. However, reinforcements often induce thesegregation of alloying elements, and thus retard the spheroidization of α. Therefore,the spheroidization rate of α does not obviously increase with increasing thereinforcements.
     The trace reinforcements have significant effects on accelerating thespheroidization of α, refining β phase and promoting microstructure homogeneityduring isothermal compression. The specimens are subjected to heat treatment beforeisothermal compression. When the initial microstructure of the composite specimen isα β structure, α in the composite is almost spheroidized during the compression. Theeffects of the trace reinforcements on promoting microstructure homogeneity duringisothermal compression can be summarized to three points. First, the acceleration ofthe spheroidization of α, second, the load bearing of TiB, third, the refinement of βphase. Since α grain has non coherent interface, the spheroidization mechanism in thiswork is different from that reported in previously published works.
     It is proved by this work that TC18/(TiB+TiC) is advanced in design and hastremendous application value. The investigations in this work establish the favorablebase for industrial applications of TC18Ti matrix composite.
引文
[1]刘东升,高强韧钛合金的热处理工艺与相变行为研究,2005,清华大学硕士毕业论文
    [2]鲍里索娃,钛合金金相学,北京:国防工业出版社,1986
    [3]吕维洁,张小农,张荻等.原位合成TiC和TiB增强钛基复合材料的微观结构与力学性能,中国有色金属学报,2000,10(2):163169
    [4] H.T. Tsang, C.G. Chao, C.Y. Ma, Effects of volume fraction of reinforcementss on tensile andcreep properties of in situ TiB/Ti MMC, Scrip. Mater.,1997,37(9):13591365
    [5] H.T. Tsang, C.G. Chao, C.Y. Ma, In situ fracture observation of a TiC/Ti MMC produced bycombustion synthesis, Scrip. Mater.,1996,35(8):10071012
    [6] Z.Y. Ma, S.C. Tjong, L Gen, In situ Ti TiB metal matrix composite prepared by a reactivepressing process, Scrip. Mater.,2000,42:367373
    [7]李四清,刘瑞民,马济民等,钕化物颗粒增强钛基复合材料的组织和性能,航空材料学报,1997,17(3):51-56
    [8] A.G. Merzhanov, I.P. Borovinskaya, Self propagating high temperature synthesis ofrefractory inorganic compounds, Dokl. Akademiia Nauk. SSSR1972,204:366368
    [9] I.P. Borovinskaya, A.G. Merzhanov, N.P. Novikov, A.K. Filonenko, Gasless combustion ofmixtures of powdered transition metals with boron, Combust. Explos. Shock Waves1974,10:210
    [10] A.G. Merzhanov, A.K. Filonenko, I.P. Borovinskaya, New phenomena during the burning ofcondensed systems, Dokl. Akad. Nauk. SSSR1973,208:892894
    [11] A.G. Merzhanov, G.G. Karyuk, I.P. Borovinskaya, et al, Titanium carbide produced byself propagating high temperature synthesis valuable abrasive material, Sov. Powder Metall. Met.Ceram.1981,20:709713
    [12] N.D. Corbin, J.W. McCauley, MTL MS861, USAMTL, Watertown, MA,1986
    [13] Y. Choi, M.E. Mullins, K. Wijayatilleke, J.K. Lee, Fabrication of metal matrix composites ofTiC Al through self propagating synthesis reaction, Metall. Trans,1992,23A:23872392
    [14] I. Gotman, M.J. Koczak, E. Shtessel, Fabrication of Al matrix in situ composites viaself propagating synthesis, Mater. Sci. Eng. A,1994,187:189199
    [15] L. Chrstodoulou, D.C. Nagle, J.M. Brupbacher, International Patent No. WO86/06366(1986)
    [16] L. Chrstodoulou, et al., US Patent4,751,084(1988)
    [17] J.M. Brupbacher, et al., US Patent4,836,982(1989)
    [18] Z.Y. Ma, J. Bi, Y.X. Lu, H.W. Shen, Y.X. Gao, in: L. Arnberg, et al.(Eds.), Proceedings ofthe Third International Conference on Aluminum Alloys, Trondheim, Norway, NorwegianInstitute of Technology,1992, p.435.
    [19] Z.Y. Ma, J. Bi, Y.X. Lu, et al, Microstructure and interface of the in situ formingTiB2reinforced aluminum composite, Composites Interface1993,1:287291.
    [20] Y. Lin, R.H. Zee, B.A. Chin, In situ formation of three dimensional TiC reinforcements inTi TiC composites, Metall. Trans.1991,22A:859865
    [21] S. Ranganath, M. Vijayakumar, J. Subrahmanyam,Combustion assisted synthesis ofTi TiB TiC composite via the casting route, Mater. Sci. Eng. A,1992,149:253257
    [22] P.C. Maity, S.C. Panigrahi, P.N. Chakraborty, Preparation of aluminium alumina in situparticle composite by addition of titania to aluminium melt, Scripta Metall. Metall.1993,28:549
    [23] H. Nakata, T. Choh, N. Kanetake, Fabrication and mechanical properties of in situ formedcarbide particular reinforced aluminium composite, J. Mater. Sci.1995,30:17191727
    [24] P.J. Davies, J.L.F. Kellie, J.V. Wood, UK Patent No.2,257985A, ASM, Paris, September1992
    [25] J. Kellie, J.V. Wood, Mater. World1995,3:10
    [26] D.C. Dunand, J.L. Sommer, A. Mortensen, Synthesis of bulk and reinforced nickelaluminides by reactive infiltration, Metall. Trans.1993,24A:21612170
    [27] M.K. Aghajanian, N.H. Macmilan, C.R. Kennedy, et al, Properties and microstructures oflanxide Al2o3Al ceramic composite materials, J. Mater. Sci.1989,24:658670
    [28] A.W. Urquhart, Novel reinforced ceramics and metals: a review of Lanxide's compositetechnologies, Mater. Sci. Eng. A,1991,144:7582
    [29] O. Salas, H. Ni, V. Jayaram, et al, Nucleation and growth of Al2O3/metal composites byoxidation of aluminum alloys, J. Mater. Res.1991,6:19641981
    [30] V.S.R. Murthy, B.S. Rao, Microstructural developmenTin the directed melt oxidized(DIMOX) Al Mg Si alloys, J. Mater. Sci.1995,30:30913097
    [31] W.O. Soboyejo, R.J. Lederich, S.M.L. Sastry, in: S.K. Das, C.P. Ballard, F. Marikar (Eds.),High Performance Composites for the1990s, TMS, Warrendale, PA,1991, p.127
    [32] H. Fugunaka, X. Wang, Y. Aramaki, Preparation of intermetallic compound matrixcomposites by reaction squeeze casting. J. Mater. Sci. Lett.1991,9:2325
    [33] P. Sahoo, M.J. Koczak, Analysis of in situ formation of titanium carbide in aluminum alloys,Mater. Sci. Eng. A,1991,144:3744
    [34] P. Sahoo, M.J. Koczak, Microstructure property relationships of in situ reacted TiC/Al Cumetal matrix composites, Mater. Sci. Eng. A,1991,131:6976
    [35] J.S. Bejamin, Dispersion strengthening superalloys by mechanical alloying, Metall. Trans.,1970,1:29432951
    [36] J.S. Bejamin, Mechanical alloying, Sci. Am.,1976,234:4049
    [37] P.G. Gilman, J.S. Bejamin, Annu. Rev. Mater. Sci.13(1983)279300
    [38] J.S. Bejamin, T.E. Volin, The mechanical of mechanical alloying, Metall. Trans.,1974,5:19291934
    [39] G. Frommeyer, S. Beer, K.V. Oldenburg, Microstructure and mechanical properties ofmechanically alloyed intermetallic Mg2Si Al alloys, Z. Metallkd.,1994,85:372377
    [40] Y.X. Lu, J. Bi, D.X. Li, et al, in: C.T. Sun, T.T. Loo (Eds.), Proceedings of the SecondInternational Symposium on Composite Materials and Structures, Peking University Press, Beijing,1992, p.882
    [41] K. Satyaprasad, Y.R. Mahajan, V.V. Bhanuprasad, Strengthening of Al/20vol pct TiCcomposites by isothermal heat treatment, Scripta Metall. Mater.,1992,26:711716
    [42] B.C. Giessen, US Patent4,540,546(1985).
    [43] X. Zhang, W. Lu, D. Zhang, et al, In situ technique for synthesizing (TiB+TiC)/Ticomposites, Scripta Mater.,1999,41:3946
    [44] Z.Y. Ma, S.C. Tjong, L. Geng, In situ Ti TiB metal–matrix composite prepared by a reactivepressing process, Scripta Mater.,2000,42:367373
    [45] L. Wang, M. Niinomi, S. Takahashi, et al, Relationship between fracture toughness andmicrostructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles, Mater. Sci. Eng. A,1999,263:319325
    [46] S.S. Sahay, K.S. Ravichandran, R. Atri, et al, Evolution of microstructure and phases in insitu processed Ti–TiB composites containing high volume fractions of TiB whiskers, J. Mater. Res.1999,14:42144223
    [47] H.T. Tsang, C.G. Chao, C.Y. Ma, In situ fracture observation of a TiC/Ti MMC produced bycombustion synthesis, Scripta Mater.,1996,35:10071012
    [48] H.T. Tsang, C.G. Chao, C.Y. Ma, Effects of volume fraction of reinforcementss on tensile andcreep properties of in situ TiB/Ti MMC, Scripta Mater.,1997,37:13591365
    [49] S. Raganath, T. Roy, R.S. Mishra, Microstructure and deformation of TiB+TiC reinforcedtitanium matrix composites, Mater. Sci. Technol.,1996,12:219226
    [50]钱久红,航空航天用新型钛合金的研究发展及应用,稀有金属,2000,24(3):218-223
    [51]张蟄,新型钛合金的发展及应用,金属学报,1999,35(Suppl.1):535
    [52]王金友,葛志明,周邦彦,航空用钛合金,上海:上海科学技术出版社,1985.68
    [53]《中国航空材料手册》编辑委员会,中国航空材料手册,北京:中国标准出版社,(4):273
    [54] TIMET. High strength forging alloy Ti1023[R]. Denver:titanium metals corporation,1999
    [55] M. Yamada, An overview on the development of titanium alloys for non aerospaceapplication in Japan. Mate. Sci..Eng. A,1996,213(15):815
    [56]北京航空材料研究院,Ti-15-3应用研究文集,北京:北京航空材料研究院,1996
    [57]北京航空材料研究院,β钛合金文集,北京:北京航空材料研究院,1996
    [58]北京航空材料研究院,Ti-1023应用研究文集,北京:北京航空材料研究院,1996
    [59]冯抗屯,沙爱学,王庆如,显微组织对TC18钛合金应力控制低周疲劳性能的影响,材料工程,2009(5):53-56
    [60]高玉魁,TC18超高强度钛合金喷丸残余压应力场的研究,稀有金属材料与工程,2004,33(11):1209-1212
    [61] L.E. STARK, The strength toughness properties of welds in plates of commercial titaniumalloys, WeldingJournal,1971(2):5870
    [62]孟笑影,庞克昌,殷俊林,热处理工艺对TC18钛合金组织和性能的影响,热处理,2006,21(1):36-39
    [63]沙爱学,王庆如,李兴无.航空用高强度结构钛合金的研究及应用,稀有金属,2004,28(1),239-242
    [64]中国航空信息中心《世界飞机手册》编写组.世界飞机手册2000,北京:航空工业出版社,2001
    [65]余伟.韩鹏,毛志勇,热处理工艺对TC18电子束焊焊接接头力学性能的影响,工艺与新技术,2010,39(9):39-41
    [66]郭绍庆,谷卫华,余槐等.TC18电子束焊接头焊后热处理对组织与性能的影响,航空材料学报,2006,26(3):116-121
    [67]刘慧芳,魏寿庸,雷家峰等,TCl8钛合金组织对力学性能的影响,第十二届中国有色金属学会材料科学与合金加工学术研讨会文集(2007)178-181
    [68]李红恩,沙爱学,TC18钛合金热压参数对流动应力与显微组织的影响,材料工程,2010,1:84-88
    [69]羊玉兰,王韦琪,马宝军等,显微组织对B T22钛合金棒材力学性能的影响,稀有金属快报,2007(26):32-34
    [70]沙爱学,李兴无,王庆如等,热变形温度对TC18钛合金显微组织和力学性能的影响,中国有色金属学报,2005,15(8):1167-1169
    [71]官杰,刘建荣,雷家峰,TC18钛合金的组织和性能与热处理制度的关系,材料研究学报,2009,23(1):77-82
    [72]王晓燕,郭鸿镇,袁士狮等,等温锻造温度对TCl8钛合金组织性能的影响,锻压技术,2008,33:8-11
    [73]朱峰,计波,朱益藩,Ti-5Mo-5V-5Al-1Cr-1Fe合金热处理工艺研究,上海钢研,2006,3:45-47
    [74]王晓燕,郭鸿镇,刘鸣等,热处理制度对TCl8钛合金等温锻件组织性能的影响,稀有金属材料与工程,2008,37:681-684.
    [75]沙爱学,李兴无,王庆如,固溶制度对TCl8钛合金拉伸性能和显微组织的影响,第十二届中国有色金属学会材料科学与合金加工学术研讨会文集(2007)440-444
    [76]郑永灵,张华,沙爱学等,TC18钛合金准β锻锻件热处理工艺实验研究,大型铸锻件,2010,3:14-16
    [77]赵炎,雷家峰,刘羽寅等,时效制度对TCl8钛合金显微结构的影响,稀有金属材料与工程,2008,37:595-599.
    [78]韩栋,张鹏省,毛小南,两种典型热处理工艺对TC18钛合金组织性能的影响,材料导报,2010,24(2):46-48
    [79]官杰,雷家峰,刘羽寅等,显微组织对TCl8钛合金断裂韧性与疲劳性能的影响,稀有金属材料与工程,2008,37:77-82
    [80]于兰兰,毛小南,张鹏省等.热处理工艺对BT22钛合金组织和性能的影响,稀有金属快报,2005,24(3):21-23
    [81]王晓燕,郭鸿镇,姚泽坤等,双重退火对TC18钛合金等温锻件组织性能的影响,材料热处理学报,2009,30:100-103
    [82]毛小南,周廉,曾泉浦等,稀有金属材料与工程,TiCp颗粒增强钛基复合材料的强化机理研究,2000,29(6):378381
    [83] A.G. Metcalfe, Composite Material (vo l11), New York and London: Academic Press,1974:125
    [84] A.J. Reeves, H. Dunlop, T.W. Clyne, The effect of interfacial reaction layer thickness onfracture of Titanium SiC particulate composites, Metall. Trans, Metall. Trans A,1992,23A(3):977988
    [85] L. Jian, The Principle of Metallurgy [M], Shenyang:Northeastern University of TechnologyPress,1991:234240
    [86] T. Saito, T. Furuta, Development of Low Cost Titanium Matrix Composite, TMS, Warrendale,PA,1995;3334
    [87] Yoshihisa Tanak, The Sixteenth International Conference on Composite Materials, Japan:Kyoto,2007:1183
    [88]张廷杰,曾泉浦,毛小南等,TiC颗粒强化钛基复合材料的强度评估,稀有金属材料与工程,1999,28(5):265268
    [89]毛小南,张廷杰,张小明等, TiC颗粒增强钛基复合材料的形变,稀有金属材料与工程,2001,30(4):245248
    [90]宋卫东,宁建国,毛小南,TiC颗粒增强钛基复合材料细观动态力学性能,稀有金属材料与工程,2011,40(9):15551560
    [91] Y.Q. Yang, H.J. Dudek, Interface stability in SCS6SiC/super {alpha}{sub2} composites,Scrip. Mater.,1997,37(4):503510
    [92] Y.Q. Yang, H.J. Dudek, J. Kumpfert, Interfacial reaction and stability of SCS6SiC/Ti–25Al–10NB–3V–1MO composites, Mater. Sci. Eng. A,1998, A246(12):213220
    [93] A. Fukushima, C. Fujiwara, Y. Kagawa, Effect of interfacial properties on tensile strength inSiC/Ti–15–3composites, Mater. Sci. Eng. A,2000, A276(12):243249
    [94] Y. Kagawa, T. Fujita, A. Okura, Temperature dependence of tensile mechanical properties inSiC fiber reinforced Ti matrix composite, Acta Metallurgica et Materialia,1995,42(9):30193026
    [95] J. R sler, M. B ker, A theoretical concept for the design of high temperature materials bydual scale particle strengthening, Acta Mater.,2000,48(13):35533567
    [96]肖伯律,马宗义,毕敬,TiB_w与TiC_p原位增强钛复合材料的高温蠕变特性,金属学报,2002,38(9):994999
    [97] W.J. Lu, D. Zhang, X.N. Zhang, et al, Creep rupture life of in situ synthesized (TiB+TiC)/Timatrix composites, Scrip. Mater.,2001,44(10):24492455
    [98] M. Okada, In: Froes F H, Caplan I Ltd., Titanium Science and Technology, San Diego,California, TMS1992,1551
    [99] R.J.H. Wanhill, Ambient temperature crack growth in titanium alloys and its significance foraircraft structures Aeronautical Journal,1977;81:6882
    [100] G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β)titanium alloys, Mater. Sci. Eng. A,1998;243(12):3245
    [101]王金友,葛志明,周彦邦,航空用钛合金,上海:上海科学技术出版社,1985:208231
    [102] R.I. Jafee, H.M. Burte (Edited), Titanium Science and Technology, New York London,Pleum Press,1973:12571270,17311744,553572
    [103] L.S. Croan, F.J. Rizzitana, Wal report401/268, Watertown Arsend Laboratories, Maa.1958.
    [14]周义刚, T679合金热稳定的研究,金属学报,1980,16(3):302310
    [104] A.S. Sheegarev, A.P. Glyaooev, Research on high strength alloys and refined grain,Moscow, Academy of Science Press,1963,142
    [105] M. Brun, N. Anoshkin, G. Shakhanova, Physical processes and regimes ofthermomechanical processing controlling development of regulated structure in the α+β titaniumalloys, Mat. Sci. Eng. A,1998,243(12):7781
    [106] I. Weiss, F.H. Froes, D. Eylon, et al, Modification of alpha morphology in Ti6Al4V bythermomechanical processing, Metal. Trans.,1986;17(11):19351947
    [107] H. Fujii, Strengthening of α+β titanium alloys by thermomechanical processing, Mat. Sci.Eng. A,1998;243(12):103108
    [108]周义刚,曾卫东,余汉清,近β锻造推翻陈旧理论发展了三态组织,中国工程科学,2001,3(5):6166
    [109]朱知寿,王庆如,郑永灵,金属学报,2002;38(Suppl.1):382384
    [110]张旺峰,李兴无,马济民等,钛合金强韧化新技术BTMP工艺,轻金属,2005,1:3941.
    [111] M. Brun, N. Anoshkin, G. Shakhanova, Physical processes and regimes ofthermomechanical processing controlling development of regulated structure in t heα+βtitaniumalloys, Mater. Sci. Eng. A,1998,243:7781
    [112] I. Weiss, S.L. Semiatin, Thermo mechanical processing of alpha titanium alloys anoverview, Mater. Sci. Eng. A,1999,263:243256
    [113] T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, et al. Hot deformation mechanisms in ELIgrade Ti26Al24V, Scrip. Mater,1999,41(3):283288
    [114] Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, et al, Influence of oxygen content on the forging response of equiaxed (α+β) preform of Ti6Al4V: commercial vs ELI grade, J Mat.Proc. Tech.,2001,108:320327
    [115]S.L. Semiatin, T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hotworking of Ti26Al24V with a transformed microstructure, Acta Mater.,2001,49:35653573
    [116] I. Weiss, S.L. Semiatin, Thermo-mechanical processing of beta titanium alloys anoverview, Mater. Sci. Eng. A,1998,243:4665
    [117] S. Gorsse, D.B. Miracle, Mechanical properties of Ti6Al4V/TiB composites withrandomly oriented and aligned TiB reinforcements, Acta Mater.,2003,51:24272442
    [118] S.L. Kampe, J. Chrisrodoulou, C.R. Feng, et al, The effect of matrix microstructure andreinforcements shape on the creep deformation of near titanium aluminide composites, ActaMater.,1998,46(8):28812894
    [119]张廷杰,曾泉浦,毛小南等, TiC颗粒强化钛基复合材料的高温拉伸特性,稀有金属材料与工程,2001,30(2):8588
    [120]曾泉浦,毛小南,张廷杰,热处理对TP650钛基复合材料组织与性能的影响,稀有金属材料与工程,1997,26(4):1821
    [1] S. Ranganath, M. Vijayakumar, J. Subrahmanyan, Combustion assisted synthesis ofTi TiB TiC composite via the casting route, Mater.Sci.Eng.A,1992,149:253257
    [2] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakatab, H. Morib, Microstructure and tensileproperties of in situ (TiB+TiC)/Ti6242(TiB:TiC=1:1) composites prepared by common castingtechnique microstructure and tensile properties of in situ (TiB+TiC)/Ti6242(TiB:TiC=1:1)composites prepared by common casting technique, Mater.Sci.Eng.A,2001,311:142150
    [3] L.J. Huang, L. Geng, H.X. Peng, In situ (TiBw+TiCp)/Ti6Al4V composites with a networkreinforcementss distribution, Mater. Sci. Eng. A,2010,527(24):67236727
    [4] B.V.R. Bhat, J. Subramanyam, V.V.B. Prasad, Pre paration, of Ti TiB TiC&Ti TiBComposites by in Situ Reaction Hot PressingMater. Sci. Eng. A,2002,325(12):126130
    [5] I. Sen, S. Tamirisakandala, D.B. Miracle, U. Ramamurty, Microstructural effects on themechanical behavior of B modified Ti–6Al–4V alloys, Acta Mater.,2007,55(15):49834893
    [6] W.F. Zhang, Material Review,2005,19(3):14
    [7]王晓燕,郭鸿镇,刘铭等,热处理制度对TC18钛合金等温锻件组织性能的影响,稀有金属材料与工程,2008(37):681684.
    [8]毛小南,张鹏省,于兰兰等,BT22合金的成分设计和淬透性的关系研究,稀有金属快报,2006(6):2126
    [9]陈战乾,高斤页,刘新,张金波,王韦琪等,Ti1023合金铸锭铁偏析控制,金属学报,2002,(38):320321
    [10] Rare Metal Materials Processing Handbook, Beijing:Metallurgy Industry Press,1984
    [11]波卢欣,塑性变形的物理基础,冶金工业出版社,1989
    [12] E.L Zhang, S.Y. Zeng, B. Wang, J. Mater. Pro. Tech.,2002,103:125126
    [13] A.R. Eivani, S. Valipour, H. Ahmed, et al, Effect of the size distribution of nanoscaledispersed particles on the zener drag pressure, Metall Mater Trans A,2011,42(4):11091116
    [14] J.H. Gao, R.G. Thompson, B.R. Patterson, Computer simulation of grain growth with secondphase particle pinning, Acta Mater.,1997,45(9):3653
    [15] H.P. Stüwe, A.F. Padilha, F. Siciliano Jr, Competition between recovery and recrystallization,Mater. Sci. Eng. A,2002,333(12):361367
    [16]国标GB/T66112008,钛及钛合金术语和金相图谱
    [1]莱茵斯,.皮特尔斯,钛与钛合金(德),北京化学工业出版社,2005
    [2]朱景川,来忠红,固态相变原理,北京科学出版社,2010
    [3]戴起勋,金属组织控制原理,北京科学出版社,2009
    [4]赵乃勤,合金固态相变,长沙中南大学出版社,2008
    [5]康煜平,金属固态相变及应用,北京化学工业出版社,2007
    [6] R.W. Cahn, P. Haasen, E.J. Kramer, Materials Science and Technology, vol.6/7, WILEY VCHVerlag Gmbh&Co. KGaA,2005.
    [7]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京冶金工业出版社,1994
    [8] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions,J. Phys. Chem. Solid,1961,19(12):3550
    [9] H.E. Cline, Shape instabilities of eutectic composites at elevated temperatures, Acta Meter.,1971,19(6)481490
    [10] S. Marich, Structural stability of the rod like iron iron sulfide eutectic at elevatedtemperatures, Metall. Trans.,1970,1(10):29532958
    [11] D. Mclean, Discussion on Ref.19, J. Iron&Steel Inst,1953,174:360361.
    [12] P. Hellman, M. Hillert, Effect of second phase particles on grain growth, Scand. J. Metall.1975,4(5)211219
    [13] R. Sandstr m, On recovery of dislocations in subgrains and subgrain coalescence, Actametall.,1977,25(8)897904
    [14]闻立时,固体材料界面研究的物理基础,科学出版社,2011
    [15]戚正风,固态金属中的扩散与相变,北京机械工业出版社,1998
    [16] S. Zherebtsov, M. Murzinova, G. Salishchev, et al, Spheroidization of the lamellarmicrostructure in Ti–6Al–4V alloy during warm deformation and annealing, Acta Mater.,2011,59(10):41384150
    [17] K.X. Wang, W.D. Zeng, Y.Q. Zhao, et al, Dynamic globularization kinetics during hotworking of Ti17alloy with initial lamellar microstructure, Mater. Sci. Eng. A,2010,527:2559–2566
    [18] B. Li, P.M. Amaral, L Reis, et al,3D modelling of the local plastic deformation and residualstresses of PM diamond–metal matrix composites, Comput Mater Sci2010,47(4):10231030
    [19] C.J. Boehlert, S.Tamirisakandala, W.A. Curtin, et al, Assessment of in situ TiB whiskertensile strength and optimization of TiB reinforced titanium alloy design, Scr. Mater.,2009,61(3):245248.
    [20] D.R. Ni, I. Geng, J. Zhang, et al, Fabrication and tensile properties of in situ TiBw and TiCphybrid reinforced titanium matrix composites based on Ti–B4C–C, Mater. Sci. Eng. A,2008,478(12):291296.
    [21] S.C. Tjong, Y.W. Mai, Processing structure property aspects of particulate andwhisker reinforced titanium matrix composites, Comp. Sci. Tech.2008,68(34):583601.
    [22] W.J. Lu, D. Zhang, X.N. Zhang, et al, Hrem study of tIb/tI interfaces in a Ti TiB TiC in situcomposite, Scr Mater.2001,44:10691075
    [23]杨序纲,复合材料界面,北京化学出版社,2010
    [24]杜善义,王彪,复合材料细观力学,北京科学出版社,1998
    [25]肖纪美,金属的韧性与韧化,上海科学技术出版社,1980
    [26] B.S. Li, J.L. Shang, J.J. Guo, et al, In situ observation of fracture behavior of in situ TiBw/Ticomposites, Mater. Sci. Eng. A,2004,383(2):316322
    [27] W.O. Soboyejo, W. Shen, T.S. Srivatsan, An investigation of fatigue crack nucleation andgrowth in a Ti–6Al–4V/TiB in situ composit, Mech. Mater.2004,36(12):141159
    [1]国标GB/T66112008,钛及钛合金术语和金相图谱
    [2] I. Sen, S. Tamirisakandala, D.B. Miracle, U. Ramamurty, Microstructural effects on themechanical behavior of B modified Ti–6Al–4V alloys, Acta Mater.2007,55(15):49834893
    [3]莱茵斯,皮特尔斯,钛与钛合金(德),北京化学工业出版社,2005
    [4]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京冶金工业出版社,1994
    [5] R.W.Cahn, P. Haasen, E.J. Kramer, Materials Science and Technology, vol.13/14,WILEY VCH Verlag Gmbh&Co.,2005
    [6] A.R. Eivani, S. Valipour, H. Ahmed, et al, Effect of the size distribution of nanoscaledispersed particle on the zener drag pressure. Metall Mater. Trans. A,2011,42(4):11091116
    [7] P. Bate, The effect of deformation on grain growth in Zener pinned systems, Acta mater.,2001,49(8):14531461
    [8] J.H. Gao, R.G. Thompson, B.R. Patterson, Computer simulation of grain growth with secondphase particle pinning, Acta Mater.,1997,45(9):36533658
    [9] D. Weygand, Y. Breachet, J. Leapinoux, Zener pinning and grain growth: a two dimensionalvertex computer simulation, Acta mater.,1999,47(3):961970
    [10] G. Gottstein, L.S. Shvindlerman, On the retardation of grain boundary motion by smallparticles, Scrip. Mater.,2010,63(11):10891091
    [11] E Rabkin, Zener drag in the case of anisotropic grain boundary energy, Scripta Mater.,1998,39(12):16311637
    [12] H.B. Feng, Y. Zhou, D.C. Jia, et al, Stacking faults formation mechanism of in situsynthesized TiB, Scripta Mater.,2006,55(8):667670
    [13] Y. Chen, H.M. Wang, Growth morphologies and mechanism of TiC in the laser surfacealloyed coating on the substrate of TiAl intermetallics, J Aolloys Compd.,2003,351(12):304308
    [14] S.B. Li, W.H. Xiang, H.X. Zhai, et al, Formation of TiC hexagonal platelets and their growthmechanism, Powder Technology2008,185:4953
    [15] E.L Zhang, S.Y. Zeng, B. Wang, J. Mater. Pro. Tech.2002,103:125126
    [16] E. Nes, N. Ryum, O. Hunderi, On the Zener drag, Acta Metall.,1985,33(1):1122
    [17] H.P. Stüwe, A.F. Padilha, F.J. Siciliano, Competition between recovery and recrystallization,Mater. Sci. Eng. A,2002,333(12):361367
    [18] D. Hull, D.J. Bacon, Introduction to Dislocations,3rdedn. New York: Pergamon.1984
    [19] G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+β)titanium alloys, Mater. Sci. Eng. A1998,243(12):3245
    [20] W.A. Curtin, S.J. Zho, Influence of processing damage on performance of fiber reinforcedcomposites, J Mech Phys Solids.,1995,43(3):343363
    [21] C.J. Boehlert, S.Tamirisakandala, W.A. Curtin, et al, Assessment of in situ TiB whiskertensile strength and optimization of TiB reinforced titanium alloy designScr. Mater.,2009,61(3):245248
    [22] S. Dubey, Y. Li, K. Reece, W.O. Soboyejo, Fatigue crack growth in an in situ titanium matrixcomposite, Mater Sci Eng A.1999,266(12):303309
    [23]杜善义,王彪,复合材料细观力学,北京科学出版社,1998
    [24] Editorial Board of Rare Metal Materials Processing Handbook. Rare Metal MaterialsProcessing Handbook, Beijing:Metallurgy Industry Press,1984
    [25]杨序纲,复合材料界面,北京化学工业出版社,2010
    [26]连建设,江中浩,扬德庄等,短纤维增强金属基复合材料应力分布的剪切滞后分析,复合材料学报,1999,16:94100
    [27] H.L. Cox, J. Appl. Phys, The elasticity and strength of paper and other fibrous materials,1952,3:73
    [28] B. Cotterell, J.R. Rice, Slightly curved or kinked cracks, Int. J. Fract.,1980,16(2):155169
    [29]黄克智,肖纪美,材料的损伤断裂机理和宏微观力学理论,清华大学出版社,1999
    [30] S. Kobayashi, S.M. Ohr. In situ observations of the formation of plastic zone ahead of a cracktip in copper, Scr. Metall,1981,15:345348
    [31] S. M. Ohr, J. Narayana, Electron microscope observation of shear cracks in stainless steelsingle crystals, Phil. Mag. A,1980,41(1):8189
    [32]伍颖,断裂与疲劳,武汉中国地质大学出版社,2008
    [33]范天佑,断裂理论基础,北京科学出版社,2003
    [34]庆波,赵贤平,王斌.高层建筑用钢的屈强比,钢铁,2007,26(11):74-76
    [1] J. Fluhrer, DEFORMTM3D Version5.03User's Manual
    [2]汪大年,金属塑性成形原理,北京机械工业出版社,1986
    [3] R. Kopp,H. Wiegels,金属塑性成形导论,北京高等教育出版社,2010
    [4]戚正风,固态金属中的扩散与相变,北京机械工业出版社,1998
    [5] D.A.波特,K.E.伊斯特林,金属和合金中的相变,冶金工业出版社,1988
    [6]п.и.波卢欣,塑性变形的物理基础,冶金工业出版社,1989
    [7]张俊善,材料的高温变形与断裂,北京科学出版社,2007
    [8]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京冶金工业出版社,1994
    [9] A.R. Eivani, S. Valipour, H. Ahmed, et al, Effect of the size distribution of nanoscaledispersed particle on the zener drag pressure. Metall Mater. Trans. A,2011,42(4):11091116
    [10] P. Bate, The effect of deformation on grain growth in Zener pinned systems, Acta mater.,2001,49(8):14531461
    [11] J.H. Gao, R.G. Thompson, B.R. Patterson, Computer simulation of grain growth with secondphase particle pinning, Acta Mater.,1997,45(9):36533658
    [12] D. Weygand, Y. Breachet, J. Leapinoux, Zener pinning and grain growth: a two dimensionalvertex computer simulation, Acta mater.1999,47(3):961970
    [13] G. Gottstein, L.S. Shvindlerman, On the retardation of grain boundary motion by smallparticles, Scrip. Mater.2010,63(11):10891091
    [14] M.A. Miodownik, Grain boundary engineering with particles, Scrip. Mater.,2006,54(6):993997.
    [15] K. Chang, W. Feng, L.Q. Chen, Effect of second phase particle morphology on grain growthkinetics, Acta Mater.,2009,57(17):52295236
    [16] E. Nes, N. Ryum, O. Hunderi, On the Zener drag, Acta Metall.1985,33(1):1122
    [17] M. Hillert, Inhibition of grain growth by second phase particles, Acta Metal.,1988,36(12):31773181
    [18] E. Grant, A. Portor, B. Ralph, Grain boundary migration in single phase andparticle containing materials, J. Mater. Sci.1984,19(11):35543573
    [19] M.I. Mazurski, G.A. Salishchev, Effect of interface energy anisotropy on thermal stability andtransformation of lamellar, Phys Status Solidi B1995,187:501508
    [20] U. Dahmen, Orientation relationships in precipitation systems, Acta Metall1982,30:6373
    [21] T. Furuhara, T. Ogawa, T. Maki, Atomic structure of interphase boundary of an a precipitateplate in a β Ti[sbnd]Cr alloy, Philos Mag Lett1995,72:175183
    [22] S. Zherebtsov. G. Salishchev, S.L. Semiatin, Loss of coherency of the alpha/beta interfaceboundary in titanium alloys during deformation, Philos Mag Lett2010,90:903914
    [23] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions,J. Phys. Chem. Solid,1961,19(12):3550
    [24] C.Z. Wagner, Elektrochem.65(1961)581
    [25] R.W.Cahn, P. Haasen, E.J. Kramer, Materials Science and Technology, vol.13/14,WILEY VCH Verlag Gmbh&Co. KGaA,2005
    [26]杜善义,王彪,复合材料细观力学,北京科学出版社,1998
    [27]杨序纲,复合材料界面,北京化学工业出版社,2010
    [28] C.J. Boehlert, S.Tamirisakandala, W.A. Curtin, et al, Assessment of in situ TiB whiskertensile strength and optimization of TiB reinforced titanium alloy design, Scr. Mater.,2009,61(3):245248
    [29]连建设,江中浩,扬德庄,董尚利,短纤维增强金属基复合材料应力分布的剪切滞后分析,复合材料学报,1999,16:94100
    [30] H.L.Cox, Br.J. The elasticity and strength of paper and other fibrous materials, Appl. Phys,1952,3:73
    [31] D.A. Porter, K.E. Easterling, Van Nostrand Reinhold Co.1981
    [32] H. Agrawal, A.M. Gokhale, S. Graham, et al, Rotations of brittle particles during plasticdeformation of ductile alloys, Mater. Sci. Eng. A,2002,328(1):310316
    [33] A. Balasundarama, Z.H. Shana, A.M. Gokhalea, et al, Mater. Charac.2002,48:363369
    [1]黄克智,肖纪美,材料的损伤断裂机理和宏微观力学理论,北京清华大学出版社,1999
    [2] Z.G. Zhang, G.Q. Wu, H. Song, et al, Mater. Sci. Eng. A,2008,487:48894
    [3] Q. Xue, M.A. Meyers, V.F. Nesterenko, Acta Mater.,2002;50:57596
    [4] Y. Bai, In: M.A. Meyers, L.E. Murr, editors. New York: Plenum Press,(1981)277
    [5] T.W. Wright, Int J. Plasticity1992;8:583602
    [6] M.M. Britton, P.T. Callaghan, Phys. Rev. Lett.1997,78:4930–4933
    [7] K.A. Hartley, J. Duffy, R.H. Hawley, J Mech Phys Solids1987,35:283–301
    [8] H.B. Mühlhaus, I. Vardoulakis, Géotechnique,1987,37:271–283
    [9] J. Fluhrer, DEFORMTM3D Version5.03User’s Manual
    [10]汪大年,金属塑性成形原理,北京机械工业出版社,1986
    [11]刘正林,摩擦学原理,北京高等教育出版社,2009
    [12] B. Bhushan, Introduction to tribology,北京机械工业出版社,2009
    [13] J.H. Beynon, Tribology International,1998,31:7377
    [14]李超,材料成形过程中的类等势场模拟法研究,西北工业大学硕士论文,2005
    [15]波卢欣,塑性变形的物理基础,冶金工业出版社,1989
    [16]屠振密,李宁,朱永明,钛及钛合金表面处理技术和应用,北京国防工业出版社,2010
    [17] S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Seminatin, Acta Mater.,2011,59:4138
    [18] K.X. Wang, W.D. Zeng, Y.Q. Zhao, Y.T. Shao, Y.G. Zhou, Mater. Sci. Eng. A,2010,527:6193
    [19]顾诵芬,《航空航天科学技术(航空卷)》,山东教育出版社,1998
    [20] Reiner Kopp,Herbert Wiegels,金属塑性成形导论,北京高等教育出版社,2010
    [21]张俊善,材料的高温变形与断裂,北京科学出版社,2007
    [22]毛卫民,赵新兵,金属的再结晶与晶粒长大,北京冶金工业出版社,1994
    [23]王亚男,陈树江,董希淳,错理论及其应用,北京冶金工业出版社,2007
    [24]戚正风,固态金属中的扩散与相变,北京机械工业出版社,1998
    [25]杨序纲,复合材料界面,北京化学工业出版社,2010
    [26]连建设,江中浩,扬德庄,董尚利,短纤维增强金属基复合材料应力分布的剪切滞后分析,复合材料学报,1999,16:94100
    [27] H.L.Cox, Br. J. Appl. Phys, The elasticity and strength of paper and other fibrousmaterials,1952,3:73
    [28]杜善义,王彪,复合材料细观力学,北京科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700