用户名: 密码: 验证码:
超滤膜集成工艺处理滦河水的中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着水环境的逐渐恶化,饮用水标准的逐渐提高,净水厂常规处理工艺的局限性越发凸显,传统处理工艺的升级改造势在必行。目前,超滤膜技术作为第三代城市净水技术的核心技术,受到越来越广泛的关注。本研究结合天津市杨柳青水厂处理工艺的升级改造,以浸没式超滤膜为基础,利用中试系统,对超滤膜集成工艺进行了深入研究,主要研究成果和结论如下:
     (1)膜出水浊度与混凝剂的种类和投加量无关。采用不同混凝剂预处理后的膜出水浊度均在0.075NTU左右,不同强化混凝技术对膜出水有机物的去除效能及对膜污染的控制效能有一定的相似性,均为PACl最优,FeCl_3其次,AS最差。PACl对不同特性有机物的预处理效能优于FeCl_3和AS,尤其在去除亲水性和小分子量有机物方面更具有优势。采用正交试验与加权评分法相结合的方法,综合考虑膜系统出水水质、△TMP及产水率三方面因素,得出膜系统最佳运行参数为:膜通量18L/m~2·h,过滤周期90min,5周期排空一次,反洗流量3.6m~3/h,反洗时间60s,气冲流量3.2m~3/h。
     (2)采用投影寻踪聚类分析法对杨柳青水厂水源水进行了水质分期,将源水划为了三个水质期:低温期(12月~次年3月);高藻期(6月~9月);正常期(4月~5月,10月~11月)。不同水质期源水中溶解性有机物以强疏水性有机物和亲水性有机物为主,其中又以分子量<500Da的有机物所占比例最高。考察膜集成系统对不同水质期水中污染物的去除效能得出,各水质期膜出水浊度均能保持在0.1NTU以下,颗粒物均小于10个/mL,对原水CODMn的去除率在45%左右,对UV254和DOC的去除率均在25%左右,对水中的细菌和藻类物质几乎可以全部去除;研究还发现系统对原水疏水性有机物和大分子量有机物具有较好的去除效能,而对亲水性有机物和小分子量有机物去除效能较差。
     (3)低温期水中溶气析出是影响膜系统稳定运行的主要因素,采用控制初始和上限TMP的运行方式虽然可在短期实现膜系统的稳定运行,但是会增加系统运行的成本和难度,影响运行的连续性,而采用气水分离和自控组合技术,可有效实现水中气泡的收集和排出,避免其对膜系统稳定运行的影响。高藻期经预氯化后会使混凝出水中疏水性有机物和小分子量有机物含量增多,不仅降低了系统对有机物的去除效率而且加剧了膜污染;采用生物操控预处理技术,可以有效降低原水中藻类的含量,出水藻类计数平均为2773万个/L,比未采用生物操控技术时降低了约42.9%,并可在确保膜出水水质的前提下,降低藻类对膜系统的影响,实现膜系统的稳定运行。
     (4)以受污染超滤膜为研究对象,考察了不同水质期EFM的清洗方式为:正常期和低温期以柠檬酸清洗为主,间歇采用次氯酸钠清洗,高藻期则采用相反的清洗方式。对低温期和高藻期受污染膜表面进行SEM和能谱仪分析,得出不同水质期造成膜污染的物质元素基本一致,区别在于低温期膜污染主要为无机物污染,而高藻期为有机物污染;采用原子吸收分光光度法和GC/MS分析法对化学清洗洗脱液进行成分分析后,认为膜表面的无机物污染主要是由Fe盐在膜表面的沉积造成的,而有机污染物主要为小分子量不饱和疏水性芳香族化合物。
     (5)采用实际工程与中试相结合的方式,对比常规工艺、压力式膜工艺、浸没式膜工艺的除污效能和经济性,对污染物的去除效能压力式膜工艺略优于浸没式膜工艺,但相差不大,均优于常规工艺,其中对浊度和耗氧量的去除率约比常规工艺提高了4%和6%,膜出水余铁均<0.05mg/L;一次性产水率均高于85%;运行成本常规工艺较低,分别比压入式膜工艺和浸没式膜工艺节省了32.2%和21.6%.采用构建层次分析模型的方法,从不同工艺的“成本”和“效益”两方面着手,对不同工艺进行综合评价,得到常规工艺、压入式膜工艺和浸没式膜工艺的重要性权重为(0.2518,0.3318,0.4164),按权重越大越优原则,得出浸没式膜工艺相对于其他两种工艺更适合于杨柳青水厂的生产运行。
In recent years, with the deterioration of water environment and the standard ofdrinking water improved, the limitations of conventional technology become apparent,Upgrading and improving the traditional is imperative. Ultrafiltration membranetechnology as a key technology of the third generation water purification technologyhas been widely concerned. This research, based on submerged membrane ultrafiltration,combing with the upgrading treatment technology of Tianjin Yangliuqing Water Plant,using the pilot system, has made a deeply study on ultrafiltration membrane integratedtechnique. The main results and conclusions are as follows:
     (1) The membrane effluent turbidity is irrelevant to the type and dosage ofcoagulants. After pretreatment with different coagulants, the membrane effluentturbidity is about0.075NTU, and there have been the certain similarity for the effluentorganics removal efficiency and the effect on membrane pollution control, that is, PAClis optimal, the FeCl_3is second, and AS is worst. The pretreatment efficiency of PAClfor different characteristic organics is better than FeCl3and AS, especially in the way ofeliminating the hydrophilic and small molecular weight organics. With the applicationof both orthogonal test and weighing scoring method, consideration of the three factorsof effluent quality,△TMP and water production rate, the optimal operating parametersof membrane system obtained: Membrane flux18L/m~2·h, the filter cycle90min,5cycleperiod for one emptying time, backwash flow rate3.6m~3/h, backwash time60s, gasflushing flows3.2m~3/h.
     (2) With the application of projection pursuit clustering analysis method, thesource water has been classified into three water quality periods: low temperatureperiod (from December to March of the next year), high algae period (from June to September) and normal period (from April to May and from October to November).Dissolved organics are mainly composed by strong hydrophobic and hydrophilicorganics in different water quality periods, and among which, the organics of molecularweight <500Da occupies the highest proportion. Through investigation of the pollutantsremoval efficiency of membrane integrated system in different water quality periods,the results show the turbidity of the membrane effluent can be maintained less than0.1NTU, particulate matter is less than10/mL, the removal rate of CODMnis about45%,and the removal rate of UV254and DOC are around25%, and all of the bacteria and thealgae in the water can be almost removed entirely; the membrane integrated systemperforms better in the removal of hydrophobic and large molecular weight organicscontained in raw water, but poorly of hydrophilic and small molecular weight organics.
     (3) In low temperature period, the precipitation of dissolved gas from water is themain factor affecting the stability of the membrane system. Controlling initial and upperlimit TMP can make membrane system stable operation in short period, which mayincrease the cost and difficulty of system operation, however. The integrated applicationof gas-water separation and self-control technologies can effectively collect anddischarge water bubbles, and ensures the stable operation of the membrane system. Thepre-chlorination in high algae period will cause the hydrophobic organics and lowmolecular weight organic content to increase in coagulation effluent, which will notonly reduce the system organic removal efficiency but also exacerbate the membranepollution; However, the biomanipulation pretreatment process can effectively reducethe algae content in raw water. The average content of algae in effluent counts2773million/L, decreased by42.9%. It can reduce the impact of algae on the membranesystem and guarantee the stable operation of the membrane system, without side effectson membrane effluent quality.
     (4) Aiming at contaminated ultrafiltration membrane, after investigation of theEFM cleaning mode in different water quality periods,the study shows: in normal andlow temperature periods, citric acid is mainly used, with intermittent use of sodiumhypochlorite, and in high algae period, the cleaning way is opposite. Through SEM andEDS analysis of contaminated membrane surface in special water quality periods, theconclusion has been drawn that the membrane fouling in different water quality periodsis caused by basically the same material elements. The only difference between them isthat the membrane fouling in low temperature period is mainly caused by inorganicmatters, while the membrane fouling in high algae period is caused by organic matters.After component analysis of eluent by means of atomic absorption spectrophotometry and GC/MS analysis methods, the results show that the inorganic pollution tomembrane surface is mainly caused by the deposited ferric salt on the membranesurface, and that the organic pollutants are mainly consist of small molecular weightunsaturated hydrophobic aromatic compounds.
     (5) With the integrated application of both actual project and pilot test, bycomparing with the pollutant removal efficiency and economy between the conventionalprocess, the pressured membrane process, and the submerged membrane process, theresearch shows that in terms of the pollutant removal efficiency, the pressuredmembrane process performs slightly better than the submerged membrane process, butwithout significant difference. The both are superior to the conventional process. Theremoval rates of turbidity and CODMnof the two membrane processes respectively riseby about4%and6%than the conventional process, and the residual ferric in membraneeffluent is <0.05mg/L. The disposable water production rates of different processes areall above85%. In terms of operating cost, the conventional process is economical,saving by32.2%and21.6%compared with the pressured membrane process and thesubmerged membrane process. Combining with other influence factors, a analytichierarchy model has been established. Considering of “cost” and “benefit”, the eventualconclusion obtained that the weight value of the conventional technology, pressuredmembrane technology and submerged membrane technology is separately(0.2518,0.3318,0.4164). By the principle of “the more weight value, the moreadvantages”, it’s believed that the submerged membrane technology is more suitable forYangLiuQing Water Plant production and operation than the two others.
引文
[1]国家环境保护总局.2009年中国环境质量公报.北京:国家环境保护总局,2010.
    [2]刘尚建,荣宏伟.广州市供水水源分析与改进设想[J].广州大学学报,2005,4(6):552-555.
    [3]朱建军,蒋亚平.嘉兴市饮用水水源现状及其对策探讨[J].浙江水利科技,2009,2:14-17.
    [4]中华人民共和国卫生部.生活饮用水卫生标准(GB5749-2006).2006.
    [5]何文杰.安全饮用水保障技术[M],北京:中国建筑工业出版社,2006.
    [6]吕丽行,黄露霞.国内给水厂常规工艺改造的必要性和措施.工业安全与环保,2004,30(8):12-13.
    [7]白晓慧,张玲,原枯等.饮用水水质安全性及其保障策略[J].中国公共卫生,2004,20(9):1147-1148.
    [8]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [9] Daniel Urfer, Peter M. Huck and Stephen D. J. Booth et al, Biological Filtration for BOM andParticle Removal: ACritical Review [J]. AWWA1997,89(12):83-97.
    [10]刘文君,贺北平等.淮河(蚌埠段)饮用水原水生物接触氧化预处理生产性试验[J].环境科学,1997,18(1):20-22.
    [11]龚明树,殷云兰等.取水口水源水生物预处理中试研究[J].给水排水,1999,25(4):5-8.
    [12]张东,许建华.受污染原水的弹性填料生物接触氧化处理的挂膜试验研究[J].重庆环境科学,2001,23(1):59-62.
    [13] L. Heng, Y. L. Yanling, G. J. Weijia, et al. Effect of pretreatment by permanganate/chlorineon algae fouling control for ultrafiltration(UF) membrane system [J]. Desalination.2008,222(1-3):74-80.
    [14] D. E. Lerda, C. H. Prosperi. Water mutagenicity and toxicology in Rio Tercero(Cordoba,Argentina)[J]. Water Research.1996,30(4):819-824.
    [15]张淑琪,刘彦竹,胡江泳.臭氧氧化自来水生物稳定性研究[J].环境科学,1998,19(5):33-35.
    [16]胡保安.混凝微滤工艺处理微污染原水和低放废水的应用研究[D].天津:天津大学,2008.
    [17]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理,2006,26(6):6-9.
    [18] Maria Tomaszewska, Sylwia Mozia. Removal of organic matter from water by PAC/UFsystem [J]. Water Research,2002,36(16):4137-4143.
    [19] Yoshihiko Matsui, Fraderic Colas, Akira Yuasa. Removal of a synthetic organic chemical byPAC-UF systems II: model application [J]. Water Research,2001,35(2):464-470.
    [20]王琳,王宝贞.城市饮用水膜处理技术[J].膜科学与技术,2001,21(3):53-56.
    [21]李圭白,杨艳玲.超滤-第三代城市饮用水净化工艺的核心技术[J].供水技术,2007,1(1):1-3.
    [22]刘春霞,付婉霞.超滤技术在饮用水处理中的效果和应用前景[J].给水排水.2008,34:121-124.
    [23] Marcel Mulder著,李琳译.膜技术基本原理[M].北京:清华大学出版社,1997.
    [24]邵刚.膜法水处理技术及工程实例[M].北京:化学工业出版社,2002.
    [25]徐铜文,膜化学与技术教程[M].安徽:中国科学技术大学出版社,2003:127-130.
    [26]张捍民,王宝贞. UF膜和MF膜技术在饮用水处理中应用现状的研究[J].哈尔滨建筑大学学报,2000,33(6):58-61.
    [27] Peer M J. Membranes[P]. UK Pat: UK2216134,1989:10-14.
    [28]马蓉,吕锡武,李发战.超滤组合工艺出水及消毒方法[J].水处理技术,2005,31(12):74-75.
    [29] Samer S. Adham et al. Characteristics and Costs of MF and UF Plants [J]. AWWA.1996,88(5):22-31.
    [30]王锦,王晓昌等.超滤膜直接过滤水处理试验研究[J].西安建筑科技大学学报,2001,33(1):52-55.
    [31] M. J. Pryor, E. P. Jaclbs et al. A low pressure ultrafiltation membrane system for potablewater supply to developing communities in South Africa [J]. Desalination,1998,119(1-3):103-111.
    [32] Joseph G. Jacangelo et a1. Assessing Hollow-Fiber Ultraflitration for Particulate Removal [J].AWWA.1989,81(11):68-75.
    [33] Andrew R Gere. Microfiltration Operating Costs [J]. AWWA,1997,89(10):40-49.
    [34] J. A. M. H. Hofman, M. M. Beumer, E. T. Baars, H. M. M. Koppers, J. P. Van der Hoek.Enhanced surface water treatment by Ultraliltration [J]. Water Supply,1999,17(1):371-383.
    [35]孔繁玉,胡海修,吴爱兵.中空纤维超滤膜净化长江水的试验研究[J].重庆工业高等专科学校学报,2004,19(2):10-11.
    [36]黄静,杨艳玲,李星等.不同预处理/超滤工艺的除污特性及氯消毒效能[J].中国给水排水,2012,28(1):22-25.
    [37] Clark, M. M., Heneghan, K. S., Ultrafiltration of lake water for potable water production [J].Desalination,1991,80(2-3):243-249.
    [38]王占金.超滤工艺处理微污染水源水研究[D].济南:济南大学,2010.
    [39]董秉直,曹达文,范瑾初等.天然原水有机物分子量分布的测定[J].给水排水,2000,26(1):30-32.
    [40] Michael R. Collins et al. Removal of Organic Matter In Water Treatment [J]. EnvironmentalEngineering-ASCE.1985,111(6):850-863.
    [41] Committee Report: Membrane process in potable water treatment [J]. AWWA,1992,84(1):59-67.
    [42] G. B. Vanden Berg, C. A.Smolder. Flux decline in ultrafiltration process [J]. Desalination,1990,77:101-133.
    [43]陆晓峰,陈仕意,刘光全等.超滤膜的吸附污染研究[J].膜科学与技术,1997,17(1):37-41.
    [44] J-M Laine M. M. Clark, J. Mallevialle et al. Effect of ultrafiltration membrane. Composition[J]. AWWA,1989,81(11):61-67.
    [45] K K Malogorzata, M N Katarzyna, W Tjomssz. Analyse of membrane fouling in thetreatment of water solutions containing humic acids and mineral [J]. Desalination,1999,126(3):179-189.
    [46] Schafer A I. Microfiltration of colloids and natural organic matter [J]. Journal of MembraneScience,2000,171:151-172.
    [47] LAINE J M, CLARK M M, MALLE J. Ultra filtration of lake water:Effect of pretreatment onthe partitioning of organics, THMFP and flux [J]. AWWA,1990,82(12):82-87.
    [48] Cheng-Fang Lin, Shih-Hsiang Liu, Oliver J Hao. Effect of functional groups of humicsubstances on UF performance [J]. Water Research,2001,35(10):2395-2402.
    [49]陈卫,袁哲等. SUVA值与超滤膜污染的关系[J].华中科技大学学报,2011,39(2):130-132.
    [50] Carroll T,King S, Gray S, et al. The fouling of microfiltration membrane by NOM aftercoagulation treatment [J]. Journal Wat. Res,1997, Vol.31(5):1021-1026.
    [51] G F Crozes, J Gjacagelo, C Anselme. Impact of ultrafiltration operating condition onmembrane irreversible fouling [J]. Journal of Membrane Science,1997,124(1):63-76.
    [52]李伟英.长江原水超滤膜处理工艺研究[D].上海:同济大学,2002.
    [53]董秉直. UF膜与混凝粉末活性炭联用处理微污染原水[J].环境科学,2001,22(1):37-40.
    [54]董秉直,夏丽华,陈艳等. pH对超滤膜的过滤性能的影响[J].膜科学与技术,2006.4,26(2):41-43.
    [55] Schafer A, Schwicker U, Fischer M, et al. Microfiltration of colloids and natural organicmatter [J]. Wat. Res.1998,32(7):2180-2186.
    [56] K K Malogorzata, M N Katarzyna, W Tjomssz.Analyse of membrane fouling in the treatmentof water solutions containing humic acids and mineral [J]. Desalination,1999,126(3):179-189.
    [57] Kerry James Howe. Effect of coagulation pretreatment on membrane filtration performance[J]. Journal AWWA,2001,98(4):133-146.
    [58] J.Brinck, A. S. Jonsson, B. Jonsson et al. Influence of pH on the Adsorptive Fouling ofUltrafiltration Membranes by Fatty Acid [J]. Journal of Membrane Science.2000,164:187-194.
    [59]时钧,袁权等.膜技术手册[M].化学工业出版社.2001,339-340.
    [60]王磊,福士宪一.运行条件对超滤膜污染的影响[J].中国给水排水,2001,17(10):1-4.
    [61] Srijaroonrat P, Julien E, Aurelle Y. Unstable secondary oil/water emulsion treatment usingultrafiltration:fouling control by backflushing [J]. J Membr Sci,1999,159(1):11-20.
    [62] Faibish R S, Cohen Y. Fouling-resistant ceramic-supported polymer membranes forultrafiltration of oil-in-water microemulsions [J]. Jmembr Sci,2001,185(2):129-142.
    [63]郝继华,陈翠仙,李林等.抗污染超滤膜的研制[J].水处理技术,1996,22(6):319-322.
    [64]张凤杰,朱岚.超滤膜改性技术的研究进展[J].大连民族学院学报.2005,7(5):26-29.
    [65]吕少丽,王红军,徐又一.聚醚砜超滤膜的亲水化改性研究进展[J].膜科学与技术,2005,25(3):80-84.
    [66] Hamza A, Pham V A, Matsuura T, et al. Development of membranes with low surface energyto reduce the fouling in ultrafiltration applications [J]. J Membr Sci,1997,131(1/2):217-227.
    [67] Kim K J, Sun Peisong, Chen Vicki, et al. Cleaning of ultrafiltration membranes fouled byprotein [J]. J Membr Sci,1993,80(2):241-245.
    [68] Tsujimoto W, Kimura H, Izu T, et al. Membrane filtration and pretreatment by GAC [J].Desalination,1998,119(1/2/3):323-326.
    [69]陈艳,伏小勇,于晓华等.混凝防止膜污染的研究[J].给水排水,2010,36(1):113-116.
    [70]宋亚丽,董秉直等.臭氧/混凝预处理工艺降低膜污染的研究[J].环境科学,2010,31(7):1516-1518.
    [71]常在功.粉末活性炭吸附对超滤膜污染的影响研究[J].供水技术,2010,4(3):24-27.
    [72]李炜臻,白庆中.无机超滤膜预处理垃圾渗沥液的过程参数分析[J].环境卫生工程,2007,15(4):11-15.
    [73]宋歧宏.超滤设备污染原因分析及对策[J].华北电力技术,2007,3:10-12.
    [74] Grozes G F, Jaeangelo J G, Anselme C. ImPact of ultra-filtration operating conditions onmembrane irreversible fouling [J]. J Membr Sci,1997,124:63-72.
    [75]孙丽华,李星等.浸没式超滤膜运行中膜污染控制方法试验研究[J].哈尔滨商业大学学报,2009,25(6):665-667.
    [76] C. Visvanathan, B. S. Yang, S. Muttamara, et al. Application of Air Backflushing Techniquein Membrane Bioreactor [J]. Water Science and Technology1997,36(12):259-266.
    [77] Wenten I G. Mechanisms and Control of fouling in Crossflow Microfiltration [J]. Filt Sep,1995,(3):252-253.
    [78]郭晓燕,侯毅,张振家.用于自来水深度处理的MF膜污染的清洗方法研究[J].中国给水排水,2006,22(5):99-102.
    [79]张国俊,刘忠州.膜过程中超滤膜污染机制的研究及其防治技术进展[J].膜科学与技术,2001,21(4):39-45.
    [80] Bouhabila E H, Aim R B, Buisson H. Fouling characterisation in membrane bioreactors [J].Separation and Purification Technology,2001,22-23:123-132.
    [81] Kang S K, Choo K H. Use of submerged microfiltration membranes for glass industrywastewater reclamation: pilot-scale testing and membrane cleaning [J]. Desalination,2006,189(1-3):170-180.
    [82]王锦,潘思茹,罗东平等.混凝预处理优化对微滤膜污染的影响[J].北京交通大学学报,2012,36(6):128-132
    [83] Malgorzata Kabsch-Korbutowicz. Application of ultrafiltration integrated with coagulationfor improved NOM removal [J]. Desalination.174(2005):13-22.
    [84] Malgorzata Kabsch-Korbutowicz. Effect of Al coagulant type on naturalorganic matterremoval efficiency in coagulation/ultrafiltration process [J]. Desalination,2005,185(1/3):327-333.
    [85]王晓昌,王锦.混凝-超滤去除腐殖酸的实验研究[J].中国给水排水,2002,18(3):18-22.
    [86]董秉直,曹达文,李伟英等.硫酸铝混凝条件的变化对膜分离特性的影响[J].膜科学与技术,2003,23(6):4-7.
    [87]董秉直,夏丽华,陈艳等.混凝处理防止膜污染的作用与机理[J].环境科学学报,2005,25(4):530-534.
    [88]董秉直,陈艳,高乃云等.混凝对膜污染的防治作用[J].环境科学,2005,26(1):90-93.
    [89] G. T. Seo, S. W. Jang and S. H. Lee. The Fouling Characterization and Control in the HighConcentration PAC Membrane Bioreactor HCPAC-MBR [J]. IWA Specialty Conference,Seoul, Korea,2004:761-768.
    [90] Jacangelo L G, Jaine J M, Cummings E W, et al. UF with pretreatment for removing DBPprecursors [J]. Jour of AWWA,1995,87(3):100-112.
    [91]王磊,石中明. UF膜活性炭组合工艺自来水处理研究[J].过滤与分离,2007,17(4):8-10.
    [92]王琳,王宝贞,王欣泽等.活性炭与超滤组合工艺深度处理饮用水[J].中国给水排水.2002,18(2):1-4.
    [93] Maria Tomaszewska, Sylwia Mozia. Removal of organic matter from water by PAC/UFsystem [J]. Water Research,2002,36(16):4137-4143.
    [94] Joseph G Jacangelo et al. UF with Pretreatment for Removing DBP Precursors. Jour. AWWA,1995,87(3):100-112.
    [95] Sylwia Mozia,Maria Tomaszewska. Treatment of surface water using hybrid processes-adsorption on PAC and ultrafiltration [J]. Desalination,2004,162(1-3):23-31.
    [96]范茂军,张东等.粉末活性炭和超滤膜组合工艺深度处理黄浦江原水[J].沈阳建筑大学学报,2006,22(5):799-803.
    [97]董秉直,陈艳,高乃云等.粉末活性炭-超滤膜处理微污染原水试验研究[J].同济大学学报,2005,33(6):775-777.
    [98]董秉直,曹达文,范瑾初.粉末活性炭-超滤膜处理黄浦江原水的研究[J].上海环境科学,2003,22(11):731-735.
    [99]李星,芦澍,杨艳玲等.粉末活性炭-超滤工艺处理微污染水中试研究[J].中国矿业大学学报,2011,40(4):598-602.
    [100]于莉君,李圭白,赵虎等. PPC强化混凝与超滤联用处理含藻水的研究[J].水处理技术,2009,35(3):53-56.
    [101]桂学明,李伟英,赵勇等.氧化预处理延缓超滤膜污染试验研究[J].水处理技术,2011,37(2):102-105.
    [102] Young G park. Effect of ozonation for reducing membrane fouling in the UF membrane [J].Desalination,2002,147(9):43-48.
    [103]丁莎莎,陈德强,王启山等.预氯化/超滤技术处理滦河水的中试研究[J].中国给水排水,2010,26(13):98-100.
    [104]李星,张琳琳等.不同预处理对超滤膜去除有机物效果的影响[J].北京工业大学学报.2007,33(12):1305-1308.
    [105]董秉直,曹达文,龚海宁等.微絮凝-砂滤-超滤处理淮河原水的试验研究[J].膜科学与技术,2004,24(3):63-66.
    [106]董秉直,曹达文,龚海宁等.混凝和超滤膜联用处理淮河水的中试试验[J].水处理技术,2004,30(6):356-358.
    [107]朱建文,吴浩汀. BAF常规工艺+UF工艺在微污染源水处理中的应用展望[J].工业水处理,2004,24(1):12-16.
    [108]周征宇.曝气生物滤池-超滤组合型净水工艺[D].南京:东南大学,2002.
    [109]李开伟,李伟英,陆俊宇等.混凝-粉末活性炭吸附-超滤工艺去除砂滤池反洗水溶解性有机物[J].膜科学与技术,2011,31(4):60-64.
    [110]于莉君,赵虎,李圭白等.粉末活性炭-混凝-超滤联用处理含藻水的研究[J].中国给水排水,2008,24(19):51-54.
    [111]董秉直,曹达文,范瑾初等.天然原水有机物分子量分布的测定[J].给水排水,2000,26(1):30-32.
    [112] E. L. Bruce, Q. Jiang. Molecular Size Distributions of Dissolved Organic Matter [J]. Journalof Environmental Engineering.1990,116(6):1046-1062.
    [113] Gary L Amy, et al. Comparing Gel Permeation Chromatography and Ultrafiltration for theMolecular Weight Characterization of Aquatic Organic Matter [J]. Jour AWWA,1987,79(1):43-49.
    [114]康雅.水中有机物性状及溶液环境条件对二级处理水超滤过程的影响研究[D].西安:西安建筑科技大学,2006.
    [115]李诚,黄廷林,李志伟等.不同强化混凝技术超滤工艺处理滦河水对比试验研究[J].水处理技术,2012,38(12):127-129.
    [116] Yamamura H, Kimura K, Okajima T, et al. Affinity of Functional Groups for MembraneSurface: Implications for Physically Irreversible Fouling [J]. Environ. Sci. Technol,2008,42(14):5310-5315.
    [117]辛凯,马永恒等.不同有机物组分对膜污染影响的中试研究[J].给水排水,2011,37(1):123-130.
    [118]马腾,李伟英等.超滤组合工艺在线加氯化学清洗中试研究[J].水处理技术,2012,38(5):55-58.
    [119]陶润先,陈立等.在线混凝/超滤工艺处理低温、低浊源水的研究[J].中国给水排水,2011,27(9):67-70.
    [120]刘克琳,王银堂,胡四一.水库汛期分期定量分析方法的应用比较研究[J].水利水电技术,2006,37(9):76-78.
    [121]庄世坚.用投影寻踪技术评价环境质量[J].环境保护,2002,2:25-26.
    [122] Dingding Li, Thanasis Stengos. The partially linear regression model: MonteCarlo evidencefrom the projection pursuit regression approach [J]. Economics Letters,2001,75(2):11-16.
    [123]张欣莉,丁晶,金菊良.基于遗传算法的参数投影寻踪回归在洪水预报中的应用[J].水利学报,2000,20(6):45-46.
    [124]谭永明,孙秀玲.基于加速遗传算法与投影寻踪的水质评价模型[J].水电能源科学,2008,26(6):42-44.
    [125] Kwak D H, Jung H J, Kim S J. Separation characteristics of inorganic particles from rainfallsin dissolved air flotation: A Korean perspective [J]. Separation Science and Technology,2005,40(14):3001-3015.
    [126] Dentel S K. Application of precipitation-charge neutralization model of coagulation [J]. Envir.sci. Technol.,1988,22(7):525.
    [127]李诚.水源水(滦河)各水质期预氧化技术研究[D].合肥:合肥工业大学,2007.
    [128] BoltoB., Dixon D., Eldridge R. et al. The use of eationic polymers as primary eoagulants inwater treatment [J]. Chemieal Water and Wastewater Treatment,1998:417-429.
    [129] M. Le Chevallie, D. N. William. Examining Relationships between Particle Counts andgiardia, cryptosporidium and Turbidity [J]. AWWA.1992,84(12):54-60.
    [130]崔红梅,张素霞,陈克诚等.颗粒计数仪在北京第九水厂水处理中的应用[J].净水技术,2004,23(3):32-37.
    [131]赵虎.超滤膜去除水体藻类试验研究[D].北京:北京工业大学,2008.
    [132]瞿芳术,梁恒,雒安国等.高锰酸盐复合药剂预氧化缓解超滤膜藻类污染的中试研究[J].环境科学学报,2010,30(7):1366-1371.
    [133]于海波,王启山,王薇等.预氯化与强化混凝相结合用于给水处理的试验[J].净水技术,2009,28(1):35-37.
    [134]黄晓东,王占生.氯化反应条件对三氯甲烷生成量的影响[J].中国给水排水,2002,18(6):14-17.
    [135]邓凤.南京某自备水厂除藻对策[J].青岛建筑工程学院学报,2005,26(1):52-54.
    [136] P. Xie. Experimental studies on the role of planktivorous fishes in the elimination ofMicrocystis bloom from Donghu Lake using enclosure method [J]. Chinese Journal ofOceanology and Limnolgy.1996,14(3):193-204.
    [137] J. Chen, P. Xie, D. W. Zhang, et al. In situ studies on the bioaccumulation of microcystins inthe phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu withdense toxic Microcystis blooms [J]. Aquaculture.2006,261(3):1026-1038.
    [138]胡秀琳,廖日红等.鲢鱼放养控制北京城市河湖水华试验研究[J].环境工程学,2007,1(11):29-35.
    [139]付婉霞,李蕾.膜生物反应器中膜的清洗方法和机理研究[J].环境污染治理技术与设备,2004,5(8):43-46.
    [140]莫罹,黄霞,吴金玲等.混凝-微滤膜净水工艺的膜污染特征及其清洗[J].中国环境科学,2002,22(3):258-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700