用户名: 密码: 验证码:
开采条件下德州地区地下水水质演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入20世纪80年代以来,黄河下游冲积平原地区的地下水资源紧缺、水质恶化和环境地质等问题日趋严重,水资源供需矛盾愈来愈突出。这不仅源于气候变化,还与人类活动密切相关。本研究以黄河下游冲积平原的德州地区为对象,以地下水位监测、水质监测和同位素测试分析等为获取源信息的主要技术手段,研究确定地下水的补给来源及径流、排泄方式,揭示地下水降落漏斗形成和演化规律,识别和确定地下水降落漏斗形成与变化的主导因素。分析研究开采条件下地下水在空间和时间尺度上的演化过程与趋势,揭示地下水水质演化机制,阐明地下水水质不良演化的主要因素。针对研究区地下水水质演化新趋势,提出地下水良性演化的水质调控措施。
     德州位于华北平原的中东部地区,属于典型的黄河下游冲积平原孔隙水水文地质区。该冲积平原地区具有咸、淡两种水体共存的独特水环境特征,在这样一种复杂的地下水系统中,淡水天然的水环境条件非常敏感和脆弱。由于人类大规模超量开采地下水,使该区域地下水的水动力场和水化学场发生了较大变化,从而进一步加剧了地下水水质恶化趋势。针对日趋严重的水环境安全问题,开展地下水水质演化研究,可为该地区水资源可持续利用和在持续开采淡水条件下不致使淡水脆弱的水环境条件逐渐恶化以至被破坏等提供科学依据。
     根据研究区1996~2009年地下水动态监测数据,采用地下水动态分析、水文地球化学、同位素技术、灰色模型及数值模型多种方法进行水质演化研究。结果表明:
     (1)研究区浅层潜水在开采条件和自然条件的共同作用下水质不断演化,其中变化比较明显的水质指标是总硬度、矿化度和氯离子等。在区内的齐河县、夏津县苏留庄等一带,浅层潜水的矿化度、总硬度有所降低,水质趋向淡化。而在宁津县、禹城市张庄镇等一带,浅层潜水的矿化度、总硬度明显升高,水质持续咸化。受自然因素和人为因素的影响程度不同,其离子含量变化的幅度也不一样,阴离子含量的变化幅度大于阳离子,其中重碳酸根离子的含量变化幅度最大,其次为硫酸根离子。水中各离子的含量变化导致两种结果:一是改变地下水的水化学类型,二是改变地下水水质。地下水化学类型变化是一个比较复杂的水文地球化学过程,除与自然因素有关外,人类活动的影响越来越明显。
     (2)研究区内深层承压水的阴离子中重碳酸根离子占优势,表现为补给区大气降水淋滤水的特征。阳离子中钠离子占优势,表明其在径流过程中或产生阳离子交换,钠离子置换出大量的钙镁离子,或遭遇多次海侵干扰。深层地下水降落漏斗中心地带以重碳酸钠型水占优势,远离漏斗中心出现重碳酸硫酸钠型、重碳酸氯钠型或重碳酸硫酸氯钠型水。随着深度增加,水化学类型由重碳酸氯钠镁型渐变成氯硫酸钠镁型。钠离子、钙离子、镁离子、氯离子和硫酸根离子由小变大,越过中间的咸水层又逐渐变小,在深部略有回升。总硬度和矿化度在200m处出现峰值后开始回落。
     以德城区深层地下水降落漏斗区为模拟区,选取能较好反映水质演化趋势的矿化度、氯离子特征指标为模拟因子。根据研究区水文地质条件和地下水动态监测资料,建立深层地下水水质演化预测模型。模拟区水均衡计算结果为地下水处于超采状态。深层地下水位动态变化为:深层地下水降落漏斗中心位于德城区西北部的陈庄乡张庄一带,模拟区地下水位呈逐年下降趋势,地下水位由漏斗中心向外围逐渐递增。漏斗中心水位标高从2009年的-126.80m(水位埋深147.91m)降低至2015年的-137.21m(水位埋深158.31m),平均以1.76m/a的速率下降。深层地下水矿化度动态变化为:从2009年到2015年,矿化度小于1000mg/L的区域面积减少至93.48km~2,矿化度大于1200mg/L的区域面积增加至21.22km~2。深层地下水氯离子浓度动态变化为:从2009年到2015年,氯离子浓度小于60mg/L等值线圈闭面积减少至32.02km~2,氯离子浓度小于90mg/L等值线圈闭面积减少至194.47km~2,氯离子浓度大于110mg/L等值线圈闭面积增加至112.02km~2。模拟区深层地下水水质变化趋势是:地下水中矿化度、氯离子浓度随着时间的推移有不同程度的升高,但其深层地下水的化学组分未发生明显变化,且季节性变化较小。这表明:深层地下水水化学动态并不随季节而变化,由于深层地下水的径流十分缓慢或径流量较小,在过去30年的开采过程中,外围地区的地下水还没有明显影响到区内水质的变化;由于持续开采地下水造成水位下降、压力降低,导致咸、淡水之间的水力坡度增大、天然平衡遭到破坏,继而引起深层淡水含水层中矿化度和氯离子水质指标呈现升高趋势。这表明,在持续开采条件下,深层淡水上部普遍存在的咸水体有通过越流作用侵入淡水含水层的趋势。
     研究区地下水水质不良演化的因素主要是:地下水持续性超采、地下水开采布局不合理、含水层疏干空间持续性扩大、咸水体呈现区域性扩散、地下水环境不断恶化。针对地下水水质演化新趋势,研究区应采取分阶段、分层位开采深层地下水,开发利用浅层微咸水资源及咸水淡化等水质调控措施以修复和涵养超采区含水层。
Since the 1980s, the problems of groundwater resources shortage, water quality deterioration and environmental geology in the alluvial plain of downstream of Yellow River has been more and more severe, the conflict between water resources supply and need is also obvious, which have a close relationship to the climate change and mans activity. As Dezhou District chosen the experimental objects, where locates in alluvial plain of downstream of Yellow River, groundwater level monitoring, groundwater quality monitoring and Isotopic samples analysis is main technology for acquisition source information. The research confirms the source of groundwater recharge, underground runoff and groundwater discharge, reveals formation and evolution of Dezhou confined water depression cone, identifies and determines dominant factors inducing formation and evolution of depression cone. The study discusses the evolution progress and the developing trend of groundwater at spatial and temporal scales as well as predicts the evolution mechanism of groundwater, and then illustrates the main reasons for bad evolution of groundwater quality. According to the groundwater quality evolution tendency in study area, water adjustment measures put forward to make for benign evolution of groundwater quality.
     Dezhou City locates in the middle and eastern part of North China Plain, which is a typical Yellow River downstream alluvial plain pore water hydrogeology area, where the salt and fresh water coexists with each other and forms a unique aquatic environment. In such a complex groundwater system, the natural aquatic environment condition of fresh water is rather sensitive and fragile. A large-scale excessive exploitation of groundwater influenced the hydrodynamic force field and hydrochemical field in this area and intensified the trend of water quality deterioration in this area. Aiming at solving this serious aquatic environment security problem, the research of the groundwater quality evolution can provide scientific basis for several areas which will benefit the sustainable usage of water resources in this area and prevent the fragile aquatic environment from deteriorating under continuous exploitation.
     Based on the dynamic monitoring data of groundwater quality in the study area from 1996~2009, the research analyzes the water quality evolution of groundwater by the groundwater dynamic analysis method, hydrogeochemical method, isotope technology, gray model and numerical model etc. Results indicate that the water quality of phreatic water evolves constantly influenced by combined action of exploitation condition and natural conditions, in which the water quality index of total hardness, degree of mineralization and Cl~- changes obviously. The total hardness and degree of mineralization decreases to some extent and the water quality has a tendency of desalinization in the area of Qihe County and Suliuzhuang Town of Xiajin County; whereas the total hardness and degree of mineralization increases to some extent and the water quality has a tendency of salinization in Ningjin County and Zhangzhuang Town of Yucheng City. Influenced by varying degrees of both natural processes and anthropogenic activity, the changing range of ion content is different, which the anions vary more than the cations. The greatest changing range is HCO_3~- and in the next place is SO_4~(2-). The variation of ion content brings about changes of the hydrochemical type as well as changes of groundwater quality. The change of the hydrochemical type is a complicated hydrogeochemical process, on which the impacts of human activities are becoming more and more obvious besides relative to natural processes.
     In the confined water of the study area, there is a superiority of anion HCO_3~- that displays the feature of atmosphere water leaching character. The cation is mainly Na~+. It can indicate that cations exchange happen, which more Ca~(2+) and Mg~(2+) are replaced by Na~+ through runoff process, or many times of marine transgression happen. In the heartland of the confined water drawdown, the hydrochemical type of is mainly HCO_3–Na. At the farthest from the center of the funnel, the hydrochemical type is HCO_3·SO_4–Na, HCO_3·Cl–Na or HCO_3·SO_4·Cl–Na. The hydrochemical type changes from HCO_3·Cl–Na·Mg to Cl·SO_4–Na·Mg with increasing depth. The concentration of Na~+, Ca~(2+), Mg~(2+), Cl~- and SO_4~(2-) increase, gradually decrease through the saline water aquifer, and then recover slightly in deep part. Total hardness and degree of mineralization have emerged a strengthening peak when the water level buried depth is 200 meters, and then gradually fall.
     Confined water depression cone of Decheng district is selected as simulated zone as well as the degree of mineralization and Cl~- taken as the simulated factors which can reflect the changing tendency of groundwater quality evolution well. Based on the hydrogeological condition and the dynamic monitoring data of groundwater, the issue establishes water quality evolution prediction models of the confined water. Water equilibrium calculations results indicate the deep aquifers are over-exploited. As is predicted, the center of confined water depression cone will fix at Zhangzhuang of Chenzhuang village in Decheng District in 2015. The groundwater level of the simulated zone descends gradually by year, meanwhile there is an increasing tendency of groundwater level from the center of confined water depression cone to its outskirts. The groundwater level elevation of funnel center decreases from -126.80m (Buried depth is 147.91m) in 2009 to -137.21m (Buried depth is 158.31m) in 2015, which descending at 1.76m/a. Across the whole region in 2009~2015, areas with the degree of mineralization of less than 1000mg/L will decrease to 93.48km~2. Areas with the degree of mineralization of more than 1200mg/L will increase to 21.22km~2. Areas with the concentration of Cl~- of less than 60mg/L will decrease to 32.02km~2. Areas with the concentration of Cl~- of less than 90mg/L will decrease to 194.47m~2. Areas with the concentration of Cl~- of less than 110mg/L will increase to 112.02m~2.
     The water quality tendency of confined water in the simulated zone is that the degree of mineralization and the concentration of Cl~- show an increase to a certain extent over time whereas the hydrochemical type of confined water has not obviously changed and little seasonal variation. It represents that the hydrochemical type of confined water has not changed with the season. As a result of slow and small underground runoff, the water quality has not yet been obviously affected by periphery water in the process of the exploitation in current 20 years. With the groundwater levels falling and the pressure drop by over-exploitation of the groundwater resource, sharp hydraulic gradient causes damage to natural balance between salt and fresh water, and then the degree of mineralization and the concentration of Cl~- of the deep fresh groundwater in aquifers tends to increase gradually. It indicates that saline water aquifer on the top of deep fresh water aquifer can invade fresh water by leakage under continuous exploitation condition.
     The main reasons for bad evolution of groundwater quality are sustained groundwater over-exploitation, unreasonable exploitation distribution, further expanded depleted space in aquifer, regional spread of saline water and continuous deterioration of groundwater environment. According to the groundwater quality evolution tendency in study area, water quality regulation should be implemented for the aquifer’s restoration and conservation where the groundwater has been excessively exploited in study area, including confined water exploitation according to the stages and layers, exploitation and utilization of the shallow slight saline groundwater resource, saline water desalination and so forth.
引文
[1]张宗祜,沈照理,薛禹群,等.华北平原地下水环境演化[M].北京:地质出版社,2000
    [2]王大纯,张人权,史毅虹,等.水文地质学基础[M].北京:地质出版社,1995
    [3]张宗祜,沈照理.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报:中国地质科学院院报,1997,18(4):337~344
    [4]张宗祜,沈照理.应积极开展人类活动影响下地下水环境的演化及发展的研究[J].水文地质工程地质,1992,19(5):1~2
    [5]彭燕,沈照理.地下水开发利用中的环境地质问题与防御对策[J].广州大学学报:自然科学版,2007,6(2):41~46
    [6]张瑞成.河北东部平原深层地下水中氟增高的一种机制[J].水文地质工程地质,1991,18(1):56~58
    [7]刘桂仪.鲁北平原深层地下水基本特征与水环境问题[J].山东地质,2001,17(5):43~47
    [8]范鹏飞.华北平原地下水演化及预测[J].中国地质科学院院报,1998,19(4):346~352
    [9]张宗祜,张光辉,任福弘,等.区域地下水演化过程及其与相邻层圈的相互作用[M].北京:地质出版社,2006
    [10]张宗祜,施德鸿,任福弘,等.论华北平原第四系地下水系统之演化[J].中国科学(D辑),1997,27(2):168~173
    [11] K.M. Ibe, Pat U. Agbamu. Impacts of human activities on groundwater quality of an alluvial aquifer: a case study of the Warri River, Delta State, SW, Nigeria [J].International Journal of Environmental Health Research, 1999, 9:329~334
    [12]刘桂仪.鲁北平原深层地下水开发与环境问题[J].水文地质工程地质,2001(3):43~45
    [13]段永侯,肖国强.河北平原地下水资源与可持续利用[J].水文地质工程地质,2003(1):2~5
    [14]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质,2003(6):1~5
    [15]黄敬军,陆华.江苏沿海地区深层地下水开发利用现状及环境地质问题[J].水文地质工程地质,2004(6):64~68
    [16]左文喆,万力.天津市平原区咸淡水界面下移特征分析[J].水文地质工程地质,2006(2):13~17
    [17] Yang Dawen, Li Chong, Hu Heping, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data [J].Water Resour. Res., 2004, 40(6):W06502
    [18]仝长水,吴继臣,苗晋祥,等.豫北平原地下水开发利用与水质演化规律[J].水文地质工程地质,2005(5):13~16
    [19]万利勤,徐慧珍,殷秀兰,等.济南西郊水源地和市区泉群的水质变化[J].水文地质工程地质,2008,35(4):17~21
    [20]毕二平,母海东,陈宗宇,等.人类活动对河北平原地下水水质演化的影响[J].地球学报,2001,22(4):365~368
    [21] Ebraheem, M. Abdel-Azim, Senosy, et al. Geoelectrical and hydrogeochemical studies for delineating ground water contamination due to salt water intrusion in the northern part of the Nile Delta, Egypt [J]. Ground Water,1997, 35 (2): 216~223
    [22]王家兵.华北平原深层淡水在开采条件下接受上覆咸水越流补给-以天津平原为例[J].水文地质工程地质,2002(6):35~37
    [23]张戈,杨绍南,李慈君,等.下辽河平原南部明化镇组含水层咸水体运移规律[J].水文地质工程地质,2003(1):59~61
    [24] Kim Yongje, Lee Kwang-Sik, Koh Dong-Chan, et al. Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea[J]. Journal of Hydrology, 2003, 270(3):282~295
    [25]王兰化.天津市平原区深层淡水咸化-咸水下移问题的讨论[J].地质调查与研究,2004,27(3):169~176
    [26] B.J. Hibbs, R. Boghici. On the Rio Grande aquifer: flow relationships, salinization, and environmental problems from El Paso to Fort Quitman, Texas [J]. Environmental & Engineering Geosciences, 1999, 5(1):51~59
    [27] B.J. Hibbs. Water quality and hydrogeologic issues along the City of El Paso/Ciudad Juarez corridor - international case study[J]. Environmental and Engineering Geosciences, 1999, 5(1):27~39
    [28]沈照理,许绍倬.关于地下水地质作用[J].地球科学–中国地质大学学报,1985(1):99~106
    [29]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1999
    [30]张福存,文冬光,郭建强,等.中国主要地方病区地质环境研究进展与展望[J].中国地质,2010,37(3):551~562
    [31]沈照理,郭华明,徐刚,等.地下水化学异常与地方病[J].自然杂志,2010,32(2):83~89
    [32]全国地方性氟中毒监测组.2002年全国地方性氟中毒监测[J].中国地方病学杂志,2004,23(5):448~453
    [33]王根绪,程国栋.西北干旱区水中氟的分布规律及环境特征[J].地理学报,2000,20(2):153~159
    [34] M.L. Gomez, M.T. Blarasin, D.E. Martinez. Arsenic and fluoride in a loess aquifer in the central area of Argentina [J].Environ Geol, 2009, 57:143~155
    [35] G.X. WANG, G.D. CHENG. Fluoride distribution in water and the governing factors of environment in arid north-west China[J]. Journal of Arid Environments, 2001, 49:601~614
    [36] D.M. MacKay, D.L. Freyberg, P.V. Roberts, et a1. A natural gradient experiment on solute transport in a sand aquifer:1. Approach and overview of plume movement[J].Water Resources Research, 1986, 22(13):2017~2029
    [37] D.R. LeBlanc, S.P. Garabedian, K.M. Hess, et a1. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. experimental design and observed tracer movement [J].Water Resources Research, 1991, 27(5):895~910
    [38] C. Zheng, S.M. Gorelick. Analysis of the effect of decimeter scale preferential flow paths on solute transport [J].Ground Water, 2003, 41(2):142~155
    [39] G. Dagan, S.P. Neuman. Subsurface Flow and Transport : A Stochastic Approach [M].Cambridge:Cambridge University Press, 1997
    [40] D. Zhang. Stochastic Methods for Flow in Porous Media:Coping with Uncertainties [M].San Diego, CA:Academic Press lnc, 2002
    [41] T.M. Van Genuchten, E.A. Sudicky. Recent advances in vadose zone flow and transport modeling[G]// Parlange M B and Hopmans J W. Vadose Zone Hydrology:Cutting across Disciplines. New York:Oxrd University Press, 1999
    [42] G. Yeh, V. Tripathi. A critical evaluation of recent developments in hydrogeochemical transport models of reactive muhichemical components[J].Water Resources Research, 1989, 25(1):93~108
    [43] D.A. Barry, H. Prommer, C.T. Miller, et a1. Modeling the fate of oxidisable organic contaminents in groundwater[J].Advances in Water Resources (25th Anniversary Edition), 2002, 25(8~12):945~983.
    [44] N. Z. Sun, Yeh W G. Development of objective-oriented groundwater models:1. Robust parameter identification [J].Water Resources Research, 2007, 43,W02420
    [45]薛禹群,吴吉春.地下水数值模拟在我国-回顾与展望[J].水文地质工程地质,1997,24(4):21~24
    [46]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,26(5):1~3
    [47]薛禹群,谢春红.水文地质学的数值法[M].北京:煤炭工业出版社,1980
    [48]薛禹群,叶淑君,谢春红等.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004(7):7~13
    [49]薛禹群,谢春红.水文地质数值法存在的问题及其对策[J].地球科学进展,1996,11(5):472~474
    [50]谢春红,丁家平.地下水不稳定渗流达西速度计算新方法[J].岩土工程学报,1996,18(1):68~74
    [51]陈崇希,李国敏.地下水运移理论及模型[M].武汉:中国地质大学出版社,1999
    [52]孙讷正等.地下水流的数学模型和数值方法[M].北京:地质出版社,1981
    [53]陈雨孙.地下水运动与资源评价[M].北京:中国建筑工业出版社,1986
    [54]李俊亭.地下水流数值模拟[M].北京:地质出版社,1989
    [55]王秉忱,杨天行.地下水污染–地下水水质模拟方法[M].北京:北京师范学院出版社,1985
    [56]杨天行,付泽周,刘金山,等.地下水流向井的非稳定运动的原理及计算方法[M].北京:地质出版社,1980
    [57]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007
    [58]薛禹群,吴吉春,谢春红.越流含水层系统地下水污染数值模拟[J].地质学报,1997,71(2):186~192
    [59]林学钰,侯印伟,邹立芝等.地下水水量水质模型及管理程序集[M].长春:吉林科学技术出版社,1985
    [60] Xue Yuqun, Xie Chunhong, Wu Jichun. A three-dimensionaI miscible transport model for seawater intrnsion in China[J].Water Resources Research, 1995, 31(4):903~912
    [61]张勇,薛禹群,谢春红等.高浓度条件下的地下水运动方程[J].南京大学报(自然科学版),1999,35(3):309~315
    [62]张永祥.咸水入侵含水层中地下水流及溶质运移模型研究[D].南京:南京大学,1997
    [63] Wu Jiehun,Xue Yuqun, Xie Chunhong et a1. A mathematical model for the description of the transport behavior of exchange cations in aquifer during sea water intrusion[J].Chinese Science Bulletin, 1986, 41(5):431~435
    [64]薛禹群,吴吉春,张云等.长江三角洲(南部)区域地面沉降模拟研究[J].中国科学D辑,2008,38(4):477~492
    [65] Xue Yuqun,Xie Chunhong, Li Qinfen. Aquifer thermal energy storage: A numerical simulation of field experiments in China[J].Water Resources Research, 1990, 26(10):2365~2375
    [66]吴剑锋,朱学愚,刘建立.基于遗传算法的模拟退火罚函数方法求解地下水管理模型[J].中国科学(E辑),1999,29(5):474~480
    [67]李恩羊.渗灌条件下土壤水分运动的数学模拟[J].水利学报,1982,(4):1~10
    [68]张慧春.渗流数值计算方法在农田排水设计中的应用[J].水利学报,1989,(12):1~11
    [69]毛昶熙,段祥宝,李祖贻.渗流数值计算与程序应用[M].南京:河海大学出版社,1999
    [70]孙峰根.水文地质计算的数值方法[M].中国矿业大学出版社,1995
    [71] D.W. Peaceman and H. H. Rachford. The numerical solutions of parabolic and elliptic differential equations [J]. Journal SIAM, 1955, 3:28~41
    [72] G.F. Pinder, J.D. Bredehoeft. Application of the digital computer for aquifer evolution [J].Water Resoures, 1968, 4:1069~1093
    [73]李竞生.地下水流模拟中的强隐式[A].地下水资源评价理论与方法的研究(中国地质学会首届地下水资源评价学术会议论文选编)[C].北京:地质出版社,1982
    [74]张宏仁,李俊亭.有限差分法与有限单元法在渗流问题中的对比[J].水文地质工程地质,1979,2
    [75]张宏仁.解地下水渗流问题的有限差分法[J].水文地质工程地质,1980:1~4
    [76]张宏仁,李俊亭.解地下水流的不规则网格有限差方法[A].地下水资源评价理论与方法的研究(中国地质学会首届地下水资源评价学术会议论文选编)[C].北京:地质出版社,1982
    [77] O.C. Zinekiewicz, K. Morgan.有限元与近似法[M].陶振宗等,(译).北京:人民交通出版社,1989
    [78] I. Javandel I., P.A. Withespoon. Application of the finite element method to transient flow in porous media[J].SPE Journal, 1968, 8:241~252
    [79] S.P. Neuman, T.N. Narasimhan. Mixed explicit-implicit iterative finite element scheme for diffusion-type problems [J]. International Journal for Numerical Methods in Engineering, 1977, 11:309~323
    [80] R.H. MacNea. An asymmetrical finite difference network[J]. Quart Appl Math, 1953, (11):298~310
    [81] B. Heinrich. Finite Difference Methods on Irregular Networks[M].Birkhauser Verlag, 1987
    [82]潘立云,王玉珏,谢营.德州市水资源特点分析[J].水利与建筑工程学报,2009,7(3):78~81,90
    [83]吕其英,宰维东,付静.德州市水环境状况综述[J].海河水利,2009(2):25~26
    [84]祁兴芬,刘福刚.德州市地下水资源开发利用及保护[J].资源环境与工程,2007,21(6):752~754
    [85]王贞国,王彦俊,冯守涛等.德州市深层地下水人工回灌试验浅探[J].山东国土资源,2005(7):82~85
    [86]孙振江,王怀福.德州市地下水开采对生态环境的影响及对策[J].地下水,2009,31(4):30~32,79
    [87]冯娟.德州市深层地下水动态变化与模拟研究[D].青岛:青岛大学,2008
    [88] FENG Juan, LIU Guanqun, ZHAO Quansheng. Application of Visual MODFLOW to the dynamic change and simulation of deep groundwater in Dezhou City, China [J]. Advanced Materials Research, 2010, 113~114:1025~1030
    [89]张缨,周家权,孙桂芬,等.德州市浅层地下水漏斗区现状分析及保护对策[J].水资源保护,2003,19(4):13~14,21
    [90]王彦俊,刘桂仪.德州深层地下水降落漏斗相关模型建立及其应用[J].山东地质,1998,14(2):38~45
    [91]杨丽芝,张光辉,刘中业,等.开采条件下山东德州深层水资源组成及其与地面沉降的关系[J].地质通报,2010(4):589~597
    [92]杨丽芝.德州深层地下水位降落漏斗演变机制与可调控性研究[D].2009
    [93]王小刚,陈松,王秀芹,等.德州市地面沉降成因及防治对策浅析[J].地质灾害与环境保护,2006,17(3):62~66
    [94]孟庆峰,董三强.德州市主要地质灾害有防治对策[J].山东地质,2000,16(2):31~35
    [95]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990
    [96]赵全升,冯娟,安乐生.德州市浅层地下水水质演化[J].吉林大学学报(地球科学版),2010,40(5):1075~1082
    [97]万军伟,刘存富,晁念英,等.同位素水文学理论与实践[M].武汉:中国地质大学出版社,2003
    [98]张光辉,赖勤波.全新世以来华北平原层圈间水循环演化过程与区域地下水演变周期性[J].地球学报,2001,22(4):293~297
    [99]赵全升,冯娟,安乐生.德州市深层地下水水质演化研究[J].地理科学,2009(5):776~772
    [100]吴银海,苏文荣.环境地球化学与健康[M].北京:地震出版社,1987
    [101]陈国阶,余大富.环境中的氟[M].北京:科学出版社,1990
    [102]赵振宏.河北平原深层高氟地下水水文地球化学特征[J].工程勘察,1993(2):28~31
    [103]黎秉铭,黎莉,江成忠.地方性氟中毒环境地球化学病因的探讨[J].中国环境科学,1995,15(1):72~75
    [104]任福弘,曾溅辉,刘文生,等.高氟地下水的水文地球化学环境及氟的赋存形式与地氟病患病率的关系–以华北平原为例[J].地球学报,1996,17(1):85~97
    [105]曾溅辉.氟的水文地球化学行为及其数值模拟[D].北京:中国地质科学院,1994
    [106]刘瑞平.氟在地下水中迁移转化模拟与人体健康效应[D].西安:长安大学,2009
    [107]冯娟,赵全升,蔡文晓.德州地区水文地球化学环境与地方病[J].环境保护,2011(7):95
    [108] E.O. KARTINEN, C.J. MARTIN. An overview of arsenic removal processes [J]. Desalination, 1995, 103:78~88
    [109] R.C. MEENAKSHI, MSHESHWARI. Fluoride in drinking water and its removal [J]. J Hazard Mater, 2006, 137:456~463
    [110] M.R. JEKEL. Removal of arsenic in drinking water treatment [G]//NRIAGU J O (ed).Arsenic in the environment, Part I: cycling and characterization. New York: Wiley, 1994:119~132
    [111] M. BISSEN, F.H. FRIMMEL. Arsenic-a review. Part II: oxidation of arsenic and its remoral in water treatment [J]. Acta hydrochim Hydrobiol, 2003, 31:97~107
    [112] S. CHAKRAVARTY, V. DUREIA, G. BHATTACHARYYA, et a1. Removal of arsenic from groundwater using low cost ferruginous manganese ore [J].Water Res, 2002, 36:625~632
    [113] A.C.Q.LADEIRA, V.S.T. CIMINELLI. Adsorption and desorption of arsenic on an oxisol and its constituents [J]. Water Res, 2004, 38:2087~2094
    [114] H.M. GUO, D. STUBEN, Z. BERNER. Adsorption of arsenic(III)and arsenic(V)from groundwater using naturaI siderite as the adsorbent [J]. Journal of Colloid and Interface Science, 2007, 315:47~53
    [115] S.M. MALIYEKKAL, S.SHUKLA, L. PHILIP, et a1. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules[J].Chem Eng J, 2008, 140:183~192
    [116] X.P. LIAO, B,SHI. Adsorption of fluoride on zirconium(Ⅳ)-impregnated collagen fiber[J]. Environ Sci Technol, 2005, 39:4628~4632
    [117] L. QIONG, H.M. GUO, Y. SHAN. Adsorption of fluoride on synthetic siderite from aqueous solution [J]. Journal of Fluorine Chemistry, doi: 10.1016/j. jfluchem. 2010.02.006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700