用户名: 密码: 验证码:
苏州河生态恢复过程中浮游生物群落动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恢复和重建受损水域生态系统已逐渐成为人们关注的热点,对受损水域生态恢复过程中的生物群落进行研究有助于评价生态恢复进展情况,预测水体生态恢复趋势,为工程方案后续的科学化提供生态学指导。浮游生物群落结构、功能和动态演替与河流的环境特征密切相关,从1996年开始,上海启动了“苏州河环境综合治理工程”,到现在已进入三期整治工程,重大的恢复工程包括有截污、冲污、人工爆气、疏浚等,这些人为强烈干预水体的举措必然会使该流域的浮游生物群落结构、功能及动态出现前所未有的表征。本文以正在生态恢复进行中的苏州河水体为研究对象,开展了浮游生物群落的生态学研究。共设赵屯、黄渡、北新泾和浙江路桥4个采样点,从2005年4月至2006年5月间每月一次进行了14次采样。
     论文对苏州河浮游生物群落的种类组成、密度、优势种、污染指示种、多样性指数等进行了研究,分析了苏州河浮游生物的群落结构特征和时空动态变化规律,并结合环境因子分析了浮游植物群落恢复与水质恢复的动态变化关系。主要研究结果如下:
     1苏州河共发现浮游植物173种。其中蓝藻门25种,绿藻门87种,硅藻门38种,裸藻门11种,黄藻门5种,金藻门6种,隐藻门1种,绿藻门在种类上占明显的优势。从各断面的空间变化上来看,上游断面浮游植物群落结构略好于下游断面。在时间变化上,密度在夏季有明显高于其余三季的现象,夏季的优势种出现了蓝藻门的小颤藻。主要的污染指示种有小颤藻、小球藻、梅尼小环藻、四尾栅列藻、尖镰形纤维藻以及长刺根管藻等。
     2苏州河共发现浮游动物56种。其中原生动物4种,轮虫类21种,枝角类17种,桡足类14种。种类数不多,以轮虫居多。在空间上,上游的赵屯和黄渡断面略高于中下游的北新泾和浙江路桥断面。在时间变化上,浮游动物的群落结构在温度较高的春夏季较温度相对较低的秋冬季复杂。
     3将各环境因子与浮游植物群落结构进行相关性分析,结果显示,水温与浮游植物的种类数和密度有显著的正相关关系;总磷、总氮、COD_(cr)与浮游植物的密度有显著的负相关关系,浮游植物密度的变化相对上述环境因子有一定的滞后性;COD_(cr)对浮游植物的Shannon-Weaver多样性指数、Margalef丰富度指数有显著的正相关关系;氨氮、BOD_5也由于和水温、总氮、总磷和COD_(cr)等理化因子有较为显著的相关性,从而对苏州河浮游植物起到间接的影响作用。但悬浮物对浮游植物群落无显著影响。
     4苏州河浮游植物与浮游动物在种类数变化上呈正相关关系,即浮游植物种类数增多浮游动物种类数也增多,反之亦然;浮游植物与浮游动物在密度变化上呈负相关关系,两者在变化上呈现一滞后现象,即浮游植物密度上升不能造成浮游动物密度同时上升,而会导致浮游动物密度在后期有一个上升的现象。浮游植物与浮游动物的Shannon-Weaver多样性指数和Margalef丰富度指数的变化呈正相关关系。
     5将理化因子的变化与浮游植物的动态变化对比分析,结果发现,随着污染物浓度的升高,蓝藻作为优势类型出现的频率逐渐减少,绿藻和硅藻出现频率增多。且分析发现,理化因子对浮游植物群落结构的影响都存在一定的临界值,其中水温的临界值为15℃,总磷的临界值为0.6mg/L,总氮的临界值为11mg/L(相对于优势型),10mg/L(相对于优势种),氨氮的临界值为6mg/L,COD_(cr)的临界值为30mg/L(相对于优势型),20mg/L(相对于优势种)。另外本研究的结果表明,通过分析小球藻和梅尼小环藻的密度百分比可在一定程度上推断苏州河水质的恢复状况。
The reconstruction and restoration of the damaged aquatic ecosystem has gradually become an essential topic that scientists often discuss about.Through the survey of the biotic community in the water area,it enable us to evaluate the growth and forecast the trends of the restoration process.It also can provide as a guide in ecology for the engineering project afterwards to make it more scientigically sound.The structure,function and dynamic of phytoplankton are closely related to the environment of the rivers.Suzhou Creek's synthetical water-control engineering was created in Shanghai in 1996,till now it has come to its third period.Momentous reconstruction engineering included pollution sweep,pollution cutting,water transfusion,artificial oxygen and dredge-up etc.Hypothetically speaking these violent man-made water interferential actions would make a strange token on phytoplankton's structure,function and dynamics in Suzhou Creek.Therefore,this thesis surrounds the ecological reconstruction of Suzhou Creek as a research object.I began the research by setting four sampling points such as Zhaotun,Huangdu,Beixinjing,Zhejiangluqiao.We had sampled fourteen times once a month from April of 2005 to May of 2006.
     We researched on the composition of species,density,dominant species,ind.icator species,diversity ind.exes of plankton community in Suzhou Creek,analysed its space-time change,we also analysed the dynamic change between plankton community restoration and water quality restoration.The main find.ings are as follows:
     1 173 species of phytoplankton were found in Suzhou Creek,including 25 kind.s of Cyanophyta,87 kind.s of Chlorophyta,38 kind.s of Bacillariophyta,11 kind.s of Phaeophyta,5 kind.s of Xanthophyta,6 kind.s of Chrysophyta,1 kind.of Cryptophyta. Chlorophyta take the obvious predominance.Based on the space change,the phytoplankton community structure of the upriver sampling sites were better than the downriver's.Based on the time change,the density in summer was obviously higher than the other three seasons,and Oscillatoria became the dominant species in summer.Main ind.icator species were Oscillatoria tenuis,Chlorella vulgaris, Cyclotella meneghiniana,Scenedesmus quadricauda,Ankistrodesmus.Faleatus, Rhizololenia longiseta.
     2 56 species of zooplankton were found in Suzhou Creek,including 4 kind.s of Protozoa,21 kind.s of Rotifer,17 kind.s of Cladocera,14 kind.s of Copepoda.The Rotifer was the dominant kind..Baesd on the space change,the zooplankton community structure of the upriver sampling sites were better than the downriver's.Based on the time change,the zooplankton community structure in spring and summer was better than in autumn and winter.
     3 Analyze the correlation between several environmental factors and phytoplankton community structure,the result showed that the water temperature had a marked positive correlation on the species and density of phytoplankton; TP,TN,COD_(cr)had a marked negative correlation on density,there was a lag on the change of density of phytoplankton compared with the change of the environmental factors;COD_(cr)had a marked positive correlation on the Shannon-Weaver ind.ex and the Margalef ind.ex of phytoplankton;NH_3-N,BOD_5 had marked correlation on water temperature,TN,TP,COD_(cr),SO they had an ind.irect effect on phytoplankton community structure;SS had no effect on phytoplankton community structure.
     4 Compared the change of biological factor-zooplankton community structure with the change of phytoplankton community structure,the results showed that the change of species numbers had a positive correlation between zooplankton and phytoplankton,which means the species numbers of phytoplankton grow when the species numbers of zooplankton grow;there was a negative correlation between the density of phytoplankton and zooplankton,the relationship between two of them shows a lag phenomena which means the raise of phytoplankton density can't lead to the raise of zooplankton density simultaneously but can lead to the raise of zooplankton density anaphase.The diversity ind.ex of Shannon-Weaver and Margalef had a positive correlation between phytoplankton and zooplankton.
     5 Compared the change of physic-chemical factors with the change of phytoplankton community structure we found that the appear frequency of Cyanophyta become less,Cyanophyta and Bacillariophyta become more while the concentration of contamination grows.By analyzing it we found the physic-chemical factors had critical values for the influence on the phytoplankton community structure,the water temperature is 15℃,the TP is 0.6mg/L,the TN is 11 mg/L(considering the dominant type),10mg/L(considering the dominant species), the NH_3-N is 6mg/L,the COD_(cr)is 30mg/L(considering the dominant type),20mg/L(considering the dominant species).This research also shows that the recovery of water quality of Suzhou Creek can be deduced by analyzing the density percentage of Chlorella vulgaris and Cyclotella meneghiniana.
引文
[1] Andronilova I N.zooplankton characteristics in monitoring of Lake Ladoga.Hydrobiologia,1996.322: 173-179.
    
    [2] Bay, J. S. , T. L. Grisman, Zooplankton and trophic state relationships in Florida Lakes.Fish. Aquat. Sci.1983,40: 1813-1819.
    [3] Bern L.Particle selection over a broad size range by crustacean zooplankton.Freshwat.Biol,1994,32:105-112.
    
    [4] Cairns J.Jr. The new frontier-rehabilitating damaged ecosystem. Restoration Ecology, 1988,1:1-11.
    [5] Carolyn F. Weber, Stacy Barron, Roxanne Marino,Robert W. Howarth, Gabrielle Tomasky, and Eric A. Davidson.Nutrient Limitation of Phytoplankton Growth in Vineyard Sound and Oyster Pond, Falmouth,Massachusetts. Estuarine and Freshwater Biogeochemistry, 2002,203: 261-263.
    
    [6] Dodson S I. Species richness of crustacean zooplankton in European lakes of different sizes. Verh. Int. Ver.Limnol.,1991, 14,1223-1229.
    [7] Dodson S I, Silva-Briano S. Crustacean zooplankton species richness and associations in reservoirs and ponds of Aguascalientes State, Mexico. Hydrobiologia, 1996, 325:163-172.
    [8] Eun Hye Na, Seok Soon Park. A hydrodynamic and water quality modeling study of spatial and temporal patterns of phytoplankton growth in a strati.ed lake with buoyant incoming flow.Ecological modelling. 2006,199:298-314.
    
    [9] George B. Arhonditsis, Monika Wind..er, Michael T. Brett, Daniel E. Schind..ler. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research 2004,38: 4013-4027.
    
    [10] Hairston N G, Smith F E. Slobodkin L B. Community structure, population control, and competition. Am Nat,1960,94:421-425.
    
    [11] Hanazato T. Interrelations between Microcystis and cladocera in the highly eutrophic Lake Kasumigaura,Japan. Int. Revueges. Hydrobiol., 1991, 76(1): 21-36.
    
    [12] Herzig A. Predator Prey relationships within the pelagic community of Neusiedler Sea . Hydrobiologia, 1995,275:81-96.
    [13] Holm N P, Ganf G G, Shapiro J. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae.Limnol. Oceanogr,1983, 28(4): 677-687.
    [14] Hutchinson G E.A Treatise on Limnology.Introduction to Lake Biology and the Limnoplankton New York Wiley, 1967,2.
    [15] Hutchinson G E.Homage to Santa Rosalia or why are these so many kinds of animals?.The American Naturalist, 1959,93:145-159.
    [16] Huston M A.Biological Diversity:The coexistence of species on changing landscapes.Cambridge: Cambridge University Press, 1994.
    [17] Irigoien X, Harris R P, Verheye H M et al. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature, 2002,419: 387-389.
    [18] James M R,Forsyth D J. Zooplankton-phytoplankton interactions in a eutrophic lake.Plankton Res., 1990, 12(3): 4SS-472.
    [19] Jan Bengtsson. Smaller Zooplankton Species are not Superior in Exploitative Competition: A Comment on Persson. The American Naturalist, 1986,129(6):928~931.
    [20] J. Chattopadhyay, R.R. Sarkar, S. Pal. Dynamics of nutrient phytoplankton interaction in thepresence of viral infection. BioSystems, 2003, 68: 5-17.
    [21] Kiorboe T, Nielsen T G. Regulation of zooplankton biomass and production in a temperate, coastal Ecosystem. 1.Copepods. Limnology and Oceanography, 1994, 39(3): 493-507.
    [22] Miralto A, Barone G, Romano G et al. The insidious effect of diatoms on copepod reproduction.Nature. 1999,402: 173-176.
    [23] M. Temponeras, J. Kristiansen, M. Moustaka-Gouni. Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doirani, Macedonia, Greece. Hydrobiologia, 2000,424:109-122.
    
    [24] Nakata K, Nakano H, Kikuchi H. Relationship between egg productivity and RNA/DNA ratio in Paracalanus sp. in the frontal waters of the Kuroshio. Mar Biol, 1994, 119: 591-596.
    [25] N. Abrantes, S.C. Antunes, M.J. Pereira, F. Goncalves. Seasonal succession of cladocerans and phytoplanktonand their interactions in a shallow eutrophic lake (LakeVela, Portugal). Acta Oecologica, 2006,29: 54-64.
    
    [26] Nilssen J. P. Tropical lakes-functional ecology and future development: the need for a process-orientated approach. Hydrobiologia, 1984, 113: 231-242.
    [27] Paterson M J, Find.lay D L, Salki AG,et al.The effects of Daphnia on nutrient stoichiometry and flamentous cyanobacteria: a mesocosm experiment in a eutrophic lake.Freshwat. Biol, 2002,47: 1217-1233.
    [28] Porter K Selective Grazing and differential digestion of algae by zooplankton.Nature, 1973, 244: 179-180.
    [29] Power M E. Top down and bottom up forces in food webs: do plants have primacy Ecology, 1992:733-746.
    [30] Reynolds C. S. What factors influence the species composition of phytoplankton in lakes of different trophic status Hydrobiologia, 1998,369: 11-26.
    [31] Sevrin-Reyssao J, Pletikosic M.Cyanohaoteria in fish ponds.Aquaculture,1990, 86: 219-229.
    [32]Sladecek V.Rotifera as ind.icators of water quality.Hydrobiologia,1983,100:169-201.
    [33]Sommer U,Gliwicz Z M,Lampert W,et al.The PEG-model of seasonal succession of planktonic events in fresh waters.Arch.Hydrobiot,1986,106(4):433-471.
    [34]Sommer U,Sommer F,Santer B et al.Daphnia versus copepod impact on summer phytoplankton:functional compensation at both trophic levels.Oecologia,2003,135:639-647.
    [35]Sprules.W.G,M.Munawar,Plankton size spectra in relation to ecosystem productivity,size,and perturbation.Fish.Aquat.Sci.1986,43:1789-1794.
    [36]S.S.S.Lau,S.N.Lane.Biological and chemical factors influencing shallow lake eutrophication:a long-term study.The Science of the Total Environment,2002,288:167-181.
    [37]Thomas F.Cuffney,Michael R.Meador,Stephen D.Porter,Martin E.Gurtz.Responses of Physical,Chemical,and Biological Ind.icators of Water Quality to a Gradient of Agricultural Land Use in the Yakima River Basin.Washington.Environmental Monitoring and Assessment.2000,6:259-270.
    [38]Vanni M J,Temte J.Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake.Limnol.Oceanor.,1990,35:697-709.
    [39]Work K A,Havens K.E.Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake.J.Plankton Res.,2003.25(10):1301-1306.
    [40]朝晖,林秋奇等.水网藻在不同的环境条件下对氮、磷的吸收能力.中国环境科学,1999,19(2):257-261.
    [41]陈雪梅.温度对武汉东湖近邻剑水蚤发育及繁殖的影响明.水生生物学集刊,1984,8(4):419-426.
    [42]陈一中,吴国豪,黄解田.苏州河水环境污染现状.上海环境科学,1997,16(1):11-15.
    [43]崔毅,陈碧鹃,马绍赛.乳山湾浮游植物与环境因子的相关关系研究.应用生态学报,2000,11(6):935-938.
    [44]何志辉.中国湖泊和水库营养分类.大连水产学院学报,1987,1:1-10.
    [45]高玉容.京密运河与北京排污河浮游藻类的群落演替与水质污染的关系.环境科学报,1990,10(4):434-444.
    [46]高玉荣.北京4海藻类群落结构特征与水体营养水平的研究,生态学报,1992,12(2):173-180.
    [47]郭春燕.晋阳湖浮游藻类现状及其水质富营养化评价.2006.
    [48]郭沛涌,林育真,李玉仙.东平湖浮游植物与水质评价.海洋湖沼通报,1997,4:37-42.
    [49]韩茂森.淡水浮游生物图谱.农业出版社,1980.
    [50]韩宇.宝圣湖富营养化的综合评价.重庆:西南大学硕士论文,2006:7.
    [51]何志辉,张建国,姜宏.海水盐度对大型搔存货和内察增长率的影响.大连水产学院学报,1996,11(3):1-7.
    [52]洪松等.中国河流水生生物群落结构特征探讨.水生生物学报,2002,26(3):296-305.
    [53]黄海魁,赵家聪.利用浮游动物评价滇池的污染状况.环境科学,1992,13(3):33-36.
    [54]黄加棋,许建东,李少普.台湾海峡北部中、小型浮游动物的分布及其对生物生产力的调控.中国海洋学文集,1997,7:177-181.
    [55]黄玉瑶.内陆水域污染生态学—原理与应用.北京:科学出版社,2001:135-156
    [56]黄祥飞,胡春英,伍悼田.武汉东湖的轮虫.水生生物学报,1985,9(2):129-143.
    [57]胡鸿钧,李尧英等.中国淡水藻类,上海:上海科学技术出版社,1980,4-6.
    [58]金相灿,屠清瑛.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,1990:239-252.
    [59]况琪军,夏宜睁,庄德辉.重庆地区酸化水体中的浮游生物.重庆环境科学,1994,16(5):16-24.
    [60]林秋奇,胡韧,段舜山等.广东省大中型供水水库浮游生物对水库营养状态的指示.生态学报2003,23(6):1101-1108.
    [61]林永水,周雅操.珠江口赤潮生物及其与环境关系.热带海洋,1994,13(4):58-63.
    [62]李共国.杭州西溪河浮游甲壳动物的群落结构.浙江万里学院学报,2000,13(1):18-21.
    [63]李共国,胡天云,吴洁.杭州西溪河浮游动物生态研究.生态学杂志,2001,20(6):29-31.
    [64]李共国,魏崇德,裴洪平.引水对杭州西湖轮虫群落结构的影响.动物学杂志,1998,33(5):1-4.
    [65]李共国,虞左明.大型深水湖泊——千岛湖枝角类的多样性.动物学杂志,2002,37(3):41-45.
    [66]李铁民,马汐平,付保荣等.环境生物资源.北京:化学工业出版社.2003:61.
    [67]刘冬燕,赵建夫等.绥宁河生物修复中浮游植物的生态特征研究.应用生态学报,2005,16(4):703-707.
    [68]刘冬燕,赵建夫,张亚雷等.富营养水体生物修复中浮游植物的群落特征.水生生物学报,2005,29(2):177-183.
    [69]刘健康.高级水生生物学.北京:科学出版社,2000:132-135.
    [70]刘靖.北京城市河湖水体富营养化与蓝藻水华研究.北京:首都师范大学硕士论文,2005:49-50.
    [71]马徐发,熊邦喜,王银东.道观河水库浮游植物的群落结构和现存量.淡水渔业,2004,34(4):11-14
    [72]马正学,宋玉珍,杨茂盛.黄河兰州段的藻类群落用于水质评价的研究.甘肃科学学报,1996,29(1):79-80.
    [73]庞清江,李白英.东平湖水体富营养化评价.水资源保护,2003,19(5):42-44.
    [74]全国渔业自然资源调查和渔业区划淡水专业组.内陆水域渔业自然资源调查试行规范.1980:13-23.
    [75]上海市内陆河流及水系水质常规评价技术规范,上海市环境保护局发布,2005.
    [76]沈韫芬,冯伟松,顾曼如等.河流的污染监测.北京:中国建筑工业出版社,1995,219-223.
    [77]沈韫芬,章宗涉,龚循矩等.微型生物监测新技术.北京:中国建筑工业出版社,1990.
    [78]孙儒泳,李博,诸葛阳等.普通生态学.北京:高等教育出版社,1999:12-100.
    [79]苏州河综合整治办公室.苏州河综合整治方案.上海,1998.
    [80]天津市环境保护科学研究所编.于桥水库富营养化及防治研究.1991:52-72.
    [81]田家怡.山东小清河的浮游植物.海洋湖沼通报,1995,1:38-46.
    [82]王德铭.环境科学研究与进展.北京:科学出版社.1980:23-26.
    [83]王炜.中国环境科学,1985,5(3):31-36.
    [84]汪官余.宝圣湖浮游植物与若干生态因子相互关系的研究.重庆:西南大学硕士论文,2006:2.
    [85]王翠红,张金屯.汾河水库水源河着生硅藻群落的DCCA研究.中国环境科学,2004,24(1):28-31.
    [86]王翠红,张金屯.五台山清水河着生硅藻种间并联合相关分析.环境科学与技术,2004,27(2):32-33.
    [87]王荐.太湖浮游植物与富营养化.无锡教育学院学报,2000,20(3):90-92.
    [88]王新华,纪炳纯等.引滦工程上游浮游植物及其水质评价.环境科学研究,2004,17(4):18-24.
    [89]王新华,吕昀,秦保平等.引滦入津输水工程流域浮游动物和水质评价.南开大学学报(自然科学),2002,35(1)16-22.
    [90]吴波,陈德辉等.苏州河浮游植物群落结构及其对水环境的指示作用.上海师范大学学报,2006,35(5):64-70.
    [91]吴沿友,李萍萍等.红枫湖百花湖水质及浮游植物的变化.农业环境科学学报,2004,23(4):745-747.
    [92]吴玉霖,孙松,张永山等.2000年秋季南黄海浮游植物分布特征及其与浮游动物的关系.海洋与湖沼,2002,浮游动物专辑:26-36.
    [93]谢平,高村典子.武汉东湖桡足类群落结构与生物多样性的变化.水生生物学报,1996,20(增刊):24-29.
    [94]许木启.从浮游动物群落结构与功能的变化看府河——白洋淀水体的自净效果.水生生物学报,1996,20(3):212-220.
    [95]许木启,王子健.利用浮游动物群落结构与功能特征监测乐安江—鄱阳湖口重金属污染.应用与环境生物学报,1996,2(2):169-174.
    [96]杨宇峰,陈雪梅,黄祥飞.武汉东湖桡足类的生态学演变.水生生物学报,1994,18(4):334-339.
    [97]杨宇峰,黄祥飞.武汉东湖浮游动物群落结构的研究.应用生态学报,1994,5(3):319-324.
    [98]于萍.温度光照及种间相互作用对东海典型浮游植物生长的影响.青岛:中国海洋大学硕士论文,2005:10.
    [99]詹玉涛.釜溪河浮游植物分布及其水质污染的相关性研究.中国环境科学,1991,11(1):29-33.
    [100]张觉民,何志辉.内陆水域渔业自然资源调查手册.北京:农业出版社,1991:12-109.
    [101]章宗涉,黄祥飞.淡水浮游生物研究方法,北京:科学出版社,1991.
    [102]钟海秀.漳泽水库的藻类植物及其营养型评价.太原:山西大学硕士论文,2004:6.
    [103]周凤霞,陈剑虹.淡水微型生物图谱,化学工业出版社,2005.
    [104]周遵春.辽海湾.北部海区浮游植物的研究.大连:大连水产学院硕士论文,2003:1-2.
    [105]郑祥民,陈振楼等.苏州河不同河段底泥淤积和污染特征现状.研究报告,华东师范大学,2002.
    [106]郑重著.浮游生物学概论.北京:科学出版社,1964.
    [107]祝玉坷,谢淑琦.从浮游藻类的种群看汾河水系太原河段的污染等.环境科学,1981,2(5):51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700