用户名: 密码: 验证码:
沾化凹陷罗家地区古近系沙三下亚段沉积特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各大油气田勘探程度的不断加深,常规砂岩油气储量逐渐减少,泥页岩油气作为潜在储量越来越受到重视。沾化凹陷泥页岩具有巨大的勘探潜力,但对其沉积特征研究较为薄弱,论文综合运用岩心、测井、录井及相关分析测试等资料,以沉积学、岩石学及层序地层学理论为指导,对沾化凹陷四扣洼陷及其周围地区沙三下亚段泥页岩的类型进行了精细刻画,还原其沉积条件,建立泥页岩沉积的层序格架,并最终恢复了沙三下时期研究区的沉积演化过程。
     在对研究区内两口重点井岩心详细观察描述的基础上,结合岩石薄片、全岩X衍射、扫描电镜、场发射电镜等分析结果,将区内泥页岩细分为七类:纹层状粘结岩、纹层状泥灰岩、纹层状灰质页岩、块状泥岩、粉砂质泥岩、块状泥灰岩和块状灰质泥岩。这七种岩性分别代表着相应的沉积环境变化,具有不同的沉积成因。利用“成因控层”的原理,以气候-陆源输入-相对湖平面变化三因素法为指导,分别选取有机质含量、矿物含量、放射性测井、微量元素等不同的代用指标,重点对两口井(罗67、罗69井)进行了层序地层的划分,建立了研究区内的深水层序格架,将沙三下亚段分别划分为两个层序、六个体系域。
     以罗69井岩心分析资料及测井资料建立了沙三下亚段矿物含量测井解释模型及工区内七大类岩性的测井识别图版。选取研究区内50余口井进行了矿物含量及岩性的测井解释与校正,建立不同体系域的平面矿物含量等值线图及岩相分区图,结合岩相分析、孢粉资料、放射性测井、矿物组合、微量元素分析等,对沙三下时期的沉积环境演化规律进行恢复。认为:1)层序一低位域时期,气候较为干旱,陆源输入较少,碳酸盐岩大量沉积,该期末期,气候变得相对暖湿,底栖藻类大量繁盛,在浅滩地区形成独特的粘结岩,相对湖平面开始缓慢上升;2)层序一湖侵域时期,气候进一步暖湿,陆源输入稍有增强,相对湖平面快速上升,浮游藻类代替底栖藻类大量生长;3)层序一高位域时期,气候暖湿程度减小,陆源输入影响较大,粉砂与杂乱的生物碎屑含量增多;4)层序二时期,气候整体更为暖湿,陆源输入整体增强,湖体深度较大。泥页岩沉积条件特征的研究对泥页岩油气的进一步勘探具有重要的指导意义。
As the development of the major oil and gas in the conventional reservoir hasbeen deeply maturated, the focus of the oil and gas exploration has turned to the shalereservoirs. The shale in Zhanhua Sag has great potential of hydrocarbon and hasbecome important exploration targets. Based on cores, well logs and other testing data,using the theory of sedimentology and sequence stratigraphy, the sedimentary featuresof the different shale types, the depositional environment and sequence stratigraphy ofshale in Lower part of the Third Member of Shahejie Formation, Luojia area, ZhanhuaSag are studied in this paper.
     Seven lithological types which contain laminated boundstone, laminated marl,laminated calcareous shale, massive mudstone, silty mudstone, massive marl andmassive calcareous mudstone are identified using the data of thin section, whole rockX-ray diffraction, scanning electron microscopy, field emission electron microscopyand other analyzing data of the two key wells Luo67and Luo69. The different typesof shale have represented varied sedimentary environment and has distinctivedepositional process. The shale sequence stratigraphic framework is always controlledby their depositional process. Based on this theory, climate, terrigenous clastic influxand relative lake level are taken account as three major influencing factors to controlthe formation of sequence stratigraphy, and indicators like organic matter content,mineral content, radioactive loggings and trace elements are selected to help dividethe sequence stratigraphy. The deep water sequence stratigraphy of study area in theLower part of the Third Member of Shahejie Formation is then built and consists oftwo third-order sequence and six systems tracts.
     A logging interpretation model of mineral content and a logging chart board toidentify seven major lithologies are proposed in this paper, based on the analysis ofthe cores and logging date from well Luo69. More than50wells in study area areintroduced by the above standard model and chart board to gain the mineral contentand lithological data, and therefore the contour map of mineral content andlithological facies distribution can be accurately mapped in plane among different systems tract. Then combined the analysis of lithological facies, pollen data,radioactive loggings, mineral assemblages and trace elements, the sedimentaryevolutional rule of Lower part of the Third Member of Shahejie Formation can berecovered.
     Four periods of sedimentary evolutions are proposed in this paper. Sequence1:(1) The lowstand systems tract (LST): in its early stage, the study area is in dryclimate and has few terrigenous clastics influx and thick limestone deposited, and thenin its later, water slowly rising stage the climate has changed into wet and warmresulting the prosperity of benthic algae and finally caused the unique deposits ofboundstone in certain areas;(2) The transgressive systems tract (TST): it has a morewarm and wet climate than LST with terrigenous clastics influx also increasingslightly. In this period phytoplankton algae have replaced the benthic algae to be thedominant algae;(3) The high systems tract (HST): the climate has become less warmand wet, and the large amount influx of terrigenous clastic has made the increase ofsiltstone and bioclastic deposits.(4) Sequence2: it has presented a more warm-wetclimate, general stronger terrigenous clastic influx and deeper lake level thanSequence1. The depositional characteristics study of shale in study area is of greatimportance to guide the future hydrocarbon exploration.
引文
Anna M. Martini, Lynn M. Walter, et al. Identification of microbial and thermogenic gascomponents from Upper Devonian black shale cores, Illinois and Michigan basins [J]. AAPGBulletin,2008,92(3):327-339.
    Anna M. Martini, Lynn M. Walter, Tim C. W. Ku, et al. Microbial production and modification ofgases in sedimentary basins: A geochemical case study from a Devonian shale gas play,Michigan basin [J]. AAPG Bulletin,2003,87(8):1355-1375.
    James J. Hickey, Bo Henk. Lithofacies summary fo the Mississippian Barnett shale, Mitchell2T.P.Sims well, Wise County, Texas [J]. AAPG Bulletin,2007,91(4):437-443.
    John B. Curtis. Fractured shale–gas systems [J]. AAPG Bulletin,2002,86(11):1921-1938.
    Julia F. W. Gale, Robert M. Reed, Jon Holder. Natural fractures in the Barnett Shale and theirimportance for hydraulic fracture treatments [J]. AAPG Bulletin,2007,91(4):603-622.
    Kent A. Bowker. Barnett Shale gas production, Fort Worth Basin: Issues and discussion [J]. AAPGBulletin,2007,91(4):523-533.
    Kent A. Bowker. Recent developments of the Barnett Shale play, Fort Worth Basin [J]. West TexasGeological Society Bulletin,2003, v.42:4-11.
    Krumbein W. C. Shales and their environmental significance [J]. Journal of Sedimentary Petrology,1947,17(3):101-108.
    Kuuskraa V A. Unconventional natural gas, industry savior or bridge?[R]. Washington, D. C.:EIA Energy Outlook and Modeling Conference,2006.
    McCallister T. Unconventional gas production projections in the annual energy outlook2006: anoverview [R]. Washington, D. C.: EIA Energy Outlook and Modeling Conference,2006.
    Montgomery S L, Jarvie D M, Bowker K A, et al. Mississippian barnett shale, Fort Wort h basin,north-central Texas: gas-shale play with multi-trillion cubic foot potential [J]. AAPG Bulletin,2005,89(2):155-175.
    Papazis, P. K. Petrographic characterization of the Barnett Shale, Fort Worth Basin, Texas [D].Master’s thesis, University of Texas at Austin, Austin, Texas,2005,142p.
    Richard M. Pollastro, Daniel M. Jarvie, et al. Geologic framework of the Mississippian BarnettShale, Barnett–Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas [J].AAPG Bulletin,2007,91(4):405-436.
    Robert G. Loucks, Stephen C. Ruppel. Mississippian Barnett Shale: Lithofacies and depositionalsetting of a deep-water shale-gas succession in the Fort Worth Basin, Texas [J]. AAPGBulletin,2007,91(4):579-601.
    Ronald J. Hill, Etuan Zhang, Barry Jay Katz, et al. Modeling of gas generation from the BarnettShale, Fort Worth Basin, Texas [J]. AAPG Bulletin,2007,91(4):501-521.
    Kelts K.1991.湖相油源岩的沉积环境:绪论[A].汪品先,刘传联,陈嘉树,等.古湖泊译文集[C].北京:海洋出版社,27~51.
    蔡观强,郭锋,刘显太,等.东营凹陷沙河街组沉积岩碳氧同位素组成的古环境记录[J].地球与环境.2009,37(4):347-355.
    曹建廷,王苏民,沈吉.2000.近千年来内蒙古岱海气候环境演变的湖泊沉积记录[J].地理科学,20(5):391~395.
    陈章明,张树林,万龙贵.古龙凹陷北部青山口组泥岩构造裂缝的形成及其油气藏分布预测[J].石油学报,1988,9(4):5-7.
    邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993,78-94.
    邓宏文,钱凯.深湖相泥岩的成因类型和组合演化[J].沉积学报,1990,8(3):1-18.
    董冬,杨申镳.济阳坳陷的泥质岩类油气藏[J].石油勘探与开发,1993,20(6):15-22
    侯贵廷,钱祥麟,蔡东升.渤海湾盆地中、新生代构造演化研究[J].北京大学学报(自然科学版),2001,37(6):846-853.
    侯贵廷,钱祥麟,宋新民.渤海湾盆地形成机制研究[J].北京大学学报(自然科学版),1998,34(4):504-511.
    姜秀芳.济阳坳陷湖相碳酸盐岩沉积主控因素[J].油气地质与采收率,2011,18(6):24-30.
    姜在兴,李华启,等.层序地层学原理及应用[M].北京:石油工业出版社,1996.
    姜在兴.沉积学[M].北京:石油工业出版社,2003.
    李登华,李建忠,王社教等.页岩气藏形成条件分析[J].天然气工业,2009,29(5):22-26.
    李新景,吕宗刚,董大忠等.北美页岩气资源形成的地质条件[J].天然气工作,2009,29(5):27-32.
    李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发.2007,34(4):392.
    李雪,祝传林,操应长.深水沉积的层序地层单元划分方法探讨-以东营凹陷牛38井为例[J].江汉石油学院学报.2004,26(2):15-17.
    李勇,钟建华,温志峰,等.济阳坳陷泥质岩油气藏类型及分布特征[J].地质科学.2006,41(6):586-600.
    李玉成,王苏民,黄耀生.气候环境变化的湖泊沉积学响应[J].地球科学进展,1999,14(4):412-415.
    刘传联,舒小辛,刘志伟.济阳坳陷下第三系湖相生油岩的微观特征[J].沉积学报,2001,19(2):293-297.
    刘传联,徐金鲤.2000.济阳坳陷下第三系颗石藻类化石的分布及与油气的关系[J].海洋地质与第四纪地质,20(3):73~76.
    刘传联.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J].沉积学报,1998,16(3):109-114.
    刘鑫金.沾化凹陷四扣洼陷及周边沙四段礁灰岩油藏成藏机理研究[硕士学位论文].东营:中国石油大学(华东),2009.
    刘占红,李思田.沉积记录中的古气候周期及其在高频层序形成中的意义[J].地质科技情报.2007,26(2):31-36.
    刘招君,孙平昌,贾建亮,等.陆相深水环境层序识别标志及成因解释:以松辽盆地青山口组为例[J].地学前缘.2011,18(4):171-180.
    卢粤晗,孙永革,翁焕新.湖泊沉积有机质的地球化学记录与古气候古环境重建[J].地球化学,2004,33(1):20-26.
    马晖.济阳坳陷下第三系构造特征及其对层序的控制作用[博士学位论文].广州:中国科学院研究生院,2005.
    聂海宽,张金川,张培先,等.福特沃斯盆地Barnett页岩气藏特征及启示[J].地质科技情报,2009,28(2):87-92.
    帅德福,王秉海主编.中国石油地质志(卷六):胜利油田[M].北京:石油工业出版社,1987.
    宋梅远.渤南洼陷泥岩裂缝油气藏储层发育及成藏规律研究[硕士学位论文].东营:中国石油大学(华东),2011.
    王冠民,钟建华,马在平.湖泊纹层的同生化学变化对古环境恢复的影响[J].地学前缘,2003,10(4).
    王冠民,钟建华.湖泊纹层的沉积机理研究评述与展望[J].岩石矿物学杂志,2004,23(1):44-47.
    王冠民.古气候变化对湖相高频旋回泥岩和页岩的沉积控制-以济阳坳陷古近系为例[D].博士论文,中国科学院广州地球化学研究所,2005.
    王慧中,梅洪明.东营凹陷沙三下亚段油页岩中古湖泊学信息[J].同济大学学报,1998,26(3):315-318.
    王慧中.1993.湖相沉积韵律及其研究[A].汪品先,刘传联.含油盆地古湖泊学研究方法[C].北京:海洋出版社,36~57.
    夏青松,田景春,倪新锋.湖相碳酸盐岩研究现状及意义[J].沉积与特提斯地质.2003,23(1):106-114.
    张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    卓勤功,宗国洪,郝雪峰,等.湖相深水油页岩段层序地层学属性及成油意义-以济阳坳陷为例[J].2003,10(1):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700