用户名: 密码: 验证码:
变节距排缆减张力液压绞车的系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代绞车朝着缆绳越来越长、张力越来越大的方向发展的过程中,绞车的速度控制精度、缆绳的有效保护及变节距排缆成为制约现代绞车发展的瓶颈。针对上述遇到的问题,本文提出了一种变节距排缆减张力液压绞车的方案,并对绞车电液控制系统、减张力机构、变节距排缆系统进行了深入的理论和试验研究,具有重要的理论价值和实际工程意义。
     本课题针对液压绞车的结构特点,分析其液压系统的构成,建立起了阀控马达液压绞车系统的数学模型。通过应用减张力机构的方案,解决了绞车在应用过程中出现的缆绳损坏的问题,该方案应用摩擦学原理,使缆绳和摩擦轮之间的摩擦力吸收掉了缆绳上的大部分张力,在缆绳缠绕到储缆筒上时缆绳上的张力能够保持在一个较小的范围,有效的保护了缆绳。为了满足特殊结构缆绳的使用要求,本文还提出了摩擦轮的防滑设计和摩擦轮变摩擦系数的设计方案。在变节距排缆系统的研究过程中,应用PLC作为控制器,光电编码器作为速度反馈单元,将缆绳直径及储缆筒转速作为系统输入,通过PLC运算后功率放大器可得到相应的输出来控制排缆丝杠的转速。当缆绳直径发生变化时,排缆丝杠的的排缆节距也会做出相应的调整,使得绞车的排缆机构能够适用不同直径的缆绳。在绞车速度的伪微分反馈控制环节,首先进行了伪微分反馈控制器的设计,并阐述了控制器参数的设计方法,针对末级能量提供单元的过驱动问题,应用了抗饱和积分器的方案。
     在理论研究的同时还设计了绞车调速系统及变节距排缆系统的试验模型,并进行了相应的试验。理论研究和试验结果均表明,应用了伪微分反馈控制算法的绞车调速系统具有响应速度快、参数调整简单、抗干扰能力强等优点;由伺服电机驱动排缆丝杠的变节距排缆系统,排缆丝杠能够紧紧的跟随储缆筒的转动,有效的避免了外层缆绳切入内层的问题。当缆绳直径或储缆筒的转速发生变化时,排缆丝杠能够作出快速的响应,满足了绞车变节距排缆的要求。
As the length and tension requirement of cable is higher and higher. Common winch faces several problems: speed accuracy is not high; no efficient way to protect the cable; the winch can not adapt for different diameter cables. To solve above problems, a solution of variable pitch cable tension-reduction hydraulic winch is proposed. The research of this paper is essential both in theory and engineering.
     The paper analyze the structure of the winch hydraulic system firstly, then establish the mathematical modeling of valve-controlled motor system. Based on the tribology theory, this paper puts forward a tension-reduction unit. Most tension on the cable is transferred to friction between cable and wheel, the cable will be protected well during working progress. To meet the requirement of cable with special structure, the proposals of deslick wheel and friction wheel of variable friction coefficient are mentioned. In the variable pitch cable system, PLC is the main controller and photoelectric encoder works as the speed feedback unit. Input value of PLC includes the diameter of cable and the speed of cable drum, after the calculation of PLC the power amplifier will get a corresponding output which can control the rotary speed of the cable lead screw. Speed of the motor which drive cable lead screw will be changed when diameter of cable is modified. The winch of this paper can adapt to different diameter cables. During the algorithm research progress, introduce an efficient way to calculate the parameter of the pseudo feedback controller. To solve override problem of the last stage energy provide unit, the anti-saturation integrator is applied.
     Based on the theory researched in this paper, the experiment models of winch speed control system and variable pitch cable system are designed. Both theoretic and experimental research demonstrate following conclusions. The winch speed control system with PDF algorithm has fast response, easy parameter adjustment, excellent disturbance-handling ability. The variable pitch cable system which driven by servo motor can follow the rotation of cable drum strictly and meet the requirement of different diameter cables.
引文
[1]李耀文.液压传递讨论会论文集[C].北京:北京农科院出版社,1980.83~142.
    [2]鄢华林,王辉.一种新型PDF控制算法在离合器远程控制上的应用研究.科学技术与工程,2008,9
    [3] Michael Markey. Single Drum Winch Design[J]. Markey Machinery Articles And Specification Data Sheets: chapter10.
    [4]王意.静液压传动工程机械的制动系统[J].工程机械.2000,(1).38~40.
    [5]王积伟,章宏甲,黄谊.液压与气压传动[M].机械工业出版社. 2005.6
    [6]贾铭新.液压传动与控制[M].北京:国防工业出版社. 2006.4
    [7]宋德玉、王桂梅等,可编程序控制器原理及应用系统设计技术,北京:冶金工业出版社,2001
    [8]廖常初PLC编程及应用,机械工业出版社,2002.9
    [9]赵继敏,徐国楔,姜淑忠.智能化电线电缆收徘线的研究[J].微特电机.1996.1
    [10]薄玉宝. DJ型电测绞车自动排缆系统探讨[J].石油矿场机械.1997.1
    [11] Sauer. Section 4 Transmission Circuit Recommendations [M]. 1997.
    [12] Jiang Jiahe, Yu Tongwu, Song Zishan . Study of digital control in electrohydraulic servo loading system[J]. Journal of Beijing University of Aeronautics and Astronautics. 2000
    [13]李宇杰,陈强.基于PID神经网络的电液比例速度控制系统的研究.科技广场,2008. 5
    [14] Lin, S.-C. Ren, S. An analytical design of electrohydraulic position servo systems with variable structure[J]. Engineering science and mechanics . 1983(01)
    [15]李俊明,叶树.全液压电缆自动收放机[J].工程机械,1994
    [16] Yamada Hironao, Tsukamoto Tetsuya, Muto Takayoshi. Digital control of electrohydraulic servo system operated by differential pulse width modulation[J]. Control Engineering. 1993
    [17]丁志刚.一种新型的通用自动绕线机[J].电工技术杂志.1993
    [18]朱鹏程,鄢华林.一种恒线速度控制的液压绞车系统设计[J].液压与气动. 2008(5):1~3
    [19]于庆广,可编程控制器原理及系统设计,清华大学出版社,2004.4
    [20]刘宇辉,蒲红,姜继海.应用二次调节技术的液压绞车性能研究[J].佳木斯大学学报. 2005(9):259~262
    [21]赵志魁,黄永宣.微机控制线缆自动排线系统探讨[J].焦作工学院学报.1996.8
    [22] NAIRC圆光栅编码器技术说明[Z].中国科学院南京天文仪器研制中心
    [23] Asokan.T. Singaperumal.M. Seet.G.Performance analysis of an electrohydralic impedance controller for robotic interaction control[J]. Advanced Robotics. 2003(8)
    [24]龚建伟熊光明,Visual C++/Turbo C串口通信编程实践,北京:电子工业出版社,2004.10
    [25]杭小树症芳. Windows下的多行串行通信开发方法.微型电脑应用.1998(5):69~71
    [26]周万里,曾文火,VC环境下三菱PLC与微机的串行通信[J].计算机与信息技术.2005.8
    [27]孙文质.液压控制系统.国防工业出版社.1990
    [28]王春行.液压伺服控制系统.北京:机械工业出版社.1989
    [29]刘长年.液压伺服系统的分析与设计.北京:科学出版社,1985
    [30]曾文火.反馈控制系统算法比较.华东船舶工业学院学报,1993
    [31]鄢华林,曾文火.工业机器人控制系统中的伪微分反馈控制[J].机床与液压.1997.(6)
    [32]朱鹏程,鄢华林.二阶被控对象抗积分饱和PDF控制[J].江苏科技大学学报. 2008.12
    [33]胡俊.双动过天顶舰炮PDF电液位置控制研究.上海:同济大学攻读博世学位论文,1999
    [34]鄢华林,王辉.液压高速拖曳试验系统设计.液压与气动,2009.3
    [35]王明兴.比例方向控制回路中的压力补偿.液压气动与密封,2002.8
    [36]翟庆光,聂杰,康岳伟.深海取样绞车牵引卷筒上钢缆张力分析.海洋技术,2008.6
    [37]沈少杰,蒋庆良.拖线阵减张力绞车.声学与电子工程,1999
    [38] Hsia T C. A New Technology for Robust Control of Servo System. IEEE Trans. On Industrial Electronics. 1989,36(1):1~7
    [39] Richard M. Phelan. Automatic Control System. Ithaca[M], New York: Cornell University Press, 1977
    [40]廖俊,林建亚.基于神经网络的自适应模糊控制器[J].信息与控制. 1995(5):312~315
    [41]叶定齐.排缆机构在电缆与绞车中的应用.水雷战与舰船保护,2004(3)
    [42]陈薇,毛丽青.链传动排缆装置.机械工程师,2002(2)
    [43] Aiping Wang, Puya Afshar and Hong Wang. Complex stockastic systems modeling and control via iterative machine learning[J]. Neurocomputing. 2008, (71)
    [44] Kang Min, Wang Chaoqun, Xu Zhengrong, Gu Zhixuan. Study on Numerical Controlled Ultrasonic Contour Evolution Mahine Technology[C]. International Conference on Frontiers of Design and Manufacturing(ICFDM'2006). 2006
    [45]岳利明.液压绞车系统的动态分析[J].矿山机械.1994.1
    [46]陶永华等.新型PID及其应用[M].北京机械工业出版社,1998
    [47] Suzuki, Katsumasa, Ukita, Akihiro. Improving characteristics of electrohydraulic servo system by using DSP[J]. Transactions of the Japan Society of Mechanical Engineers, 1995
    [48]李运华,史维祥,林廷坅.近代液压伺服系统控制策略的现状与发展[J].液压与气动.1995:3~6
    [49]韩宝彬.PC与PLC在自由口模式下的串口通信[J].通信技术,2003,(5):25~26
    [50] Jiang Zhiming, Wang Shengwei, LinTingqi .Variable structure control of electrohydraulic servo systems using fuzzy CMAC neural network[J]. Transactions of the Institute of Measurement & Control. 2003(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700