用户名: 密码: 验证码:
铅锌矿区深色有隔内生真菌提高植物耐Pb机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在调查陕西凤县铅硐山铅锌矿区不同程度铅锌污染样地植物丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)和深色有隔内生真菌(Dark Septate Endophytes,DSE)分布的基础上,从DSE侵染率较高的沙打旺(Astragalus adsurgens)根中分离DSE,经过形态特征和分子鉴定、回接宿主和重金属耐性测定,筛选出具有较强Pb耐受性的菌株——柱孢顶囊壳(Gaeumannomyces cylindrosporus)。研究了该菌株对Pb胁迫的响应和不同pH、温度、Pb浓度、培养时间对该菌株Pb吸附特性的影响以及Pb胁迫下接种该菌株对玉米幼苗生长特性、光合特征和Pb吸收和转移的作用。获得以下主要结论:
     1.铅锌污染区AMF和DSE侵染特征
     对陕西凤县铅锌矿区4个不同程度铅锌污染样地植物根系的AMF和DSE资源调查发现,在调查的20科36种常见植物的55个根样中,49个(占总样品的89.1%)观察到AM典型结构,且Arum型菌根占优势;孢子密度与AMF侵染率之间没有显著相关性(P>0.05);所调查根样中有46个被DSE侵染,占样品总数的83.6%,AMF和DSE同时侵染的根样有40个,占调查样品总数的72.7%,且DSE侵染率与土壤Zn含量显著正相关(P<0.05)。结果表明,AMF和DSE能够广泛存在于铅硐山铅锌矿区,尤其是DSE表现出较强的耐受性和适应性。
     2. AMF、DSE与土壤理化性质的关系
     对铅硐山尾矿区沙打旺(A. adsurgens)、山蒿(Artemisia brachyloba)、鹅绒委陵菜(Potentilla anserina)、芦苇(Phragmites australis)、博落回(Macleaya cordata)和狭叶米口袋(Gueldenstaedtia stenophylla)6种优势植物根系AMF和DSE侵染率、根际土中球囊霉素含量与土壤理化性质(Pb、Zn含量、pH、速效N、速效P、速效K、有机质)的关系进行研究。结果表明,AMF侵染率与土壤有机质含量和Zn在植物体的转运系数显著负相关,与速效P含量极显著负相关;DSE侵染率与Pb在植物体的转运系数呈显著负相关。冗余分析表明,土壤Pb含量是影响AMF群落组成的决定性因素;典范对应分析发现,土壤有机质是影响根内AMF群落组成的关键因子。
     3. DSE的鉴定和重金属耐性菌株的筛选
     从尾矿优势植物沙打旺(A. adsurgens)根内分离得到5株DSE,回接宿主后在根内形成有隔菌丝和典型微菌核结构,经形态特征和分子鉴定,5株DSE为柱孢顶囊壳(Gaeumannomyces cylindrosporus)、菊异茎点霉(Paraphoma chrysanthemicola)、甘瓶霉(Phialophora mustea)、沙门外瓶柄霉(Exophiala salmonis)和枝状枝孢菌(Cladosporiumcladosporioides)。对5株DSE的最低抑制浓度(MIC)和半致死浓度(EC50)等指标的测定结果表明,柱孢顶囊壳(G. cylindrosporus)对Pb有较强的耐受性,其最佳培养条件是25°C、120rpm和pH5.0,最佳碳源是甘露醇,最佳氮源是蛋白胨。
     4. G. cylindrosporus对Pb胁迫的响应
     不同浓度Pb胁迫对G. cylindrosporus菌落特征有影响,在0~1.0mg/mL的Pb~(2+)浓度范围内,菌落颜色随着Pb浓度的升高先变黑后变黄;Pb胁迫引起菌丝卷曲,形成典型的菌丝圈,菌丝圈数量和卷曲程度与Pb浓度没有显著相关性。液体培养条件下,低浓度Pb胁迫下菌丝发生缠绕和粘连,胁迫加剧后,菌丝变形膨胀。
     在0~0.3mg/mL的Pb~(2+)浓度范围内,G. cylindrosporus菌丝黑色素含量随着Pb浓度增加而逐渐升高,在0.4和0.5mg/mL的胁迫浓度下,菌丝黑色素含量下降,但仍分别为对照的4.1和3.5倍。低浓度Pb胁迫下G. cylindrosporus菌丝内可溶性蛋白和还原型谷胱甘肽含量、SOD和CAT活性均明显提高,高浓度Pb胁迫则引起下降。SOD活性与Pb浓度呈显著正相关,说明SOD在抵抗Pb胁迫的过程中发挥重要作用。
     5. G. cylindrosporus对Pb的吸附特性
     G. cylindrosporus对Pb有较强的吸附能力,菌丝在50~500mg/L的Pb~(2+)浓度范围内,G. cylindrosporus菌丝吸附量随着Pb~(2+)初始浓度的增加而提高;非活性菌丝的吸附量和吸附率均高于活性菌丝。当温度为30°C和pH5.0时,活性和非活性菌丝均达到最大吸附量,在80~140rpm的转速范围内,非活性菌丝对Pb的吸附量随着转速的提高而逐渐增加,活性菌丝在120rpm时达到最大吸附量。傅立叶红外光谱分析发现,G.cylindrosporus菌丝吸附Pb后C-O键、C=O键和N-H键的伸缩振动峰以及N-H键的面内弯曲振动峰的锋面积增大,表明菌丝糖类和蛋白质成分发生改变。
     6. G. cylindrosporus对植物生长和Pb吸收和转移的影响
     不同浓度Pb胁迫下接种G. cylindrosporus于玉米,苗高、地茎、生物量和根系活力都明显高于对照,高浓度Pb胁迫效果更为明显。接种的幼苗在1000mg/kg的Pb~(2+)浓度下,相对含水量提高19.3%,水分饱和亏降低了8.5%,提高了叶片水分利用效率。在1000mg/kg的Pb~(2+)浓度下,接种的幼苗叶绿素a、叶绿素b和总叶绿素含量分别为比对照提高66.9%、36.8%和59.5%;在500和1000mg/kg的Pb~(2+)浓度下,接种的幼苗净光合速率分别为对照的2.14和4.11倍,蒸腾速率分别比对照提高76.2%和114.3%,胞间CO2浓度分别为对照的45.3%和39.0%;在1000mg/kg的Pb~(2+)浓度下,接种幼苗的Fv/Fm值是对照的11.3倍。
     接种G. cylindrosporus后玉米对Pb的吸收量明显增加,500和1000mg/kg的Pb~(2+)浓度下分别是对照吸收量的1.17和1.36倍。接种G. cylindrosporus使更多的Pb积累在植物根部,阻止了Pb向地上部的转移,降低了地上部的Pb含量,从而缓解了Pb对植物的毒害作用。盆栽条件下,G. cylindrosporus侵染率随着Pb~(2+)浓度的增加而提高,与野外调查结果一致。
In this study, we investigated the distributions of arbuscular mycorrhizal fungi (AMF)and dark septate endophytes (DSE) in different degree Pb-Zn polluted areas at QiandongshanPb-Zn mine, located in Feng county, Shaanxi province, and isolated several DSE strains fromthe roots of Astragalus adsurgens according to the DSE colonization. Based on morphologicalcharacteristics and molecular identification, the resynthesis experiment and the screening andselection of heavy metal-resistant DSE fungi, we finally chose the most resistantGaeumannomyces cylindrosporus as the object for further study. We studied the responses ofG. cylindrosporus to Pb stress, the effects of pH, temperature, Pb concentration and culturetime on the biosorption characteristics of Pb. In addition, we researched the effects ofinoculation with G. cylindrosporus on the growth characteristics, photosynthetic properties,and the uptake and translocation of Pb in maize seedings under Pb stress. The main results asfollows:
     1. Colonization characteristics of AMF and DSE in Pb-Zn polluted areas
     The resources and distribution of AMF and DSE in four sampling areas in Pb-Zn mine,Feng county, Shaanxi province, were investigated.55root samples of36different plantsspecies in20families were analyzed, and the results showed that49samples (about89.1%ofthe total) were typically colonized by AMF, and Arum-type was more dominant than othertypes. No correlations were observed between the spore denstity and the AMF colonizationrate (P>0.05).46root samples (about83.6%of the total) were found colonized by DSE.40samples were simultaneously colonized by AMF and DSE and accounted for72.7%of thetotal samples. DSE colonization rate was significantly positively correlated with the total Zncontent of soil (P<0.05). These results indicated that AMF and DSE commonly occur inQiandongshan Pb-Zn mine, especially DSE has excellent heavy metal tolerance andadaptability.
     2. The relationships of AMF and DSE with soil chemistry properties
     We explored the relationships of root colonization by AMF and DSE and GRSP contentin rhizosphere soils of six dominant plant species, including A. adsurgens, Artemisiabrachyloba, Potentilla anserina, Phragmites australis, Macleaya cordata, andGueldenstaedtia stenophylla, grown on Qiandongshan Pb-Zn mine tailings with soilchemistry properties, such as Pb and Zn content in soil, pH, available N, available P, available K, and organic matter. The results showed that AMF colonization was negatively correlatedwith organic matter content and the translocation of Zn in plant, and had extreme significantnegative correlation with available P content. DSE colonization was negatively correlatedwith the translocation of Pb in plant. Redundancy analysis revealed a significant effect of Pbcontent in soil on AMF community structure in soil samples, and canonical correspondenceanalysis of DGGE profiles showed that soil organic matter had significant relationship withAMF community structure in the roots.
     3. Identification and screening of heavy metal-resistant DSE fungi
     Five DSE isolates have been obtained from the roots of A. adsurgens, and all of themproduced melanized septate hyphae and microsclerotia in host plant roots after resynthesis.Based on morphological characteristics and DNA sequence analyses, the isolates wereidentified as G. cylindrosporus, Paraphoma chrysanthemicola, Phialophora mustea,Exophiala salmonis, and Cladosporium cladosporioides, respectively. The minimuminhibitory concentration (MIC) and the50%effective concentration (EC50) indicated that G.cylindrosporus was specifically resistant to Pb. Meanwhile, we found that the best culturingconditions for G. cylindrosporus were25°C,120rpm, and pH5.0, and the best carbon andnitrogen source were mannitol and peptone, respectively.
     4. The responses of G. cylindrosporus to Pb stress
     There were remarkable changes in colony morphology in the presence of different Pbconcentrations. In the concentration range of0~1.0mg/mL of Pb~(2+), the colony color turnedblack firstly and then yellow with the increasing Pb concentration. There was twisting andlooping of individual hyphae and formation of intertwined hyphal strands under Pb stress,however, there was no obvious relationship between the number of hyphal coils or the extentof hyphal twisting and the concentrations of Pb. Under liquid culture condition, hyphae curledand twisted when Pb concentration was low, and obviously became thick and swollen hyphaewith the increase of Pb concentration.
     In the concentration range of0~0.3mg/mL of Pb~(2+), melanin content of the hyphaegradually increased with the increase of Pb concentration. Melanin content declined when theconcentration of Pb~(2+)was up to0.4and0.5mg/mL, however, still was4.1and3.5times thatof the control, respectively. The contents of soluble protein and GSH and the activities ofSOD and CAT in G. cylindrosporus were significantly higher than controls under low Pbconcentration, but higher Pb concentrations decreased these parameters. SOD activity wassignificantly positively correlated with Pb concentrations, thus, SOD may play an importantrole in abating the hazards of heavy metals.
     5. Adsorption characteristics of G. cylindrosporus for Pb
     We found G. cylindrosporus had strong ability to absorb Pb ions. When the Pbconcentrations increased from50to500mg/L, the Pb content of the hyphae absorbedincreased gradually, and the absorption content and rate of dead hyphae were higher than livehyphae. Under the condition of30°C and pH5.0, the live and dead hyphae reached themaximum absorption capacity. In a range of agitation speeds from80to140rpm, theabsorption capacity of Pb in dead hyphae gradually increased with the increase of agitationspeed, and the live hyphae reached the maximum absorption capacity at120rpm. Fouriertransform infrared spectroscopy showed that the stretch vibration absorption peaks of C-O,C=O and N-H and the bending vibration absorption peak of N-H were broadened, whichindicated that the sugar and protein content significantly changed after the adsorption of Pb.
     6. The effects of G. cylindrosporus inoculation on plant growth and the uptake andtranslocation of Pb in maize
     G. cylindrosporus inoculation significantly enhanced the seedling height, basal diameter,biomass and the root activity of maize seedlings, the enhancements were more obvious underhigh Pb stress. Relative water content of leaves was increased by19.3%while watersaturation deficient was declined by8.5%after inoculated with G. cylindrosporus under Pb~(2+)concentration of1000mg/kg, indicating that the water use efficiency of maize leaves hadbeen significantly improved. When the concentration of Pb~(2+)was1000mg/kg, the content ofchlorophyll a, chlorophyll b and total chlorophyll under inoculation treatment were increasedby66.9%,36.8%and59.5%, respectively. Under the Pb~(2+)concentration of500and1000mg/kg, Pn under inoculation treatment were2.14and4.11times that of the control, Tr wereimproved by45.3%and39.0%, and Ci under inoculation treatment were45.3%and39.0%ofthe control, respectively; Fv/Fmof leaves after inoculation was11.3times that of the control atthe concentration of1000mg/kg.
     Pb content of maize seedlings inoculated with G. cylindrosporus were1.17and1.36times that of the control under the Pb~(2+)concentration of500and1000mg/kg, respectively.More Pb content were accumulated in the roots under inoculation treatment, indicating that G.cylindrosporus inoculation decreased Pb translocation from roots to shoots, and decreased Pbcontent of shoots, thus it alleviated the Pb toxicity to maize. In pot experiment, the maize rootcolonization by G. cylindrosporus increased gradually with the increasing Pb stress, whichwas consistent with the field investigation results.
引文
蔡晓布,钱成,彭岳林,冯固,盖京平.2005.环境因子对西藏高原草地植物丛枝菌根真菌的影响.应用生态学报,16(5):859~864
    窦敏娜,呼庆,齐鸿雁,谢响明,庄国强,杨敏.2007.重金属抗性菌HQ-1生物吸附镉与银的比较研究.微生物通报,34(6):1097~1103
    冯海艳,刘茵,冯固,李晓林.2005.接种AM真菌对黑麦草吸收和分配Cd的影响.农业环境科学学报,24(3):426~431
    盖京苹,冯固,李晓林.2004.我国北方农田土壤中AM真菌的多样性.生物多样性,12(4):435~440
    盖京苹,刘润进.2003.土壤因子对野生植物AM真菌的影响.应用生态学报,14(3):470~472
    高俊凤.2006.植物生理学实验指导.北京:高等教育出版社
    辜运富,李芳,张小平,涂仕华, Lindstr m K.2012.长期定位施肥对石灰性紫色水稻土AMF多样性的影响.菌物学报,31(5):690~700
    郭学军,黄巧云,赵振华,陈雯莉.2002.微生物对土壤环境中重金属活性的影响.应用与环境生物学报,8(1):105~110
    何新华,段英华,陈应龙,徐明岗.2012.中国菌根研究60年:过去、现在和将来.中国科学,4(6):431~454
    侯恩科,薛喜成,刘国民,马宗科,赵洲.2003.凤县矿山环境地质问题与保护对策.西北地质,36:26~30
    康宇.2010.紫茎泽兰及其根内生真菌在重金属矿区修复中的基础研究[硕士学位论文].昆明:云南大学
    李安明,邓青云,李德华,汪宜宇.2011.内生细菌在植物修复中的应用.湖北农业科学,50(19):3893~3896
    李芳,张俊伶,冯固,李晓林.2003.两种外生菌根真菌对重金属Zn、Cd和Pb耐性的研究.环境科学学报,23(6):807~812
    李合生,孙群,张文华.2005.植物生理生化实验原理和技术.北京:高等教育出版社
    李华,黄建国,袁玲.2013.铝和锰对外生菌根真菌生长养分吸收及分泌作用的影响.环境科学,34(1):315~320
    李鑫.2012.土壤重金属污染防治法律制度研究[硕士学位论文].太原:山西财经大学
    李岩,焦惠,徐丽娟,赵洪海,刘润进.2010. AM真菌群落结构与功能研究进展.生态学报,30(4):1089~1096
    梁昌聪,肖艳萍,赵之伟.2007.云南会泽废弃铅锌矿区植物丛枝菌根和深色有隔内生真菌研究.应用与环境生物学报,13(6):811~817
    林文雄,陈婷,周明明.2012.农业生态学的新视野.中国生态农业学报,20(3):253~264
    凌诒萍,俞彰.2004.细胞超微结构与电镜技术(第二版).上海:复旦大学出版社
    刘茂军,李涛,赵之伟.2008-04-17.一种快速建立DSE与植物共生培养体系的方法及其应用.中国发明专利,200810092576
    刘茂军,张兴涛,赵之伟.2009.深色有隔内生真菌(DSE)研究进展.菌物学报,28(6):888~894
    刘瑞.2011.重金属污染防治法律问题研究.生态安全与环境风险防范法治建设——2011年全国环境资源法学研讨会论文集,601~604
    刘润进,焦惠,李岩,李敏,朱新产.2009.丛枝菌根真菌物种多样性研究进展.应用生态学报,20(9):2301~2307
    刘润进,刘鹏起,徐坤,吕志范.1999.中国盐碱土壤中AM菌的生态分布.应用生态学报,10(6):721~724
    刘云国,樊霆,周娜,何义超,闵忠义,邬思丹.2009. Cu2+和Zn2+抗性真菌的分离、鉴定及其富集特性.中南大学学报,40(1):60~66
    龙良鲲,姚青,黄永恒,王燕,朱红惠.2009.粤北大宝山重金属污染土壤中AM真菌的研究.华南农业大学学报,30(2):117~120
    鲁如坤.2000.土壤农业化学分析方法.北京:中国农业科技出版社
    牛振川,唐明,黄继川,王森,盛敏.2007.土壤铅和锌对植物根际丛枝菌根真菌分布的影响.西北植物学报,27(6):1233~1238
    彭亢晋,孔海南,张大磊,吴德意.2009. Cr(VI)污染土壤的热解还原无害化处理.环境污染与防治,31(5):31~35
    沈薇,杨树林,李校堃,袁辉,高力虎.2006.木霉(Trichoderma sp.)HR-1活细胞吸附Pb(II)的机理.中国环境科学,26(1):101~105
    盛敏,唐明,张峰峰,黄艳辉.2011.土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响.生物多样性,19(1):85~92
    汤岳琴,牛慧,林军,王建华.2001.产黄青霉废菌体对铅的吸附机理研究——参与铅生物吸附的化学物质及功能团的确定.四川大学学报,33(3):50~54
    万洪富,杨国义,罗薇.2010.广东省土壤污染状况调查报告.
    王爱国,罗广华,邵从本,吴淑君,郭俊彦.1983.大豆种子超氧物歧化酶的研究.植物生理学报,9(1):77~84
    王发园,林先贵.2007.丛枝菌根在植物修复重金属污染土壤中的作用.生态学报,27(2):793~801
    王桂文,李海鹰.2003.钦州湾红树植物根部内生真菌初步研究.森林保护,32(3):121~124
    王海慧,郇恒福,罗瑛,刘壮,高玲,黎春花,刘国道.2009.土壤重金属污染及植物修复技术.中国农学通报,25(11):210~214
    王燕,李贤庆,宋志宏,王康东.2009.土壤重金属污染及生物修复研究进展.安全与环境学报,9(3):60~65
    王宇涛,辛国荣,李绍山.2013.丛枝菌根真菌最新分类系统与物种多样性研究概况.生态学报,33(3):0834~0843
    魏景超.1979.真菌鉴定手册.上海:上海科学技术出版社.
    谢晶曦,常俊标,王绪明.2002.红外光谱在有机化学和药物化学中的应用.北京:科学出版社
    徐凯,郭延平,张上隆,周慧芬,郑毅.2005.草莓叶片光合作用对强光的响应及其机理研究.应用生态学报,16(1):73~78
    薛高尚,胡丽娟,田云,卢向阳.2012.微生物修复技术在重金属污染治理中的研究进展.中国农学通报,28(11):266~271
    湛方栋.2012.嗜鱼外瓶霉(Exophiala pisciphila ACCC32496)镉耐性机制研究[博士学位论文].昆明:云南大学
    张海涵.2011.黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制[博士学位论文].杨凌:西北农林科技大学
    张艳,邓扬悟,罗仙平,周朦.2012.土壤重金属污染以及微生物修复技术探讨.有色金属科学与工程,3(1):63~66
    张玉洁,李洪超,赵之伟.2012.矿区植物根内嗜鱼外瓶霉对重金属的耐性和超积累作用.土壤,44(3):467~473
    赵玉清,朴永哲,孙天竹,杨洪泽,海华,李晋.2011.嗜镉菌对重金属Cd2+的吸附研究.黄金,32(3):60~62
    朱林,程显好,李维焕,刘静,图力古尔.2011.蜜环菌对锌的耐性和富集特性.生态学报,31(8):2324~2131
    Abbott L K, Robson A D, de Boer G.1984. The effect of phosphorus on the formation of hyphae in soil byvesicular mycorrhizal fungus, Glomus fasciculatum. New Phytol,97:437~446
    Abdel-Latef A A H.2011. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulationof osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.).Mycorrhiza,21:495~503
    Addy H D, Piercey M M, Currah R S.2005. Microfungal endophytes in roots. Can J Bot,83(1):1~13
    Adour L, Couriol C, Amrane A.2006. Organic or mineral nitrogen source during Penicillium camembertiigrowth on a glucose limited medium. Enzyme Microb Tech,38(1-2):55~59
    Ahlich K, Sieber T N.1996. The profusion of dark septate endophytic fungi in non-ectomycorrhizal fineroots of forest trees and shrubs. New Phytol,132:259~270
    Ahlich-Schlegel K.1997. Vorkommen und charakterisierung von dunklen, septierten hyphomyceten (DSH)in Geh lzwurzeln. PhD dissertation, ETH, Zürich.
    Akar T, Tunali S.2006. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) andCu(II) ions from an aqueous solution. Bioresource Technol,97(15):1780~1787
    Alberton O, Kuyper T W, Summerbell R C.2010. Dark septate root endophytic fungi increase growth ofScots pine seedlings under elevated CO2through enhanced nitrogen use efficiency. Plant Soil,328(1-2):459~470
    Alguacil M M, Lunmine E, Roldan A, Salinas-Garcia J R, Bonfante P, Bianciotto V.2008. The impact oftillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl,18(2):527~536
    Amna Javaida A, Bajwaa R, Shafiqueb U, Anwarb J.2011. Removal of heavy metals by adsorption onPleurotus ostreatus. Biomass Bioenerg,35(5):1675~1682
    Andrade-Linares D R, Grosch R, Restrepo S, Krumbein A, Franken P.2011. Effects of dark septateendophytes on tomato plant performance. Mycorrhiza,21(5):413~422
    Apte M, Girme G, Bankar A, RaviKumar A, Zinjarde S.2013.3,4-dihydroxy-L-phenylalanine-derivedmelanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. JNanobiotecg,11(1):2
    Ar ca M Y, Tüzün, Yal n E, nce, Bayramo lu G.2005. Utilisation of native, heat and acid-treatedmicroalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochem,40(7):2351~2358
    Arwidsson Z, Johansson E, Kronhelm T, Allard B, Hees P.2010. Remediation of metal contaminated soilby organic metabolites from fungi I—production of organic acids. Water Air Soil Poll,205(1-4):215~226
    Ba L, Ning J, Wang D, Facelli E, Facelli J M, Yang Y, Zhang L.2012. The relationship between thediversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant Soil,352(1-2):143~156
    Bagyalakshmi G, Muthukumar T, Sathiyadash K, Muniappan V.2010. Mycorrhizal and dark septate fungalassociations in shola species of Western Ghats, southern India. Mycoscience,51(1):44~52
    Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y.2012. The response of dark septate endophytes (DSE) toheavy metals in pure culture. PLoS One,7(10): e47968
    Barrow J R, Osuna P.2002. Phosphorus solubilization and uptake by dark septate fungi in fourwingsaltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ,51(3):449~459
    Barrow J R.2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in aridsouthwestern USA rangelands. Mycorrhiza,13(5):239~247
    Bartholdy B A, Berreck M, Haselwandter K.2001. Hydroxamate siderophore synthesis by Phialocephalafortinii, atypical dark septate fungal root endophyte. Biometals,14:33~42
    Basile A, Sorbo S, Conte B, Cobianchi C R, Trinchella F, Capasso C, Carginale V.2012. Toxicity,accumulation, and removal of heavy metals by three aquatic macrophytes. Int J Phytoremediat,14:374~387
    Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M.2009. Changes in soilaggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizalfungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem,41:1491~1496
    Bever J D, Schultz P A, Pringle A, Morton J B.2001. Arbuscular mycorrhizal fungi: more diverse thanmeets the eye, and the ecological tale of why. BioScience,51(11):923~931
    Bharadwaj D P, Lundquist P O, Alstr m S.2007. Impact of plant species grown as monocultures onsporulation and root colonization by native arbuscular mycorrhizal fungi in potato. Appl Soil Ecol,35(1):213~225
    Bhuiyan M A, Parvez L, Islam M A, Dampare S B, Suzuki S.2010. Heavy metal pollution of coalmine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater,173(1-3):384~392
    B rstler B, Renker C, Kahmen A, Buscot F.2006. Species composition of arbuscular mycorrhizal fungi intwo mountain meadows with differing management types and levels of plant biodiversity. Biol FertSoils,42(4):286~298
    Burd G I, Dixon D G, Glick B R.2000. Plant growth-promoting bacteria that decrease heavy metal toxicityin plants. Can J Microbiol,46:237~245
    Caldwell B A, Jumpponen A, Trappe J M.2000. Utilization of major detrital substrates by dark-septate,root endophytes. Mycologia,92(2):230~232
    Camargo-Ricalde S L, Dhillion S S.2003. Endemic Mimosa species can serve as mycorrhizal “resourceislands” within semiarid communities of the Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza,13:129~136
    Chen B D, Shen H, Li X L, Feng G, Christie P.2004. Effects of EDTA application and arbuscularmycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentallycontaminated with zinc. Plant Soil,261:219~229
    Chen X, Wu C, Tang J, Hu S.2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of hostplants under a sand culture experiment. Chemosphere,60:665~671
    Chen Y X, Wang Y P, Lin Q, Luo Y M.2005. Effect of copper-tolerant rhizosphere bacteria on mobility ofcopper in soil and copper accumulation by Elsholtzia splendens. Environ Int,31(6):861~866
    Chern E C, Tsai D W, Ogunseitan O A.2007. Deposition of glomalin-related soil protein and sequesteredtoxic metals into watersheds. Environ Sci Technol,41:3566~3572
    Colpaert J V, Wevers J H L, Krznaric E, Adriaensen K.2011. How metal-tolerant ecotypes ofectomycorrhizal fungi protect plants from heavy metal pollution. Ann Forest Sci,68(1):17~24
    Cornejo P, Azcon-Aguilar C, Barea J M, Ferrol N.2004. Temporal temperature gradient gel electrophoresis(TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiol Lett,241(2):265~270
    Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N.2013. Coppercompartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-pollutedenvironments. Soil Biol Biochem,57:925~928
    Daniell T J, Husband R, Fitter A H, Young J P W.2001. Molecular diversity of arbuscular mycorrhzal fungicolonising arable crops. FEMS Microbiol Ecol,36:203~209
    Das P, Kayang H.2010a. Arbuscular mycorrhizal fungi and dark septate endophyte colonization in bamboofrom Northeast India. Fronti Agr China,4(3):375~382
    Das P, Kayang H.2010b. Association of dark septate endophytes and arbuscular mycorrhizal fungi inpotato under field conditions in the northeast region of India. Mycology,1(3):171~178
    de Marins J F, Carrenho R, Thomaz S M.2009. Occurrence and coexistence of arbuscular mycorrhizalfungi and dark septate fungi in aquatic macrophytes in a tropical river–floodplain system. Aquat Bot,91(1):13~19
    Deram A, Languereau F, Haluwyn C V.2011. Mycorrhizal and endophytic fungal colonization inArrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil SedimentContam,20:114~127
    Deram A, Languereau-Leman F, Howsam M, Petit D, Haluwyn C V.2008. Seasonal patterns of cadmiumaccumulation in Arrhenatherum elatius (Poaceae): Influence of mycorrhizal and endophytic fungalcolonisation. Soil Biol Biochem,40(3):845~848
    Dominguez M T, Madrid F, Maranon T, Murillo J M.2009. Cadmium availability in soil and retention inoak roots: potential for phytostabilization. Chemosphere,76(4):480~486
    Dong C H, Yao Y J.2005. Nutritional requirements of mycelial growth of Cordyceps sinensis in submergedculture. J Appl Microbiol,99(3):483~492
    Doyle J J, Doyle J L.1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem Bull,19:11~15
    Duponnois R, Plenchette C.2003. A mycorrhiza helper bacterium enhances ectomycorrhizal andendomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza,13(2):85~91
    Eisenman H C, Casadevall A.2012. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol,93:931~940
    Ekmekyapar F, Aslan A, Bayhan Y K, Cakici A.2012. Biosorption of Pb(II) by nonliving lichen biomass ofCladonia rangiformis hoffm. Int J Environ Res,6(2):417~424
    Elisashvili V, Parlar H, Kachlishvili E, Chichua D, Bakradze M, Kokhreidze N.2001. Ligninolytic activityof basidiomycetes grown under submerged and solid-state fermentation on plant raw material(sawdust of grapevine cuttings). Adv Food Sci,23(3):117~123
    Ellis D H, Griffiths D A.1974. The location and analysis of melanins in the cell walls of some soil fungi.Can J Microbiol,20:1379~1386
    Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K.2009. Heavy metal tolerance of filamentous fungiisolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res,3(2):035~048
    Faramarzi A, Noormohamadi G, Ardakani M R, Darvish F, Benam M B K.2012. Effect of mycorrhizainoculation and application of different phosphorus fertilizer levels on yield and yield components ofcorn (cv. KSC647) in Miyaneh region, Iran. J Food Agric Environ,10(1):320~322
    Ferrol N, González-Guerrero M, Valderas A, Benabdellah K, Azcón-Aguilar C.2009. Survival strategies ofarbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev,8(3):551~559
    Fomina M, Hillier S, Charnock J M, Melville K, Alexander I J, Gadd G M.2005. Role of oxalic acidoverexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl EnvironMicrobiol,71(1):371~381
    Gadd G M, Ramsay L, Crawford J W, Ritz K.2001. Nutritional influence on fungal colony growth andbiomass distribution in response to toxic metals. FEMS Microbiol Lett,204:311~316
    Gadd G M, Rhee Y J, Stephenson K, We Z.2012. Geomycology: metals, actinides and biominerals. EnvMicrobiol Rep,4(3):270~296
    Gadd G M.1993. Interaction of fungi with toxic metals. New Phytol,124:25~60
    Gadd G M.2007. Geomycology: biogeochemical transformations of rocks, minerals, metals andradionuclides by fungi, bioweathering and bioremediation. Mycol Res,111:3~49
    Gai J P, Cai X B, Feng G, Christie P, Li X L.2006b. Arbuscular mycorrhizal fungi associated with sedgeson the Tibetan Plateau. Mycorrhiza,16:151~157
    Gai J P, Christie P, Feng G, Li X L.2006a. Twenty years of research on community composition andspecies distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza,16(4):229~239
    Gai J P, Tian H, Yang F Y, Christie P, Li X L, Klironomos J N.2012. Arbuscular mycorrhizal fungaldiversity along a Tibetan elevation gradient. Pedobiologia,55(3):145~151
    Galli E, Mario F D, Rapana P, Lorenzoni P, Angelini R.2003. Copper biosorption by Auriculariapolytricha. Lett Appl Microbiol,37:133~137
    Galvan I, Alonso-Alvarez C.2008. An intracellular antioxidant determines the expression of amelanin-based signal in a bird. PLoS One,3(10): e3335
    Gams W.2000. Phialophora and some similar morphologically little-differentiated anamorphs of divergentascomycetes. Stud Mycol,45:187~199
    Garg N, Bhandari P.2013. Cadmium toxicity in crop plants and its alleviation by arbuscula mycorrhizal(AM) fungi: An overview. Plant Biosystems. DOI:10.1080/11263504.2013.788096
    Gaur A, Adholeya A.2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metalcontaminated soils. Curr Sci,86:528~534
    G hre V, Paszkowski U.2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metalphytoremediation. Planta,223(6):1115~1122
    Gonzalez-Chavez C, D'Haen J, Vangronsveld J, Dodd J C.2002. Copper sorption and accumulation by theextraradicalmycelium of different Glomus spp.(arbuscular mycorrhizal fungi) isolated from the samepolluted soil. Plant Soil,240:287~297
    Gosling P, Ozaki A, Jones J D, Turner M, Rayns F, Bending G D.2010. Organic management of tilledagricultural soils results in a rapid increase in colonisation potential and spore populations ofarbuscular mycorrhizal fungi. Agr Ecosyst Environ,139:273~279
    Graz M, Jarosz-Wilkolazka A, Pawlikowska-Pawlega B.2009. Abortiporus biennis tolerance to insolublemetal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. Biometals,22(3):401~410
    Green Iii F, Clausen C A.2003. Copper tolerance of brown-rot fungi: time course of oxalic acid production.Int Biodeter Biodegr,51(2):145~149
    Grünig C R, Queloz V, Duo A, Sieber T N.2009. Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark,septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol Res,113(2):207~221
    Gryndler M, Vosátka M, Hr elova H, Chvátalová I, Jansa J.2002. Interaction between arbuscularmycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol,19:279~288
    Guillén Y, Machuca á.2008. The effect of copper on the growth of wood-rotting fungi and a blue-stainfungus. World J Microb Biot,24(1):31~37
    Guo H J, Luo S L, Chen L, Xiao X, Xi Q, Wei W Z, Zeng G M, Liu C B, Wan Y, Chen J L, He Y J.2010.Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.Bioresource Technol,101:8599~8605
    Hall J L.2002. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot,53(366):1~11
    Harbinson J.2013. Improving the accuracy of chlorophyll fluorescence measurements. Plant Cell Environ,DOI:10.1111/pce.12111
    Hartley J, Cairney J W G, Meharg A A.1997. Do ectomycorrhizal fungi exhibit adaptive tolerance topotentially toxic metals in the environment? Plant Soil,189:303~319
    Hashiba T, Narisawa K.2005. The development and endophytic nature of the fungus Heteroconiumchaetospira. FEMS Microbiol Lett,252(2):191~206
    Hassan Sel D, Boon E, St-Arnaud M, Hijri M.2011. Molecular biodiversity of arbuscular mycorrhizalfungi in trace metal-polluted soils. Mol Ecol,20:3469~3483
    Hauck M, Paul A, Gross S, Raubuch M.2003. Manganese toxicity in epiphytic lichens: chlorophylldegradation and interaction with iron and phosphorus. Environ Exp Bot,49(2):181~191
    Hawkes C V, Hartley I P, Ineson P, Fitter A H.2008. Soil temperature affects carbon allocation withinarbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biol,14(5):1181~1190
    Heckman D S, Geiser D M, Eidell B R, Stauffer R L, Kardos N L, Hedges S B.2001. Molecular evidencefor the early colonization of land by fungi and plants. Science,293(5532):1129~1133
    Heged s N, Emri T, Szilágyi J, Karányi Z, Nagy I, Penninckx M J, Pócsi I.2007. Effect of heavy metals onthe glutathione status in different ectomycorrhizal Paxillus involutus strains. World J Microb and Biot,23(9):1339~1343
    Helgason T, Daniell T J, Husband R, Fitter A H, Young J P W.1998. Ploughing up the wood-wide web?Nature,394:431
    Hemambika B, Rani M J, Kannan V R.2011. Biosorption of heavy metals by immobilized and dead fungalcells: A comparative assessment. J Ecol Nat Environ,3(5):168~175
    Hildebrandt U, Ouziad F, Marner F J, Bothe H.2006. The bacterium Paenibacillus validus stimulatesgrowth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores.FEMS Microbiol Lett,254(2):258~267
    Hoagland D R, Arnon D I.1950. The water-culture method for growing plants without soil. CircularCalifornia Agr Exp Station,347(2):32
    Hodge A.2003. Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecificcompetition and mycorrhizal colonization. New Phytol,157:303~314
    Huang D L, Zeng G M, Feng C L, Hu S, Zhao M H, Lai C, Zhang Y, Jiang X Y, Liu H L.2010. Mycelialgrowth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaetechrysosporium under lead stress. Chemosphere,81(9):1091~1097
    Huang H, Cao L, Wan Y, Zhang R, Wang W.2012. Biosorption behavior and mechanism of heavy metalsby the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl MicrobiolBiotechnol,96:829~840
    Jalmi P, Bodke P, Wahidullah S, Raghukumar S.2012. The fungus Gliocephalotrichum simplex as a sourceof abundant, extracellular melanin for biotechnological applications. World J Microb Biot,28(2):505~512
    Jozefczakemail M, Remansemail T, Vangronsveld J, Cuypers A.2012. Glutathione is a key player inmetal-induced oxidative stress defenses. Int J Mol Sci,13(3):3145~3175
    Jumpponen A, Trappe J M.1998. Dark septate endophytes: a review of facultative biotrophicroot-colonizing fungi. New Phytol,140:295~310
    Jumpponen A.2001. Dark septate endophytes-are they mycorrhizal? Mycorrhiza,11(4):207~211
    Khastini R O, Ohta H, Narisawa K.2012. The role of a dark septate endophytic fungus, Veronaeopsissimplex Y34, in Fusarium disease suppression in Chinese cabbage. J Microbiol,50(4):618~624
    Kohout P, Sykorova Z, Ctvrtlikova M, Rydlova J, Suda J, Vohnik M, Sudova R.2011. Surprising spectra ofroot-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol,80(1):216~235
    Koske R E, Walker C.1984. Gigaspora erythropa, a new species forming arbuscular mycorrhizae.Mycologia,76:250~255
    Kowalchuk G A, Gerards S, Woldendorp J W.1997. Detection and characterization of fungal infections ofAmmophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specificallyamplified18S rDNA. Appl Environ Microbiol,63(10):3858~3865
    Lanfranco L, Balsamo R, Martino E, Perotto S, Bonfante P.2002. Zinc ions alter morphology and chitindeposition in an ericoid fungus. Eur J Histochem,46:341~350
    Lavaud J, Lepetit B.2012. An explanation for the inter-species variability of the photoprotectivenon-photochemical chlorophyll fluorescence quenching in diatoms. BBA,1827:294~302
    Li H Y, Li D W, He C M, Zhou Z P, Mei T, Xu H M.2012. Diversity and heavy metal tolerance ofendophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in China. Fungal Ecol,5(3):309~315
    Li T, Liu M J, Zhang X T, Zhang H B, Sha T, Zhao Z W.2011. Improved tolerance of maize (Zea mays L.)to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci TotalEnviron,409(6):1069~1074
    Li Y, Wei G, Chen J.2004. Glutathione: a review on biotechnological production. Appl MicrobiolBiotechnol,66(3):233~242
    Likar M, Regvar M, Mandic-Mulec I, Stres B, Bothe H.2009. Diversity and seasonal variations ofmycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh.Biol Fert Soils,45(6):573~583
    Likar M, Regvar M.2009. Application of temporal temperature gradient gel electrophoresis forcharacterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil.Sci Total Environ,407(24):6179~6187
    Likar M, Regvar M.2013. Isolates of dark septate endophytes reduce metal uptake and improve physiologyof Salix caprea L. Plant Soil, DOI:10.1007/s11104-013-1656-6
    Likar M.2011. Dark septate endophytes and mycorrhizal fungi of trees affected by pollution. Endophytesof Forest Trees,80:189~201
    Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H.2012. Long-term balanced fertilizationdecreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by454pyrosequencing. Environ Sci Technol,46(11):5764~5771
    Long L K, Yao Q, Guo J, Yang R H, Huang Y H, Zhu H H.2010. Molecular community analysis ofarbuscular mycorrhizal fungi associated with five selected plant species from heavy metal pollutedsoils. Eur J Soil Biol,46:288~294
    Lovelock C E, Wright S F, Clark D A, Ruess R W.2004. Soil stocks of glomalin produced by arbuscularmycorrhizal fungi across a tropical rain forest landscape. J Ecol,92:278~287
    Lugo M A, Molina M G, Crespo E M.2009. Arbuscular mycorrhizas and dark septate endophytes inbromeliads from South American arid environment. Symbiosis,47:17~21
    Lv Y L, Sun L H, Zhang F S, Zhao Y, Guo S X.2010. The effect of cultivation conditions on the mycelialgrowth of a dark-septate endophytic isolate. Afr J Microbiol Res,4(8):602~607
    Macfie S M, Welbourn P M.2000. The cell wall as a barrier to uptake of metal ions in the unicellular greenalga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol,39(4):413~419
    Mandyam K, Jumpponen A.2005. Seeking the elusive function of the root-colonising dark septateendophytic fungi. Stud Mycol,53:173~189
    Marques A P G C, Rangel A O S S, Castro P M L.2009. Remediation of heavy metal contaminated soils:phytoremediation as a potentially promising clean-uptechnology. Crit Rev Env Sci Tec,39(8):622~654
    Martínez-García L B, Armas C, Miranda J d D, Padilla F M, Pugnaire F I.2011. Shrubs influencearbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biolo Biochem,43(3):682~689
    McGonigle T P, Miller M H, Evans D G, Fairchild G L, Swan J A.1990. A new method which gives anobjective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol,115:495~501
    McGuire K L, Henkel T W, Granzow de la Cerda I, Villa G, Edmund F, Andrew C.2008. Dual mycorrhizalcolonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree andliana species. Mycorrhiza,18(4):217~222
    Meier S, Borie F, Bolan N, Cornejo P.2012. Phytoremediation of metal-polluted soils by arbuscularmycorrhizal fungi. Crit Rev Env Sci Tec,42(7):741~775
    Miransari M.2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.Biotechnol Adv,29:645~653
    Morton J B, Benny G L.1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): Anew order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families,Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon,37:471~491
    Muhammad Waqas M, Latif Khan A, Kamran M, Hamayun M, Kang S M, Kim Y H, Lee I J.2012.Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth duringstress. Molecules,17:10754~10773
    Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K.2006. Arbuscular mycorrhizal morphology anddark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India.Mycorrhiza,17(1):11~24
    Muthukumar T, Udaiyan K, Shanmughavel P.2004. Mycorrhiza in sedges—an overview. Mycorrhiza,14:65~77
    Muthukumar T, Udaiyan K.2000. Influence of organic manures on arbuscular mycorrhizal fungi associatedwith Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in rootsunder field conditions. Biol Fert Soils,31:114~120
    Narisawa K, Hambleton S, Currah R S.2007. Heteroconium chaetospira, a dark septate root endophyteallied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canadausing bait plants. Mycoscience,48(5):274~281
    Newsham K K, Upson R, Read D J.2009. Mycorrhizas and dark septate root endophytes in polar regions.Fungal Ecol,2(1):10~20
    Newsham K K.1999. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grassVulpia ciliata ssp. ambigua. New Phytol,144:517~527
    Newsham K K.2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytol,190(3):783~793
    O'Connor P J, Smith S E, Smith F A.2002. Arbuscular mycorrhizas influence plant diversity andcommunity structure in a semiarid herbland. New Phytol,154:209~218
    Oehl F, Laczko E, Bogenrieder A, Stahr K, B sch R, van der Heijden M, Sieverding E.2010. Soil type andland use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil BiolBiochem,42(5):724~738
    Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A.2003. Impact of land use intensity on thespecies diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl EnvironMicrobiol,69(5):2816~2824
    Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G.2011. Advances in Glomeromycotataxonomy and classification. IMA Fungus,2(2):191~199
    Olsrud M, Carlsson B, Svensson B M, Michelsen A, Melillo J M.2010. Responses of fungal rootcolonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2andwarming in a subarctic birch forest understory. Global Change Biol,16(6):1820~1829
    Olsrud M, Michelsen A, Wallander H.2007. Ergosterol content in ericaceous hair roots correlates with darkseptate endophytes but not with ericoid mycorrhizal colonization. Soil Biol Biochem,39(5):1218~1221
    Pankovic D, Plesnicar M, Arsenijevic-Maksimovic I, Petrovic N, Sakac Z, Kastori R.2000. Effects ofnitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot,86:841~847
    Perrona M C, Qiu B, Boucher N, Bellemare F, Juneau P.2012. Use of chlorophyll a fluorescence to detectthe effect of microcystins on photosynthesis and photosystem II energyfluxes of green algae. Toxicon,59:567~577
    Pervez A, Shahbaz S, Shah M M, Mahmood Q, Mirza N.2009. Assessing bioaccumulation of heavy metalsin sporocarp of Pleurotus ostreatus. World Appl Sci J,7(12):1498~1503
    Pessoni R A B, Freshour G, Figueiredo-Ribeiro R C, Hahn M G, Braga M R.2005. Cell-wall structure andcomposition of Penicillium janczewskii as affected by inulin. Mycologia,97(2):304~311
    Phillips J M, Hayman D S.1970. Improved procedures for clearing roots and staining parasitic andvesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc,55:158~161
    Plonka P M, Grabacka M.2006. Melanin synthesis in microorganisms—biotechnological and medicalaspects. Acta Biochimica Polonica,53(3):429~443
    Pócsi I, Prade R A, Penninckx M J.2004. Glutathione, altruistic metabolite in fungi. Adv Microb Physiol,49:1~76
    Priyadharsini P, Pandey R, Muthukumar T.2012. Arbuscular mycorrhizal and dark septate fungalassociations in shallot (Allium cepa L. var. aggregatum) under conventional agriculture. Acta BotanicaCroatica,71(1):159~175
    Purchase D, Scholes L N L, Revitt D M, Shutes R B E.2009. Effects of temperature on metal tolerance andthe accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands.J Appl Microbiol,106(4):1163~1174
    Rajkumar M, Sandhya S, Prasad M N, Freitas H.2012. Perspectives of plant-associated microbes in heavymetal phytoremediation. Biotechnol Adv,30(6):1562~1574
    Rascio N, Navari-Izzo F.2011. Heavy metal hyperaccumulating plants: how and why do they do it? Andwhat makes them so interesting? Plant Sci,180(2):169~181
    Ray P, Adholeya A.2009. Correlation between organic acid exudation and metal uptake by ectomycorrhizalfungi grown on pond ash in vitro. Biometals,22(2):275~281
    Regvar M, Likar M, Piltaver A, Kugoni N Smith J E,2010. Fungal community structure under goatwillows (Salix caprea L.) growing at metal polluted site: the potential of screening in a modelphytostabilisation study. Plant Soil,330:345~356.
    Ren W X, Li P J, Geng Y, Li X J.2009. Biological leaching of heavy metals from a contaminated soil byAspergillus niger. J Hazard Mater,167:164~169
    Rillig M C, Ramsey P W, Morris S, Paul E A.2003. Glomalin, an arbuscular-mycorrhizal fungal soilprotein, responds to land-use change. Plant Soil,253:293~299
    Rillig M C.2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci,84:355~363
    Rineau F, Roth D, Shah F, Smits M, Johansson T, Canb ck B, Olsen P B, Persson P, Grell M N, Lindquist E,Grigoriev I V, Lange L, Tunlid A.2012. The ectomycorrhizal fungus Paxillus involutus convertsorganic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.Environ Microbiol,14(6):1477~1487
    Rosen B.2002. Transport and detoxification systems for transition metals, heavy metals and metalloids ineukaryotic and prokaryotic microbes. Comp Biochemi Phys A,133:689~693
    Rosendahl S, Matzen H B.2008. Genetic structure of arbuscular mycorrhizal populations in fallow andcultivated soils. New Phytol,179(4):1154~1161
    Rosendahl S.2008. Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol,178(2):253~266
    Ruotsalainen A L, Kytoviita M M.2004. Mycorrhiza does not alter low temperature impact on Gnaphaliumnorvegicum. Oecologia,140(2):226~233
    Ruotsalainen A L, Markkola A, Kozlov M V.2007. Root fungal colonization in Deschampsia flexuosa:effects of pollution and neighbouring trees. Environ Pollut,147:723~728ahin, Keskin S Y, Keskin C S.2013. Biosorption of cadmium, manganese, nickel, lead, and zinc ions byAspergillus tamari. Desalin Water Treat, DOI:10.1080/19443994.2012.752332
    Saraswat S, Rai J P N.2011. Prospective application of Leucaena leucocephala for phytoextraction of Cdand Zn and nitrogen fixation in metal polluted soils. Int J Phytoremediat,13(3):271~288
    Saul-Tcherkas V, Steinberger Y.2009. Substrate utilization patterns of desert soil microbial communities inresponse to xeric and mesic conditions. Soil Biol Biochem,41(9):1882~1893
    Schmidt S K, Sobieniak-Wiseman L C, Kageyama S A, Halloy S R P, Schadt C W.2008. Mycorrhizal anddark-septate fungi in plant roots above4270meters elevation in the Andes and Rocky Mountains. ArctAntarct Alp Res,40(3):576~583
    Schüβler A, Schwarzott D, Walker C.2001. A new fungal phylum, the Glomeromycota: phylogeny andevolution. Mycol Res,105(12):1413~1421
    Schüβler A, Walker C.2010. The Glomeromycota: a species list with new families and genera. In: SchüβlerA, Walker C. Gloucester, Published in libraries at Royal Botanic Garden Edinburgh, Kew, BotanischeStaatssammlung Munich, and Oregon.
    Schwarzott D, Schüβler A.2001. A simple and reliable method for SSU rRNA gene DNA extraction,amplification, and cloning from single AM fungal spores. Mycorrhiza,10:203~207
    Schweiger P F, Jakobsen I.1998. Dose-response relationships between four pesticides and phosphorusuptake by hyphae of arbuscular mycorrhizas. Soil Biol Biochem,30(10-11):1415~1422
    Seki H, Suzuki A, Maruyama H.2005. Biosorption of chromium(VI) and arsenic(V) onto methylated yeastbiomass. J Colloid Interf Sci,281:261~266
    Sepehri M, Khodaverdiloo H, Zarei M.2013. Fungi and their role in phytoremediation of heavymetal-contaminated soils. Soil Biol,32:313~345
    Shahabivand S, Maivan H Z, Goltapeh E M, Sharifi M, Aliloo A A.2012. The effects of root endophyte andarbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity.Plant Physiol Bioch,60:53~58
    Shroff K A, Vaidya V K.2012. Effect of pre-treatments on the biosorption of Chromium (VI) ions by thedead biomass of Rhizopus arrhizus. J Chem Technol Biot,87(2):294~304
    Simon L, Lalonde M, Bruns T D.1992. Specific amplification of18S fungal ribosomal genes fromvesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol,58(1):291~295
    Sivakumar N.2013. Effect of edaphic factors and seasonal variation on spore density and root colonizationof arbuscular mycorrhizal fungi in sugarcane fields. Ann Microbiol,63:151~160
    Smith F A, Smith S E.1997. Structural diversity in vesicular-arbuscular mycorrhizal symbioses. NewPhytol,137(3):373~388
    Smith S E, Jakobsen I, Gronlund M, Smith F A.2011. Roles of arbuscular mycorrhizas in plant phosphorusnutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal rootshave important implications for understanding and manipulating plant phosphorus acquisition.Plant Physiol,156:1050~1057
    Smith S E, Read D J.2008. Mycorrhizal symbiosis,3rd edn. Academic Press, London.
    Spence L A, Dickie I A, Coomes D A.2011. Arbuscular mycorrhizal inoculum potential: a mechanismpromoting positive diversity–invasibility relationships in mountain beech forests in New Zealand?Mycorrhiza,21:309~314
    Stebbing A R D.1982. Hormesis—The stimulation of growth by low levels of inhibitors. Sci Total Environ,22(3):213~234
    Stevens K J, Wellner M R, Acevedo M F.2010. Dark septate endophyte and arbuscular mycorrhizal statusof vegetation colonizing a bottomland hardwood forest after a100year flood. Aquat Bot,92(2):105~111
    Tang M, Zhang R Q, Chen H, Zhang H H, Tian Z Q.2008. Induced hydrolytic enzymes of ectomycorrhizalfungi against pathogen Rhizoctonia solani. Biotechnol Lett,30(10):1777~1782
    Taniguchi T, Usuki H, Kikuchi J, Hirobe M, Miki N, Fukuda K, Zhang G, Wang L, Yoshikawa K,Yamanaka N.2012. Colonization and community structure of root-associated microorganisms ofSabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater. Mycorrhiza,22(6):419~428
    Trappe J M.1987. Phylogenetic and ecological aspects of mycotrophy in the Angiosperms from anevolutionary standpoint. In: Safair GR, ed. Ecophysiology of VA mycorrhizal plants. Boca Raton FL,CRC Press:5~25
    Tung J, Goodwin P H, Hsiang T.2013. Chlorophyll fluorescence for quantification of fungal foliarinfection and assessment of the effectiveness of an induced systemic resistance activator. Eur J PlantPathol, DOI10.1007/s10658-012-0164-5
    Ucun H, Bayhan Y K, Kaya Y, Cakici A, Algur O F.2002. Biosorption of chromium(VI) from aqueoussolution by cone biomass of Pinus sylvestris. Bioresource Technol,85:155~158
    Upson R, Read D J, Newsham K K.2009. Nitrogen form influences the response of Deschampsiaantarctica to dark septate root endophytes. Mycorrhiza,20(1):1~11
    Urcelay C, Acho J, Joffre R.2011. Fungal root symbionts and their relationship with fine root proportion innative plants from the Bolivian Andean highlands above3,700m elevation. Mycorrhiza,21(5):323~330
    Usuki F, Narisawa K, Yonezawa M, Kakishima M, Hashiba T.2002. An efficient inoculation method forcolonization of Chinese cabbage seedlings by the root endophytic fungus Heteroconium chaetospira. JGen Plant Pathol,68:326~332
    Usuki F, Narisawa K.2007. A mutualistic symbiosis between a dark septate endophytic fungus,Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia,99(2):175~184
    van Diepen L T A, Lilleskov E A, Pregitzer K S, Miller R M.2010. Simulated nitrogen deposition causes adecline of intra-and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbialcommunity structure in northern hardwood forests. Ecosystems,13(5):683~695
    Vigneshwaran N, Kathe A A, Varadarajan P V, Nachane R P, Balasubramanya R H.2006. Biomimetics ofsilver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloid Surface B,53(1):55~59
    Vijver M G, van Gestel C A M, Lanno R P, Van Straalen N M, Peijnenburg W J G M.2004. Internal metalsequestration and its ecotoxicological relevance: a review. Environ Sci Technol,38(18):4706~4712
    Vodnik D, Grcman H, Macek I, van Elteren J T, Kovacevic M.2008. The contribution of glomalin-relatedsoil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ,392(1):130~136
    Vogel-Miku K, Pongrac P, Kump P, Ne emer M, Regvar M.2006. Colonisation of a Zn, Cd and Pbhyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixtureinduces changes in heavy metal and nutrient uptake. Environ Pollut,139:362~371
    Vohník M, Albrechtová J, Vosátka M.2005. The inoculation with Oidiodendron maius and Phialocephalafortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution inRhododendron cv. Azurro. Symbiosis,40:87~96
    Vohnik M, Lukancic S, Bahor E, Regvar M, Vosatka M, Dominik V.2003. Inoculation of Rhododendron Cv.Belle-heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot,38:191~200
    Wang F Y, Shi Z Y, Xu X F, Wang X G, Li Y J.2013. Contribution of AM inoculation and cattle manure tolead and cadmium phytoremediation by tobacco plants. Environ Sci,15:794~801
    Wang J S, Hu X J, Liu Y G, Xie S B, Bao Z L.2010. Biosorption of uranium (VI) by immobilizedAspergillus fumigatus beads. J Environ Radioact,101(6):504~508
    White T J, Bruns T, Lee S, Taylor J.1990. Amplification and direct sequencing of fungal ribosomal RNAgenes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J. PCR protocols: a guideto methods and pplications. San Diego: Academic Press:315~322.
    Whitfield L, Richards A J, Rimmer D L.2004. Relationships between soil heavy metal concentration andmycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza,14(1):55~62
    Wirsel S G.2004. Homogenous stands of a wetland grass harbour diverse consortia of arbuscularmycorrhizal fungi. FEMS Microbiol Ecol,48(2):129~138
    Witek-Krowiak A, Szafran R G, Modelski S.2011. Biosorption of heavy metals from aqueous solutionsonto peanut shell as a low-cost biosorbent. Desalination,265(1-3):126~134
    Wolfe B E, Mummey D L, Rillig M C, Klironomos J N.2007. Small-scale spatial heterogeneity ofarbuscular mycorrhizal fungal abundance and community composition in a wetland plant community.Mycorrhiza,17(3):175~183
    Wu B, Hogetsu T, Isobe K, Ishii R.2007. Community structure of arbuscular mycorrhizal fungi in aprimary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza,17(6):495~506
    Wu F Y, Bi Y L, Leung H M, Ye Z H, Lin X G, Wong M H.2010a. Accumulation of As, Pb, Zn, Cd and Cuand arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminatedsoils. Appl Soil Ecol,44:213~218
    Wu L H, Luo Y M, Christie P, Wong M H.2003. Effects of EDTA and low molecular weight organic acidson soil solution properties of a heavy metal polluted soil. Chemosphere,50:819~822
    Wu L Q, Lv Y L, Meng Z X, Chen J, Guo S X.2010b. The promoting role of an isolate of dark-septatefungus on its host plant Saussurea involucrata Kar. et Kir.. Mycorrhiza,20(2):127~135
    Wu L, Guo S.2008. Interaction between an isolate of dark-septate fungi and its host plant Saussureainvolucrata. Mycorrhiza,18(2):79~85
    Wu Y, Shan L, Yang S, Ma A.2008. Identification and antioxidant activity of melanin isolated fromHypoxylon archeri, a companion fungus of Tremella fuciformis. J Basic Microb,48(3):217~221
    Xu Z Y, Tang M, Chen H, Ban Y H, Zhang H H.2012. Microbial community structure in the rhizosphere ofSophora viciifolia grown at a lead and zinc mine of northwest China. Sci Total Environ,435-436C:453-464
    Yahaya Y A, Mat Don M, Bhatia S.2009. Biosorption of copper (II) onto immobilized cells of Pycnoporussanguineus from aqueous solution: Equilibrium and kinetic studies. J Hazard Mater,161(1):189~195
    Yang A, Hu J, Lin X, Zhu A, Wang J, Dai J, Wong M H.2012. Arbuscular mycorrhizal fungal communitystructure and diversity in response to3-year conservation tillage management in a sandy loam soil inNorth China. J Soil Sediment,12(6):835~843
    Yuan Z L, Chen Y C, Ma X J.2011. Symbiotic fungi in roots of Artemisia annua with special reference toendophytic colonizers. Plant Biosystems,145(2):495~502
    Zaefarian F, Rezvani M, Ardakani M R, Rejali F, Miransari M.2013. Impact of mycorrhizae formation onthe phosphorus and heavy-metal uptake of Alfalfa. Commun Soil Sci Plant,44(8):1340~1352
    Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G, Jouzani G S, Nekouei M K, Buscot F.2010.Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties andheavy metal contamination. Environ Pollut,158:2757~2765
    Zavalloni C, Vicca S, Büscher M, Providencia I E, Dupré de Boulois H, Declerck S, Nijs I, Ceulemans R.2012. Exposure to warming and CO2enrichment promotes greater above-ground biomass, nitrogen,phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant Soil,359(1-2):121~136
    Zhan F, He Y, Zu Y, Li T, Zhao Z.2011. Characterization of melanin isolated from a dark septate endophyte(DSE), Exophiala pisciphila. World J Microb Biot,27(10):2483~2489
    Zhang F Q, Wang Y S, Lou Z P, Dong J D.2007. Effect of heavy metal stress on antioxidative enzymes andlipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel andBruguiera gymnorrhiza). Chemosphere,67(1):44~50
    Zhang H H, Tang M, Chen H, Wang Y J, Ban Y H.2010a. Arbuscular mycorrhizas and dark septateendophytes colonization status in medicinal plant Lycium barbarum L. in arid Northwestern China.Afr J Microbiol Res,4(18):1914~1920
    Zhang H H, Tang M, Chen H, Wang Y J.2012. Effects of a dark-septate endophytic isolate LBF-2on themedicinal plant Lycium barbarum L.. J Microbiol,50(1):91~96
    Zhang H H, Tang M, Chen H, Zheng C L, Niu Z C.2010b. Effect of inoculation with AM fungi on leaduptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasinglead concentrations. Eur J Soil Biol,46(5):306~311
    Zhang Y, Liu M, Shi X, Zhao Z.2008. Dark septate endophyte (DSE) fungi isolated from metal pollutedsoils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol,46(6):624~632
    Zimmerman E, Peterson R L.2007. Effect of a dark septate fungal endophyte on seed germination andprotocorm development in a terrestrial orchid. Symbiosis,43(1):45~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700