用户名: 密码: 验证码:
接种AM菌剂对意大利黑麦草根际影响及对后作水稻生长效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以“意大利黑麦草-水稻”轮作系统为研究对象,在水稻土壤和竹园土壤上种植黑麦草和后作水稻,研究了两方面的内容:一是通过多室根箱试验,研究接种菌根真菌菌剂(以Glomus mosseae为主)对黑麦草生长和根际微域环境的影响,包括土壤酶活性、有机酸含量、放线菌数量和土壤化学性质等指标的变化规律。二是通过盆栽试验,从系统上追踪接种菌剂和冬种黑麦草对后作早稻和晚稻生长的效应,包括产量、株高和分蘖动态变化等,进一步探讨菌根菌剂在轮作系统中的作用。主要研究结果如下:
     (1)由于土壤本底化学性质的差异,供试的水稻土壤和竹园土壤间差异显著(p < 0.05),黑麦草和后作水稻的生长均表现为水稻土壤优于竹园土壤。此外,两种土壤上早晚稻产量变化规律与生长指标变化不一致,如水稻土壤上水稻生物量、分蘖数和株高表现为早稻<晚稻,而产量则是早稻>晚稻,竹园土壤上情况则相反。
     (2)根箱试验中,各指标在根箱区域间呈现出一定的变化规律,尤其是根际与非根际之间土壤碱性磷酸酶活性、放线菌数量和基本化学性质差异明显。同样,区域间土壤有机酸种类和含量也存在差异,在水稻土壤上,根际土壤乙酸含量均高于非根际土壤;竹园土壤上,根际土壤乙酸含量比非根际土壤低37.45%-68.91%,而且柠檬酸和琥珀酸则是根际土壤>>非根际土壤,差别十分明显。
     (3)接种菌剂对黑麦草和水稻生长表现出明显的效应。接种菌剂处理下黑麦草和水稻根系出现AMF和DSE两种感染形式,并且以DSE感染为主。
     在根箱试验中,接种菌剂处理的黑麦草干重、植株全N和全P、土壤有机酸含量、碱性磷酸酶和转化酶活性均高于不接种处理;同时,水稻土壤上根际放线菌数量表现为接种>不接种,在竹园土壤上则相反。根系总感染率与土壤碱性磷酸酶间正相关性显著(p < 0.05)。
     类似地,在盆栽试验中,接种菌剂也增加了黑麦草株高、分蘖数和干重。而且,接种菌剂对后作水稻生长有明显的促进效应,不仅能够提高后作水稻的产量及产量相关指标,同时也提高了分蘖数、株高、生物量和早稻抽穗期最大叶宽、叶面积等指标。此外,早稻根系总感染率与土壤全磷水平间呈显著正相关(p < 0.05),表明总感染率受土壤化学性质影响极大。
     (4)与冬闲对照相比,盆栽冬种黑麦草提高了水稻土壤上后作早晚稻的产量及降低了竹园土壤上水稻产量,显示黑麦草根茬腐解产生了促进或抑制后作水稻生长的组分,而促进或抑制作用的选择可能与土壤化学性质密切相关。
Two experiments were conducted to study the effects of arbuscular mycorrhizal fungi (AMF) inoculation on the rhizosphere microenvironment of Italian Ryegrass and growth of subsequent paddy rice. First, a root box experiment was designed to calculate effects of AMF (mainly Glomus mosseae) inoculation on growth of ryegrass and changes of the rhizosphere microenvironment, including soil enzyme activities, organic acid contents, actinomycetes numbers and chemical properties. Second, through pot experiment, influences of AMF inoculation and ryegrass cultivation in winter on growth of subsequent paddy rice including yields, plant weights and tiller numbers were systematically evaluated. The results were as follows:
     (1) Growth of ryegrass and subsequent paddy rice on rice soil were significantly better than zhuyuan soil, mainly due to difference of background chemical properties. Moreover, changes of yields and growth of subsequent paddy rice on these two tested soils were different. In rice soil, dried biomass, tiller numbers and plant weights of early rice were all less than those of late rice, while yield of early rice was higher than that of late rice. However, differences between early rice and late rice in zhuyuan soil were opposite.
     (2) In root box experiment, soil alkaline phosphatase activities, actinomycetes numbers and chemical properties changed significantly among three zones (p < 0.05). Meanwhile, contents and species of soil organic acid were different between rhizosphere and non-rhizosphere soil. In rice soil, compared with non-rhizosphere soil, acetic acid contents in rhizosphere soil were higher. Besides, in zhuyuan soil, acetic acid contents in rhizosphere soil were lower, while citric acid and succinic acid contents were much higher than those in non-rhizosphere soil.
     (3) AMF inoculation influenced growth of ryegrass and subsequent paddy rice greatly. AMF and DSE colonization were both observed in roots of ryegrass and subsequent paddy rice, and most roots were colonized by DSE colonization.
     In root box experiment, dried plant biomass, total P and N contents of ryegrass, soil organic acid contents, alkaline phosphatase and invertase activities under AMF inoculation treatments were all higher than those under treatments without inoculation. Moreover, compared with treatments without inoculation, AMF inoculation increased actinomycetes numbers in rice soil but reduced actinomycetes numbers in zhuyuan soil. Besides, total colonization of roots of ryegrass positively correlated with soil alkaline phosphatase activities (p < 0.05).
     Similarly, plant weights, tiller numbers and dried biomass of ryegrass with AMF inoculation in pot experiments also increased. Meanwhile, AMF inoculation promoted growth of subsequent paddy rice, including yields, plant weights, tiller numbers, dried biomass of rice, and maximum width of blade and leaf area of subsequent early rice. In addition, correlation between total colonization in roots of subsequent early rice and soil total P contents was both significant (p < 0.05), indicating that total colonization might greatly influenced by soil chemical properties.
     (4) Compared to winter fallow treatments, ryegrass planting increased rice yields in rice soil but reduced rice yields in zhuyuan soil on the contrary. This result showed that decomposition of roots of ryegrass might release components which would promote or inhibit growth of subsequent paddy rice, which was also related to soil chemical properties.
引文
边秀举,胡林. VA菌根对坪草矿质养分吸收及草坪质量影响的研究.草业学报, 2001, 10(3): 42-46.
    常新刚,黄国勘,熊云明,曹开蔚,周培建,刘隆旺.双季稻与黑麦草水旱轮作的产量和土壤理化性状分析.耕作与栽培, 2005, 4: 16-17.
    程建平,罗锡文,樊启洲,张集文,吴建平,王在满,臧英.不同种植方式对水稻生育特性和产量的影响.华中农业大学学报, 2010, 29(1): 1-5.
    董昌金,赵斌.影响丛枝菌根真菌孢子萌发的几种因素研究.植物营养与肥料学报, 2003, 9(4): 489-494.
    冯海艳,刘茵,冯固,李晓林.接种AM真菌对黑麦草吸收和分配Cd的影响.农业环境科学学报, 2005, 24(3): 426-431.
    高辉,顾泳洁,蔡培乾,张欣.岛屿生境下苦槠丛枝菌根(AM)与根际土壤磷酸酶活性的相关性研究.生态与农村环境学报, 2007, 23(1): 24-27.
    顾向阳. VA菌根真菌Glomus mosseae对棉花根区微生物量和生物量的影响.生态学杂志, 1994, 13(2): 7-11.
    关松荫.土壤酶及其研究方法.北京:农业出版社, 1986: 206-239.
    胡正嘉,沈福初,秦万贵,王艳玲.丛枝菌根真菌和细菌肥料对水稻生长的影响. 华中农业大学学报, 2001, 20(3): 246-247.
    胡正嘉,王平. VA菌根真菌和镰刀菌对棉花枯萎病的影响.土壤学报, 1994, 31(增刊): 212-217.
    贾永,宋福强.丛枝菌根(AM)对根瘤菌趋化作用研究.微生物学通报, 2008, 35(5): 743-747.
    黎国喜.意大利黑麦草对后作水稻的化感促进作用.中山大学博士研究生学位论文, 2006.
    黎国喜,李厚金,杨中艺,辛国荣,唐湘如,袁剑刚.“黑麦草-水稻”草田轮作系统的根际效应V.意大利黑麦草(Lolium multiflorum)根茬腐解物中存在促水稻生长活性物质的证据.中山大学学报(自然科学版), 2008, 47(4): 88-93.
    李振高,骆永明,腾应.土壤与环境微生物研究法.科学出版社, 2008: 404-405.
    梁昌聪,肖艳萍,赵之伟.云南会泽废弃铅锌矿区植物丛枝茵根和深色有隔内生真菌研究.应用与环境生物学报, 2007, 13(6): 811-817.
    刘茂军,张兴涛,赵之伟.深色有隔内生真菌(DSE)研究进展.菌物学报, 2009, 28(6): 888-894.
    刘润进,陈应龙.菌根学.北京:科学出版社, 2007.
    刘润进,魏红,康俊水. AM俊对盐渍化土壤中坪草生长的影响.莱阳农学院学报, 1997, 14(2): 134-137.
    潘超美,郭庆荣,邱桥姐,黄湘兰. VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境, 2000, 9(4): 304-306.
    宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响. 应用与环境生物学报, 2000, 6(2) : 171-175.
    万大娟,贾晓珊,陈娴.多氯代有机污染物胁迫下植物某些根系分泌物的变化. 中山大学学报:自然科学版, 2007, 46(1): 110-113.
    王桂文,李海鹰.钦州湾红树植物根部内生真菌初步研究.广西林业科学, 2003, 32(3): 121-124.
    王树和,王晓娟,王茜,金樑.丛枝菌根及其宿主植物对根际微生物作用的响应. 草业学报, 2007, 16(3): 108-113.
    王茹华,张启发,周宝利,廉华,马光恕.浅析植物根分泌物与根际微生物的相互作用关系.土壤通报, 2007, 38(1): 167-172.
    吴金水.土壤微生物生物量测定方法及其应用.北京:气象出版社, 2006.
    谢明吉,严重玲,叶菁.菲对黑麦草根系几种低分子量分泌物的影响.生态环境, 2008, 17(2): 576-579.
    辛国荣,郑政伟,徐亚幸,杨中艺.“黑麦草-水稻”草田轮作系统的研究6.冬种黑麦草期间施肥对后作水稻生产的影响.草业学报, 2002, 11(4): 21-27.
    辛国荣,李雪梅,杨中艺.“黑麦草-水稻”草田轮作系统的根际效应IV.意大利黑麦草根际土壤性状及其对水稻幼苗生长的影响.中山大学学报自然科学版, 2004, 43(1): 9-13.
    辛国荣,孙斌,黎国喜,吴瑾,杨宇洁,王宇涛,杨中艺.广东不同地区冬种意大利黑麦草根际AM生理生态研究.中山大学学报(自然科学版), 2008a, 47(2): 79-83.
    辛国荣,孙斌,黎国喜,吴瑾,杨宇洁,王宇涛,杨中艺.意大利黑麦草菌根际效应研究.中山大学学报(自然科学版), 2008b, 47(3): 79-83.
    徐卫红,王宏信,刘怀,熊治庭. Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响.环境科学, 28(9): 2089-2095.
    杨中艺.“黑麦草-水稻”草田轮作系统的研究4.冬种意大利黑麦草对后作水稻生长和产量的影响.草业学报, 1996, 5(2): 38- 42.
    杨中艺,辛国荣.“黑麦草-水稻”草田轮作系统的研究5.各种应用模式的效益初探(案例分析).草业科学, 1997, 14(6): 35-39.
    杨宇洁.接种丛枝菌根真菌(AMF)对水稻和黑麦草生长及其根际土壤的影响.中山大学硕士研究生学位论文, 2008年.
    张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社, 1993.
    张玉凤,冯固,李晓林.丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响.生态学报, 2003, 23(1): 30-37.
    赵忠,王真辉.菌根真菌与根系微生物间的关系及其对寄主植物的影响.西北林学院学报, 2001, 16(4): 70-75.
    中国土壤学会.土壤农业化学分析方法.北京:中国农业科技出版社, 1999, 252-254.
    钟伟良,刘可星.土壤微生物对黑麦草和百喜草吸收89Sr的影响.核农学报, 2006, 20(4): 341-344.
    Ames N R. Mycorrhiza development in onion in response to inoculation with chitin decomposing actinomycetes. New Phytologist, 1989, 112(3): 423- 427.
    Awasthi R P, Godara R K. Kaith N S. Effect of fertilizer and biofertilizer on spore number and root colonization of peach seedlings. Journal of Hill Research, 1996, 9(1): 28-32.
    Azaizzeh H A, Marschner H, R?mheld V, Wittenmayer L. Effects of a vesicular - arbuscular mycorrhzal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-growth maize plants. Mycorrhiza,1995, 5(5): 32l-327.
    Bagyaraj D J, Menge J A. Interaction between a VA mycorrhiza and azotobacter and their effects on rhizosphere microflora and plant growth. New Phytologist, 1978, 80: 567-573.
    Barea J M. Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv. Soil Sci., 1991, 15: 1-40.
    Cameron Wagg, Michael Pautler, Hugues B Massicotte, R Larry Peterson. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza, 2008, 18:103-110.
    Diem H G, Gauthier D. Effect of endomycorrhizal infection (Glomus mosseae) on the nodulation and growth of Casuarina equisetifolia. C R Acad Sci Ser, 1982, III-III-E 294: 215.
    Dixon R K, GARRETT H E, COX G S. Boron fertilization, Vesicular-arbuscular mycorrhizal and growth of Citrus jam bhiri Lush. Journal of Plant Nutrition, 1989, 12: 687-700.
    Duponnois R, Galiana A, Prin Y. The mycorrhizosphere effect: a multitrophic interraction complex improves mycorrhizal symbiosis and plant growth. Sustainable agriculture and forestry, 2008: 227-240.
    Eldhuset T D, Swensen B, Wickstrom T, Wolleb?k G. Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. Journal of plant nutrition and soil science, 2007, 170(5): 645-648.
    Elsworth L R, Paley W O. Fertilizers: properties, applications and effects. Nova Science Publishers, Inc, New York, USA, 2008: 1-28.
    Frank A B. Uber die auf Wurzelesymbiose beruhende Ernahrung gewisser Baume durche unterirdische Pilze Brr Deutsch. Botany Gessell, 1885, 3: 128-145.
    Fuchs B, Haselwandter K. Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 2004, 14(4): 277-281.
    Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytologist, 1980, 84: 489-500.
    Gupta S B. Effective Utilization of Phosphorus in Rice-Wheat Cropping System in aVertisol through VA-Mycorrhizae and Phosphorus Solubilizer. PhD thesis, Division Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute, New Delhi., 1995.
    Hattingh M J, Gray L E, Gerdemann W J. Uptake and translocation of 32P-labelled phosphate to onion roots by endomycorrhizal fungi. Soil Science, 116: 383-387.
    He Z Q, He C X, Zhang Z B, Zou Z R, Wang H S. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 2007, 59: 128-133.
    Ilag L L, Rosales A M, Elazegvi F A, Mew T W. Changes in the population of infective endomycorrhizal fungi in a rice based cropping system. Plant Soil, 1987, 103: 67-73.
    Krishna K R, Balakrishna A N, Bagyaraj D J. Interaction between a vesicular arbuscular mycorrhizal fungus and Streptomyces-Cinnamomeus and their effects on finger millet. New Phytologist, 1982, 93: 401-405.
    Kurz H, Schulz R. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. Journal of Plant Nutrition Soil Science, 1999, 162: 323-328.
    Li G X, Zeng R S, Li H J, Yang Z Y, Xin G R, Yuan J G, Luo Y. Allelopathic effects of decaying Italian ryegrass (Lolium mutiflorum Lam.) residues on rice. Allelopathy Journal, 2008, 22(1): 15-24.
    Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcarenous soil. Plant and Soil, 1991, 136: 41- 48.
    Mayumi K, Mitsuro H. Morphology and colonization preference of arbuscular mycorrhizal fungi in Clethra barbinervis, Cucumis sativus, and Lycopersicon esculentum. Mycoscience, 2004, 45(3):206-213.
    Menoyo E, Becerra A G, Renison D. Mycorrhizal associations in Polylepis woodlands of Central Argentina. Canadian Journal of Botany, 2007, 85: 526-531.
    Miller R M, Jastrow J D. The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen M J. Mycorrhizal Functioning: An IntegrativePlant-Fungus Process. Chapman and Hall, Inc, 438-467.
    Muthukumar M, Senthilkumar M, Rajangam M, Udaiyan K. Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza, 2006, 17: 11-24.
    Phillips J M, Hayman D S. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Tran. Br. Mycol. Soc., 1970, 55: 158-161.
    Rao A V, Tak R. Influence of mycorrhizal fungi on the growth of different tree species and their nutrient uptake in gypsum mine spoil in India. Applied Soil Ecology, 2001, 17: 279-284.
    Rueda-Puente E O, Murillo-Amador B, Castellanos-Cervantes T, García-Hernández J L, Tarazòn-Herrera M A, Moreno Medina S, Gerlach Barrera L E. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D’Arcy and Eshbaugh) germination under stressing abiotic conditions. Plant Physiology and Biochemistry, 2000, 48: 724-730.
    Scervino J M, Gottlieb A, Silvani V A, M. Pergola, L. Fernandez, Godeas A M. Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biology & Biochemistry, 2009, 41: 1753-1756.
    Schrey S D, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka M T. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Current Genetics, 2007, 52(2): 77-85.
    Secilia J, Bagyaraj D J. Selection of efficient vesicular–arbuscular mycorrhizal fungi for wetland rice-a preliminary screen. Mycorrhiza, 1994, 4: 265-268.
    Smith F A, Smith S E, St-John B J, Nicholas D J D. Inflow of N and P into roots of mycorrhizal and non-mycorrhizal onions. Physiological and genetical aspects of mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae, 1986: 371-375.
    Song Y, Feng G, Li X L. Effects of different P sources on phosphatase activity ofmycorrhizosphere of red clover inoculated with AMF. China Journal of Applied Ecology, 2003, 14(4): 781-784.
    Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J P, Vierheilig H. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules, 2007, 12(7): 1290-1306.
    Szmigielask A M, Van Rees K C J, Cieslinski G, Huang P M. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. Agric. Food Chem., 1996, 44: 1036-1040.
    Tsimilli-Michael M, Eggenberg P, Biro B, Koves-Pechy K, Voros I, Strasser R J. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology, 2000, 15: 169-182.
    van der Heijden M G A, Boller T, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 1998, 79: 2082-2091.
    Vázquez M M, César S, Azcón R, Barea J M. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 2000, 15: 261-272.
    Wang F Y. Bioremediation of copper-contaminated soils with arbuscular mycorrhiza. Ph D dissertation, Graduate School of the Chinese Academy of Sciences, 2005:1-156.
    Wang F Y, Lin X G, Yin R, Wu L H. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology, 2006, 31: 110-119.
    Wang K, Zhao ZW. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. International Review of Hydrobiology, 2006, 91(1): 29-37.
    Wang Z W, Shan X Q, Zhang S Z. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 2002, 46: 1163 -1171.
    Vigo C, Norman J R, Hooker J E. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 2000, 49: 509-514.
    Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin a glycop rotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil, 1998, 198: 97-107.
    Wu Y Q, Liu T T, He X L. Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China. Front. Agric. China, 2009, 3(2): 164-170.
    Yuan Z L, Lin F C, Zhang C L, Kubicek C P. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte. FEMS Microbiol Lett, 2010: 1-8.
    Zheng S X, Hu J L, Chen K, Yao J, Yu Z N, Lin X G. Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biology and Biochemistry, 2009, 41: 2094-2099.
    Zuk A J, Fry J D. Inhibition of Zenith zoysiagrass seedling emergence and growth by perennial ryegrass leaves and roots. Hort. Sci., 2006, 41: 818-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700