用户名: 密码: 验证码:
温度、孔隙水和应力作用下砂岩的力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南水北调西线工程位于青藏高原东北部,从长江上游经巴颜喀拉山输水入黄河,是我国水资源优化配置,解决北方地区缺水的一项战略性基础设施工程,直接关系到我国北方地区社会经济的可持续发展和生态环境的改善。西线工程输水线路主要为深埋隧洞,所经过的区域存在高地温、高孔隙裂隙水压力及高地应力。研究高地温、高孔隙裂隙水压力及高地应耦合作用下岩石的力学特性是岩石地下工程开挖、支护设计及围岩稳定性分析不可或缺的基本依据。本文通过温度、应力及孔隙水压力、应力耦合下的三轴试验,对输水线路的主要岩性之一-砂岩的强度特性和变形特性进行了研究,并通过应力路径试验对砂岩在地温作用下的本构模型进行探讨。
     研究表明,在高孔隙水压力作用下,砂岩的强度和变形模量会发生变化。相同孔隙水压力作用下,砂岩的强度受围压控制,表现为围压越高,岩石的强度越高;相同围压条件下,孔隙水压力越高,岩石强度越低。孔隙水对岩石强度的影响主要表现在岩石的c值明显降低,?值变化虽然不如c值明显,但与c值趋势是一致的,即孔隙水压力越大,?值越低。岩石的变形模量与围压有关,低围压时,孔隙水压力的存在使岩石的变形模量增大;高围压条件下,岩石的变形模量随孔隙水压力的增加而降低。在孔隙水压力作用下砂岩的破裂模式多种多样,既有剪切破坏模式,也有轴向劈裂破坏模式。由于岩石致密等因素,孔隙水压力主要对岩石试件起劈裂作用,因此随着孔隙水压力的增大,岩石脆张性破坏特征明显。
     砂岩的强度与围压和温度间呈现出复杂的关系。在不同的温度条件下,砂岩的强度均随围压增加而增加。低围压时,强度随温度升高而增加,较高围压时,强度随温度升高有降低的趋势。温度对岩石强度的影响主要反映在粘聚力提高的幅度很大,而摩擦角变化不明显。砂岩的平均弹性模量与温度有关,较高温度条件下的弹性模量均高于室温的弹性模量,虽然不同围压下的表现形式不同。砂岩的压延性与围压和温度有关。围压增加破坏时的变形增加;温度升高时,其压延性与围压有关:单轴压缩状态下,压延性随温度线性增加,围压在25MPa以上时,压延性低于单轴压缩状态,且呈现较复杂的关系。
     通过不同温度下的应力路径试验,得到砂岩经验弹塑性本构关系,并确定了模型的参数与温度间的关系,说明岩石的弹性和塑性行为对温度的敏感性存在差别。
The west route of south-to-north water transfer project is situated in the north-east of Qingzhang plateau, which aims at accounting for the lackage of water in north China by transferring water from the upper of Yangtze River to the upper of Yellow River via the mountain of Bayangela. In the engineering deep tunnels will be excavated to transfer water. According to the plan, the tunnels will pass through the region existing high geotemperature, high ground water and high geostress. The study of coupling behavior of three fields (high geothermal field, high hydraulic field and high geostress field) is very important for the excavating, bolting design and stability analyzing for tunnels. In the thesis, the mechanical behaviors of the sandstone from the project have been studied through a series of coupled triaxial tests of confining pressures (from 0 to 60MPa ) and temperatures (room temperature to 70℃) as well as confining pressures (from 25 to 60MPa ) and pore pressure (from 0 to 10MPa ), and an empirical constitutive law concerning geotemperature has been researched.
     The results of the study show that the strength of the rock sample increases clearly with the increasing confining pressure at the same pore pressure, and decreases with the increasing pore pressure under the same confining pressure. The main reason of the influence is the clear decreasing of cohesion of the sandstone, although the friction angle doesn’t change clearly comparing to the cohesion, but it has the same tendency as the cohesion. It is also shown that the Young’s modulus of dry rock is affected slightly by the confining pressure. Nevertheless, it is revealed that under the lower pore pressure, the Young’s modulus of rock samples increases with the increasing confining pressures, but under higher pore pressure, it decreases with the increasing pore pressures. The failure state of the sandstone under pore pressure exhibits brittle-tensile feature.
     The relation between the strength of the sandstone and temperature is complex.
     The strength of the rock is higher under the higher confining pressure regardless the temperature, while the influence of temperature reveals difference: the strength increases with the temperature when the confining pressure is lower than 40MPa; however, when the confining pressure is higher than 40MPa, the strength tends to decrease with increasing temperature. It also exhibits that the cohesion increased greatly with the temperature. Moreover, it reveals that the Young’modulus doesn’t change distinctly with confining pressures, but it is higher than that in room temperature when temperature increases. The ductile feature increase with confining pressure, but it is complex under temperature.
     Moreover, an empirical constitutive law considering geotemperature is proposed, which parameters are related to temperature.
引文
1. 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展. 力学进展, 2005,35(1),91-99
    2. 陈 勉. 我国深层岩石力学研究及在石油工程中的应用. 岩石力学与工程学报.2004,23(14):2455~2462
    3. 何满潮, 吕晓俭, 景海河.深部工程围岩特性及非线性动态力学设计理念. 岩石力学与工程学报, 2002, 21(8):1215~1224
    4. 王学潮,张辉,陈书涛 等。南水北调西线第一期工程地质条件分析。人民黄河,2001,23(10):25-26
    5. 王学潮, 杨维九,刘丰收. 南水北调西线一期工程的工程地质和岩石力学问题. 2005, 24(20): 3603-3613
    6. 王学潮,张辉,刘振红 等。南水北调西线工程地质灾害初步研究. 地球科学-中国地质大学学报。2001,26(3):297-303
    7. 王学潮,马国彦。南水北调西线工程及其主要工程地质问题。工程地质学报。2002,10(1):38-45
    8. 黄润秋,王贤能,唐胜传 等。深埋长隧道工程开挖的主要地质灾害问题研究。地质灾害与环境保护,1997,8(1):50-68
    9. 薛世峰,仝兴华,岳伯谦 等。地下流固耦合理论的研究进展及应用,石油大学学报(自然科学版) 2000,Vol.24(2):109-114
    10.Terzaghi K.Theoretical Soil Mechanics. Wiley,New York,1943.
    11.Biot. M.A. General theory of three –dimensional Consolidation. Journal of Applied Physics, 1941,Vol.12,155-164
    12.Biot. M.A. Theory of elasticity and consolidation for apore anisotropic solid. Journal of Applied Physics, 1955,Vol.26(2),182-185
    13.Verruijt A. Elastic storage of a quifers. In: Flow Through Porous Media. De wiest R J M, New York:Tiho Wiley,1969.
    14.Palciauskas. V. V. and Domenico, P. A. Characterization of drained and undrained response of thermally loaded respository rocks. Water Resour. Res.,1982, 18(2):281-290
    15.McTigue, D. Theramoelastic response of fluid-saturated porous rock. J. Geophys. Res.,1986,91(B9):9533-9542
    16.Ohnishi, Y. and Kobayashi, A. Thermal-hydroaulic-mechanical coupling analysis of rock mass. In:Hudson, J.,editor,Comprehensionsive Rock Engineering, Pergamon, Oxford, 1993
    17.Coussy, O. and Dangle, P. The thermomechanics of porous media considered as open continous media. In Charlez, P. A., editor, Mechanics of Porous Media, Vol. 9, Balkema, 1995
    18. Noorishad, et al. Coupled theramal-hydrologic-mechanical phenomena in fractured porous rocks. J. Geophys. Res. 1984,89(B12):10365-10373
    19.R.W.Zimmerman, Coupling in poroelasticity and thermoelasticity. International Journal of Rock Mechanics and Mining Sciences 37 (2000) 79-87
    20.刘建军,冯夏庭. 我国油藏渗流-温度-应力耦合的研究进展. 岩土力学,2003, 24(s):645-650
    21.董平川 , 徐小荷 , 何顺利 流固耦合问题及研究进展 地质力学学报 Vol.5 No.1Mar.1999:17-26
    22.吕爱钟. 试论我国岩石力学的研究状况及其进展 岩土力学 Sep. 2004 Vol.25 Supp.1 2455~2462
    23.章梦涛. 变形与渗流相互影响的岩石力学问题. 岩石力学与工程学报, 1989,8(2):189-190
    24.Xia-Ting Feng , Jianjun Liu, and Lanru Jing. Research and Application on Coupled T-H-M-C Process of Geological in China – A Review. International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modelling, Experiments & Applications. Sweden ,October, 2003: 32-43
    25.S. Wang and E. Wang. Recent studies on the coupled processes in geotechnical and geo-environmental engineering fields in China. International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modelling, Experiments & Applications. Sweden ,October, 2003:66-78
    26.赵阳升.煤体瓦斯耦合数学模型及数值方法.岩石力学与工程学报,1994,14(3):201-205.
    27.冉启全,顾小芸.油藏渗流与应力耦合分析.岩土工程学报,1998,20(2):69-73.
    28.黄 涛,陈一立.工程岩体地下水渗流-应力-温度耦合作用数学模型研究.西南交通大学学报,1999,34(1):11-15.
    29.黄 涛,杨立中.隧道裂隙岩体温度渗流耦合数学模型研究. 岩土工程学报1999, 21(5): 554-558
    30.徐曾和,徐小荷. 二维应力场下承压地层中渗流的流固耦合问题[J]. 岩石力学与工程学报, 1999, 18(6):645-650
    31.仵彦卿. 岩体结构类型与水力学模型. 岩石力学与工程学报. 2000, 19(6):687-691
    32.杨松岩,俞茂宏.多相孔隙介质的本构描述.力学学报,2000,32(1):11-24
    33.郑少和,平 扬,白世伟. 考虑渗透压力的裂隙岩体断裂损伤本构模型研究. 第六次全国岩石力学与工程学术大会论文集. 2001.10, 武汉
    34.郑少河 等.裂隙岩体渗流损伤耦合模型的理论分析 .岩石力学与工程学报,2001,20(2):156~159
    35.平 扬 郑少河 白世伟 考虑裂隙压力的裂隙岩体的断裂损伤本构模型研究 第六次全国岩石力学与工程学术大会论文集.2000 年,武汉,134-136
    36.刘亚晨, 蔡永庆, 刘泉声, 吴玉山. 岩体裂隙结构面的温度-应力-水力耦合本构关系. 岩土工程学报. 2000, 23(3): 196-200
    37.梁 冰,刘建军.非等温情况下煤层中瓦斯流动的数学模型及数值解法.岩石力学与工程学报,2000,19(1)1-5.
    38.刘建军,薛 强:岩土热—流—固耦合理论及在采矿工程中的应用. 武汉工业学院学报. 2004, 23(3):55-60
    39.刘建军,刘先贵,胡雅衽.低渗透储层流固耦合渗流规律研究.岩石力学与工程学报,2002,21(1):46-51.
    40.王建省. 非对称热渗流域多孔介质中的关键问题及研究方法. 北方交通大学学报,2002,14(1)
    41.王自明, 杜志敏. 弹性油藏中多相渗流的流-固-热耦合数学模型. 大庆石油地质与开发,2003,22(1):29-31
    42.赖远明.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析.岩土工程学报,1999,21(5):529-533.
    43.李锡夔,朴光虎,邓子辰.考虑固结效应的结构—土壤相互作用分析及其有限元解.计算结构力学及其应用,1990,7(3):1-11.
    44.张 洪 武 , 钟 万 勰 , 钱 令 希 . 饱 和 土 壤 固 结 分 析 的 算 法 研 究 [J]. 力 学 与 实践,1993,15(1):20~22.
    45.张洪武,钟万勰,钱令希.土体固结分析的一种有效算法[J].计算结构力学及其应用,1991,8(4):389.
    46.Yarlong Wang, Maurice B. Dusseault, A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability,Journal of Petroleum Science and Engineering 38 (2003) 187– 198
    47.Meredith PG, Atkinson BK. Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro. Phys Earth Planet Inter 1985;39:33–50.
    48.Yarlong Wang, Maurice B. Dusseault. A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability. Journal of Petroleum Science and Engineering 38 (2003) 187– 198
    49.K.M. Bower, G.Zyvoloski. A Numerical Model for Thermo-Hydro-Mechanical Coupling in Fractureed Rock. Int. J. Rock Mech. Min. Sci. 34(8),1997: 1201-1211
    50.B.Seneviratne HN, Carter JP, Booker JR. Analysis of fully coupled thermo-mechanical behavior around a rigid cylindrical heat source buried in clay. Int J Num Anal Methods Geomech 1994;18:177-203.
    51.Giraud A, Rouset G. Thermoelastic and thermoplastic response of a porous space submitted to a decaying heat source. Int J Num Anal Methods Geomech 1995;19:475-495 .
    52.C.-F. Tsang, O. Stephansson, F. Kautsky and L. Jing. An overview of the DECOVALEX Project on coupled THM processes in fractured rock-bentonite systems. International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modelling, Experiments & Applications. Sweden ,October, 2003:3-13
    53.J.A. Hudson, O. Stephansson, J. Andersson C.-F. Tsang, L. Jing. Coupled T-H-M issues relating to radioactive waste repository design and performance. International Journal of Rock Mechanics & Mining Sciences. 38 (2001): 143-161
    54.T. Chan, K. Khair, L. Jing, M. Ahola, J. Noorishad and E. Vuillod International comparison of coupled thermo-hydro-mechanical models of a multiple-fracture bench mark problem: DECOVALEX phase I, bench mark test 2,International Journal of RockMechanics and Mining Science & Geomechanics Abstracts .Volume 32, Issue 5 , July 1995, Pages 435-452
    55.A. Millard, A. Reje, M. Chijimatsu, L. Jing, J. De Jonge, M. Kohlmeier, T.S. Nguyen, J. Rutqvist, M. Souley, Y. Sugita: Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEX III project. Part 2: Effects of THM coupling in continuous and homogeneous rocks. International Journal of Rock Mechanics & Mining Sciences 42 (2005) 731–744
    56.Y. Jiao,J. A. Hudson. The fully-coupled model for rock engineering systems. nternational Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract. 1995,32(5):491-521
    57.柴军瑞,仵彦卿. 岩体渗流与应力相互作用关系综述. 第六次全国岩石力学与工程学术大会. 武汉, 2000:366-369
    58.E. Klein, T. Reuschle. A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. International Journal of Rock Mechanics & Mining Sciences 41 (2004) 975–986
    59.靳钟铭,赵阳升,贺军,章梦涛. 含瓦斯煤层力学特性的实验研究. 岩石力学与工程学报.1991,10(3):271-280
    60.李世平, 李玉寿, 吴振业. 岩石全应力应变过程对应的渗透率-应变方程.岩土工程学报.1995,17(2):13-19
    61.李术才,李树忱,朱维申 等,裂隙水对节理岩体裂隙扩展影响的 CT 实时扫描实验研究,岩石力学与工程学报,2004,23(21):3584~3590
    62.朱珍德, 胡 定. 裂隙水压力对岩体强度的影响. 岩土力学, 2000,21(1):64-67
    63.邢福东,朱珍德,刘汉龙,等. 高围压高水压作用下脆性岩石强度变形特性试验研究. 河海大学学报(自然科学版), 2004,32(2):184-187
    64.杨天鸿,唐春安,冯启言. 孔隙水压作用下岩样加载破坏过程的数值模拟.岩土力学,2001,22(4):378-382
    65.唐春安,杨天鸿,李连崇 等. 孔隙水压力对岩石裂纹扩展影响的数值模拟. 岩土力学,2003,24(s2):17-21
    66.C. Yang,J. J. K. Daemen.Temperature Effects on Creep of Tuff and its Time-dependent Damage Analysis. Int.J. Rock Mech. Min. Sci. 2003, 34(3/4) : 383-384
    67.K.M. Neaupane, T. Yamabe, R. Yoshinaka. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock. International Journal of Rock Mechanics and Mining Sciences. 36 (1999) 563-580
    68.T. Yamabea, K.M. Neaupane. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition. International Journal of Rock Mechanics & Mining Sciences 38 (2001) 1029–1034
    69.C.Parka, J.H.Synna, H.S.Shina, D.S. Cheona, H.D.Limb, S.W.Jeon. An experimental study on the thermal characteristics of rock at low temperatures. International Journal of Rock Mechanics & Mining Sciences .41 (2004) :367–368
    70.梁卫国 等. 240 ℃内盐岩物理力学特性的实验研究,岩石力学与工程学报,2004,23(14)2365-2369
    71.夏小和,王颖秩,黄醒春,沈为平.高温作用对大理岩强度及变形特性影响的实验研究.上海交通大学学报,2004,38(6):996-998
    72.张元中, 楚泽涵, 陈 颙.岩石热开裂研究现状及其应用前景. 特种油气藏. 1999,6(2):1-5
    73.Chen Yong and Chi yuan Wang.Thermally induced acousticemission in westerly granite, geophysical research letters. 1980,7(12):1089)1092
    74.张晶瑶,马万昌,张风鹏,金校元. 高温条件下岩石结构特征的研究 东北大学学报(自然科学版) 1996,17(1):5-9
    75.B. MenCndez, C. David and M. Darot. A Study of the Crack Network in Thermally and Mechanically Cracked Granite Samples using Confocal Scanning Laser. Microscopy, Phys. Chem. Earth (A), Vol. 24, No. 7, pp. 627-432, 1999
    76.云美厚,易维启.庄红艳.砂岩的弹性模量与孔隙率、泥质含量、有效压力和温度的经验关系.石油地球物理勘探,2001.36(3):308—314
    77.R. G. S. Araújo; J. L. A. O. Sousa;M. Bloch. Experimental investigation on the influence of temperature on the mechanical properties of reservoir rocks. Int. J. Rock Mech. & Min. Sci. 34:3/4, Paper No.298 ?
    78.N.A.Al-Shayea, K.Khan, S.N.Abduljauwad. Effects of confining pressure and temperature on mixtureed-mode(Ⅰ-Ⅱ ) fracture toughness of a limestone rock. Int. J. Rock Mech.&Min. Sci. 37(2000)629-643
    79.T. Funatsu, M. Seto, H. Shimada, K. Matsui, M. Kuruppu. Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. International Journal of Rock Mechanics & Mining Sciences.41 (2004):927–938
    80.贺玉龙,杨立中. 温度和有效应力对砂岩渗透性影响的试验研究. 煤田地质与勘探, 2004,32(2):36-38
    81.陈磊, 李彬, 滕桃居, 陈太林.混凝土高温力学性能分析. 混凝土. 2003 年第7 期: 26-28
    82.M. Lion, F.Skoczylas, B.Ledesert. Effect of heating on the hydraulic and poroelastic properties of Bourgogne limestone. International Journal of Rock Mechanics and Mining Sciences. 42 (2005): 508-520
    83.北野晃一等. 高温下岩石力学特性热特性和渗透特性的综合评述. 世界地震译丛,1991 年第一期:59-68
    84.Jing, L. A review of techniques, advances and outstanding issues in numerical modellingfor rock mechanics and rock engineering. Int. J.Rock Mech. Min. Sci. 2003, 40(3): 283-353
    1. 午彦卿. 岩体水力学基础(三)-岩体渗流场与应力场藕合的集中参数模型及连续介质模型水文地质工程地质. 1997 年第 2 期:54-57
    2. R.W.Zimmerman, Coupling in poroelasticity and thermoelasticity. International Journal of Rock Mechanics and Mining Sciences 37 (2000) 79-87
    3. Ilya Berchenko.Thermal loading of a saturated rock mass: Field experiment and modeling using thermoporoelastic singularsolution[D]. University of Minnesota, USA, 1998
    4. 北野晃一等. 高温下岩石力学特性热特性和渗透特性的综合评述. 世界地震译丛,1991年第一期:59-68
    1. 南水北调西线一期工程砂岩力学特性研究. 研究报告,中国科学院武汉岩土力学研究所,2006
    2. 孟召平, 彭苏萍, 凌标灿 等. 不同侧压下沉积岩石变形与强度特征, 煤炭学报,2000,25(1): 15-18
    3. 郝春山, 李治平, 杨满平. 变形介质的变形机理及物性特征研究. 西南石油学院学报,2003,25(4):19-22
    4. 欧阳誔, 白武明, 方华. 某些砂岩孔隙结构的分形特征. 岩石力学与工程学报, 1998,17(4):446-452
    5. 南水北调西线工程规划阶段工程地质勘察报告,水利部黄河水利委员会勘察规划设计院,2001 年 2 月。
    6. 陈 勉. 我国深层岩石力学研究及在石油工程中的应用. 岩石力学与工程学报,2004,23(14):2455-2462
    1. 周青春,李海波,杨春和 等. 南水北调西线一期工程砂岩温度、围压和水压耦合试验研究. 岩石力学与工程学报, 2005, 24(20):3639-3646
    2.Zhou Qingchun,Li Haibo, Sheng Qian. Experimental study on the mechanical properties of a sandstone under pore pressure. The 2nd International Conference on Coupled T-H-M-C Processes in Geo-systems & Engineering. May,2006, Nanjing, China.
    3. 章梦涛. 变形与渗流相互影响的岩石力学问题.岩石力学与工程学报, 1989,8(2):189-190
    4. 赵明阶, 徐 蓉. 裂隙岩体在受荷条件下的变形特性分析.岩土工程学报, 2000, 22(4):466-471
    5.朱珍德, 胡 定. 裂隙水压力对岩体强度的影响. 岩土力学, 2000,21(1):64-67
    6.汤连生, 张鹏程, 王 洋. 水作用下岩体断裂强度探讨. 岩石力学与工程学报,2004,23(19):3337~3341
    7. Bruno M S, Nakagawa F M. Pore pressure influence on tensile fracture propagation in sedimentary rock. J.Rock Mech. Min. Sci. 1991, 28(4): 261-273
    8. 刘光廷,周飞平,低渗透饱和岩石加载时体积弹模与孔隙液压的关系
    9. 邢福东,朱珍德,刘汉龙,等. 高围压高水压作用下脆性岩石强度变形特性试验研究. 河海大学学报(自然科学版), 2004,32(2):184-187
    10. 王学滨 . 孔隙压力对岩样全部变形特征的影响. 沈阳建筑大学学报 (自然科学版),2005,21(6) :625-629
    11. 张梅英,袁建新,李廷芥 等. 单轴压缩过程中岩石变形破坏机理. 岩石力学与工程学报, 1998, 17(1):1-8
    12. 杨天鸿,唐春安,冯启言. 孔隙水压作用下岩样加载破坏过程的数值模拟.岩土力学,2001,22(4)378-382
    13. 唐春安,杨天鸿, 李连崇. 孔隙水压力对岩石裂纹扩展影响的数值模拟. 岩土力学, 2003,24(S2):17-20
    14. 吴景浓.地壳岩石的渗透性状及孔隙水对岩石力学性质的影响. 华南地震,1990,10(1) :77-82
    15. 王学滨, 潘一山, 丁秀丽. 孔隙流体对岩体变形局部化的影响及数值模拟研究. 地质力学学报. 2001, 7(12):139-143
    1. 周青春,李海波,杨春和 等. 南水北调西线一期工程砂岩温度、围压和水压耦合试验 研究. 岩石力学与工程学报, 2005, 24(20):3639-3646
    2. ZHOU Qing-chun, LI Hai-bo, Yang Chun-he. Experimental Study on Mechanical Property of Thermo-mechanical and Hydro-mechanical Coupling for a Sandstone. Proceeding of 5th Asian Experimental Mechanics Conference. Jujii, Korea, 2006
    3. 周宏伟, 谢和平, 左建平. 深部高地应力下岩石力学行为研究进展. 力学进展, 2005,35(1):91-99
    4. N.A.Al-Shayen. Effect of confining pressure and temperature on mixed-mode (Ⅰ-Ⅱ ) fracture toughness of a limestone rock[J]. Int. J. Rock mech. Min. Sci., 37(2000):629-643
    5. 徐果明,孙新蕾,肖 翔等. 温压条件下水饱和砂岩纵波波速和衰减的测量与规律. 石油地 球物理物探. 2002 年 2 月,37(1):39-43
    6. G.S.Araujo, J.L.A.O.Sousa, M. Bloch. Experimental investigation on the influence of temperature on the mechanical properties of reservoir rock.. Int. J. Rock mech. Min. Sci., 34(3/4): 298
    7. M. Lion, F.Skoczylas, B.Ledesert. Effect of heating on the hydraulic and poroelastic properties of Bourgogne limestone. International Journal of Rock Mechanics and Mining ciences. 42 (2005): 508-520
    8. E. Klein, T. Reuschle. A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. International Journal of Rock Mechanics & Mining Sciences 41 (2004) 975–986
    9. 康 健. 三场耦合作用相关试验及耦合强度量化研究. 博士学位论文,西南交通大学, 2000
    10. Hart R.D. John C. M. ST. Formulation of a Fully-coupled Thermal -Mechanical- Fluid Model for Non-linear Geologic Systems. Int. J. Rock. Mech. Min. Sic. & Geomech. Abstr. 1986, 23(3):213-224
    11. Palciauskas V.V,Domenico P.A. Characterization of Drained and Undrained response of Thermally Loaded Repository Rocks.Water Resources Research. 1982, 18(2):281-290
    12. 曾 平,赵金洲,李治平. 温度、有效应力和含水饱和度对低渗透砂岩渗透率影响的实 验研究. 天然气地球科学 2005,Vol.16(1):31-35
    13. 夏小和,王颖秩,黄醒春,沈为平.高温作用对大理岩强度及变形特性影响的实验研究. 上海交通大学学报,2004,38(6):996-998
    14. 尤明庆.岩石试样的杨氏模量与围压的关系. 岩石力学与工程学报. 2003, 22(1): 53-60
    15. 温志坚,杜乐天,刘正义. 相山矿田热液水云母及其与铀矿化关系研究. 矿床地质, 2000,19(1):257-263
    1. M. Ohnaka, M. Akatsu, H. Mochizuki et al. A constitutive law for the shear failure of rock under lithospheric conditions. Earthquake Generation Processes: Environmental Aspects and Physical Modelling, 1997, Volume 277, Issues 1-3: Pages 1-27
    2. 周小平, 张永兴,朱可善. 中低围压下细观非均匀性岩石本构关系研究.岩土工程学报, 2003, 25(5):606-610
    3. 温进涛,朱维申,李术才基于能量耗散原理建立的损伤本构模型. 岩石力学与工程学报, 2002,21(s):1927-1930
    4. 刘 泉 声 , 许 锡 昌 . 温 度 作 用 下 脆 性 岩 石 的 损 伤 分 析 . 岩 石 力 学 与 工 程 学报,2000,19(4):408-411
    5. 刘亚晨, 刘泉声,吴玉山 等. 温度饱和水下的裂隙岩体力学特性研究.岩石力学与工程学报, 2002,21(2):233-237
    6. 李长春, 付文生. 考虑温度效应的岩石损伤内时本构关系. 岩土力学, 1991, 12(3):1-10
    7. M.C. Weng, F.S. Jeng, T.H. Huang, M.L. Lin, Characterizing the deformation behavior of Tertiary sandstones, International Journal of Rock Mechanics & Mining Sciences 42 (2005) 388–401
    8. Desai C.S, Salami MR. A constitutive model and associated testing for weak rock. Int J Rock Mech Min Sci Geomech Abstr. 1987;24:299–307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700