用户名: 密码: 验证码:
深部应力场系统评价与油气井井壁稳定性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力场的正确评价是地下深部工程安全、合理、高效实施的基础。在石油工程领域,深部地应力研究是油气勘探开发的前期工程和基础工作,对推动油气勘探开发技术理论的发展、提高整体经济效益有着重要作用。本文以塔河油田为例,综合利用油气地质、地震勘探、石油工程测井及增产压裂等油气勘探开发相关资料,在深入分析地质构造、深部地质环境(孔隙压力、地层温度)、结构面发育分布以及深部地层岩石力学性能的基础上,较为系统地研究了深部应力场特征,并开展了油气井井壁失稳分析研究。取得的主要成果及认识如下:
     (1)综合利用岩心观察、成像测井识别等手段重点描述、评价了奥陶系地层裂缝的发育特征。结果表明:裂缝走向以北东65°~75°和32°~43°为主,次为274°~292°;倾角以高角度占优;裂缝的发育程度主要受控于构造轴部、构造高点以及断裂分布,此外地层的岩性、埋深对裂缝发育的影响也较为显著。
     (2)在深入分析纵波速度模型的基础上,通过引入地层体积密度,改进了地层孔隙压力测井综合解释方法。结合实测数据利用该方法对研究工区的地层孔隙压力进行了分析评价,结果表明:塔河油田地层孔隙压力系数为0.80~1.35,平均1.10左右,属于正常压力系统;并且随地层埋深增大,总体呈增大趋势。
     (3)在区域地温分析的基础上,基于实测数据研究了工区的地层温度分布特征,结果表明:工区地温梯度为1.91~2.73℃/m,属偏低地温系统;随地层埋深的增大,地温梯度呈现明显的线性减小趋势;在平面上,平均地温梯度呈现东部高,西部低的分布特征。
     (4)通过系统分析钻井循环过程中地层、钻柱液体、环空液体之间的换热机制,依据能量平衡及传热学相关理论建立了井壁温度场分析模型。应用该模型分析了钻井循环过程中井壁温度的分布特征,具体表现为同温点之下各深度点井壁温度低于原始地层温度,同温点上部则相反,井底处井壁温度降低幅度最大;并研究了循环时间、地温梯度、地层热传导率以及井深对井壁温度分布的影响。
     (5)综合利用岩石力学试验测试及石油工程测井分析两种技术手段,研究了深部地层岩石不同围压、温度条件下的变形破坏特征;基于石油工程测井计算分析结果,研究评价了工区地层岩石力学参数的空间分布特征,结果表明:纵向上,随地层埋深的增大、地层岩石力学参数总体增大趋势明显;平面上,地层岩石的弹性模量、抗压强度总体表现出北高南低的分布特征。
     (6)在区域应力分析的基础上,综合应用人工裂缝实时检测、钻井诱导缝分析以及井壁崩落分析三种技术手段对研究工区的深部应力场方向进行了系统分析研究。研究工区现今应力场主要受控于区域应力构造作用,水平最大主应力优势方向为NE40°~NE65°。
     (7)导出了不同完井方式下的水平最大主应力反演计算模型,完善了基于油气井增产压裂资料反演分析深部地应力的系统方法体系;15口井的增产压裂资料分析表明:在研究工区分析深度范围(5440~6100m)内,水平最大主应力大小为108.0~129.0MPa;水平最小主应力为77.0~107.0MPa;分析井段深度三个主应力的大小关系为σ_v≥σ_H≥σ_h,属潜在正断型应力场。
     (8)探讨了有限单元法结合人工神经网络实现深部地应力场反演的基本理论思想,建立了综合应用有限单元与人工神经网络方法进行深部地应力场反演分析的研究思路及技术流程。并应用该理论方法分别以不同尺度范围对研究工区地应力场进行了二维、三维数值模拟反演分析。
     (9)对深部地层井壁的力学失稳进行了分析研究:(a)系统归纳了常见井壁失稳的力学模式,并分析了各失稳模式的井周易发方位以及与钻井液密度的关系;(b)构建了完整井眼及结构面发育井眼的井壁力学失稳定量评价指数;分析了原地应力状态、地层温度扰动、地层孔隙压力、结构面发育以及井眼轨迹对井壁力学失稳的影响;(c)改进优化了现有的维持井壁稳定的钻井液安全密度评价方法及计算模型,弥补了常规方法仅靠某一种或两种失稳模式确定安全钻井液密度的不足,结果更合理、可靠。
     (10)通过分析认为:层位埋深大、构造应力作用强、结构面发育以及局部地层岩石力学性能差是导致塔河油田井壁失稳的主要内因;在地应力场三维数值模拟反演、岩石力学参数空间分布分析的基础上,区域性地计算分析了安全钻井液密度,为保持井壁稳定的钻井工程设计提供了参考。
The accurate evaluation of deep in-situ stress is the base of the safety,high efficiency of underground engineering.In the field of petroleum engineering,the evaluation of the in-situ stress is very important for development the theory of exploration and exploitation and raise economic benefits.In this paper,taken TaHe oil field for instance,with oil and gas exploration and exploitation data,basing on the analyses of the geological structure,deep geological environment(formation pore pressure,formation temperature),structural plane and the mechanical properties of deep rock,deep in-situ stress field was studied systematically and the wellbore satiability of oil well was analyzed,the main results are as follows:
     (1)Utilizing core identification and image logging analyses,the growth characteristic of fracture was been evaluated.The result indicated that:for the most fracture,the orientation is 65°~75°and 275°~295°,and the dip is high;The fracture development is mainly controlled by structure axis,structure high spot and faults.In addition,the lithology and depth of formation have significant effect on the fracture development.
     (2)On the base of analyses P-wave velocity modeling,formation bulk density is been considered.The Logging Integrated Evaluation Model for formation pressure had been improvement.Combined to measure data,the pore pressure in TaHe oil field was been evaluated by this model.The result shows that the formation pressure coefficient is about 0.80~1.35,belong to normal pressure system and become large with the depth increasing.
     (3)In the TaHe oil field shows that the geothermal gradient is about 0.0191~0.0273℃/m,Slightly higher than the average geothermal gradient of the Tarim basin,and lower than China's other large and sedimentary basin,is lower geothermal system.
     (4)Through the analyses heat exchange mechanism along the formation,drill sting liquid,annular liquid during the drill circulation,basing on the energy balance and the heat transfer theory,the wellbore temperature field model has been set up.The borehole temperature distribution has been analyzed during drill circulation by using this model.The analysis result indicated that there is a depth where the formation temperature of the borehole and the formation temperature is the same.Under this depth,the borehole temperature is lower than the original formation temperature,and it is opposite upside this depth.At the well bottom,the welbore temperature reduces the scope to be biggest.The impact of circulation time,geothermal gradient,the stratum heat conductivity as well as the well depth over the wellbore temperature distribution and the maximal perturbation temperature has been studied.
     (5)Using the rock mechanics test and the petroleum engineering logging analysis, the deep rock deformation and failure characteristics has been studied under the condition of the different pressure and temperature.Further,basing on logging analysis,the spatial distribution of rock mechanics parameter has been studied.
     (6)In the region stress analysis's foundation,the deep stress direction has been carried out studies systematically,through the analysis of the real-time detection of artificial fracture,drill-induced fracture and wellbore breakouts.The studied results shows that in the research region,modern stress field is controlled mainly by regional tectonic stress,and the maximum principal stress directions is NE40°~NE65°.
     (7)The Horizontal biggest principal stress inversion computation model has been derived under the different well completion condition.Using this model,fracturing data for stimulation has been analyzed in the 15 wells,the result show that the magnitude of the maximum principal stress is 108.0~129.0Mpa and the magnitude of the minimum principal stress is 77.0~107.0Mpa where the depth is 5440~6100m. The order of three principal stress magnitudes isσ_v≥σ_H≥σ_h·
     (8)The basic theory has been discussed that utilizing the finite element method with artificial neural network to inverse deep stress field.And the research thinking and technique process has been established.Using this theory and way,numerical simulation inversion analysis of the 2D and 3D stress field in the research region was been done in different scale.
     (9)The mechanical instability of deep wellbore was analyzed.(a)The common mechanical mode of wellbore instability was been summed up systematically,and the relation between mechanical mode of wellbore instability and the density of drilling fluid,the wellbore azimuth has been analyzed.(b)The quantity evaluation index of wellbore mechanical instability has been established.It was analyzed that In-situ stress state,formation temperature perturbation,formation pressure,week plane and well trajectory affect on wellbore instability using the index.(c)Existing evaluation method and calculation model of drilling fluid density that maintains wellbore stability has been improvement,the result is more reasonable and reliable.
     (10)Primary factor that induce wellbore instability has been analyzed.And the drilling fluid density,which maintains wellbore mechanics stability,was been calculated.It provides the important reference for drilling engineering design.
引文
[1]钱七虎.深部地下空间开发中的关键科学问题[C].第230次香山科学会议5深部地下空间开发中的基础研究关键技术问题6学术论文集,北京,2004.6
    [2]刘建中,张金珠.油田地应力测量[M].北京:地震出版社,1993
    [3]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997
    [4]刘向君,罗平亚.岩石力学与石油工程[M].北京:石油工业出版社,2004
    [5]马寅生.地应力在油气地质研究中的作用意义和研究现状[J].地质力学学报,1997,3(2):41-46
    [6]葛洪魁,林英松,王顺昌等.地应力测试及其在勘探开发中的应用[J].石油大学学报,1998.22(1):94-99
    [7]Addis,M.A.,Barton,N.R.,1990.Laboratory studies on the stability of vertical and deviated boreholes[J].SPE 20406 the 65th Ann.Tech.Conf.and Exhibition of the Society of Petroleum Engineers,New Orleans,Sept.23-26.
    [8]邓金根,张洪生.钻井工程中井壁失稳的力学机理[M].北京:石油工业出版社,1998.1-29
    [9]陈勉,金衍.深井井壁稳定技术研究进展与发展趋势[J].石油钻探技术,2005,33(5):28-34
    [10]刘向君,罗平亚.石油测井与井壁稳定[M].北京:石油工业出版社,1999
    [11]徐加放,邱正松,刘庆来等.塔河油田井壁稳定机理与防塌钻井液技术研究[J].石油钻采工艺,2005,27(4):33-36
    [12]齐恒之,马德新.塔河油田三开井段井壁稳定分析及实践[J].石油钻探技术,2005,33(1):19-20
    [13]黄荣樽,陈勉,邓金根等.泥页岩井壁稳定力学与化学的耦合研究[J].钻井液与完井液,1995,12(3):15-25
    [14]Chen X.Acomprehensive practical approach for wellbore instability management[J].SPE48898.
    [15]梁利喜,许强,刘向君.基于极限平衡理论定量评价井壁稳定性[J].石油钻探技术,2006,34(2):15-17
    [16]Fairhurst,C.,Methods of determining in-situ rock stresses at great depth[J],TRI-68Missouri River Div.,Corps of Engineer(1968)
    [17]Zoback ML,Zoback MD.State of stress in the conterminous United States[J].J.Geophys.Res.1980,85:6113-6156
    [18]Bell,J.S.,In situ stresses in sedimentary rocks(Part Ⅰ)----Measurement techniques[J].Geoscience Canada,1996,23(2):85- 100.
    [19]M.Brudy,M.D.Zoback.Drilling-induced tensile wall-fractures:implications for determination of in-situ stress orientation and magnitude[J].Int.J.Rock Mech.Min.Sci.1999,36:191-215
    [20]M.D.Zoback,C.A.Barton,M.Brudy,D.A.Castillo,T.Finkbeinero Determination of stress orientation and magnitude in deep wells[J].Int.J.Rock Mech.Min.Sci.,2003,40:1049 - 1076
    [21]Bredehoeft J.D.,Wolff R.G,Keys W.S.and Shuter E.Hydraulic fracturing to determine the regional in situ stress field,Piceance Basinm,Colorado[J].Geol.Soc.Amer.Bull.1976,87:250-258.
    [22]Zoback M.D.,Healy J.H.and Roller J.C.Preliminary stress measurements in central California using the hydraulic fracturing technique[J].Pure Appl.Geophys.1977,115:135-152.
    [23]Mizuta Y:,Sano O.,Ogino S.and Katoh H.Three dimensional stress determination by hydraulic fracturing for underground excavation design[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1987,24:15-29.
    [24]G.Klee,F.Rummel and A.Williams.Hydraulic fracturing stress measurements in Hong Kong[J].Int.J.Rock Mech.Min.Sci.1999,36:731-741
    [25]王学潮,郭启良,张辉等.青藏高原东北缘水压致裂地应力测量[J].地质力学学报2000.6(2):64-70
    [26]郭启良,安其美,赵仕广.水压致裂应力测量在广州抽水蓄能电站设计中的应用研究[J].岩石力学与工程学报,2002,21(6):828-832
    [27]Hubbert M K,Willis D G.Mechanics of hydraulic fracturing[J].Trans Am Inst Mech Engrs,1957,210:153-169.
    [28]Haimson B.C.Standard test method for determination of the in-situ stress in rock using the hydraulic fracturing method[J].Annual Book of ASTM Standards 1989:851-856(1989).
    [29]Schmitt D R,Zoback M D.Poroelastic effects in the determination.of the maximum horizontal principal stress in hydraulic fracturing tests -A proposed breakdown equation employing a modified effective stress relation for tensile failure[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1989,26(6):499-506.
    [30]Haimson BC.The hydraulic fracturing method of stress measurement:theory and practice.In:Hudson J,editor.Comprehensive rock engineering.Oxford:Pergamon Press;1993,3,395 - 412.
    [31]Guo F,Morgenstern N R,Scott J D.Interpretation of hydraulic fracturing pressure:A comparison of eight methods used to identify shut-in pressure[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1993,30(6):627-631
    [32]Y Mizuta,S Kikuchi,K Tokunaga.Studies on Hydraulic Fracturing Stress Measurement Assisted by Water Jet BorehoIe Slotting[J].Int.J.Rock Mech.Min.Sci&Geomech.Abstr,1993,30(7)
    [33]Kazuo Hayashi,Akira Sato,Takatoshi Ito。 In situ Stress Measurements by Hydraulic Fracturing for a Rock Mass with Many Planes of Weakness[J]。 Int.J.Rock Mech.Min.Sci.1997,34(1):45-58.
    [34]Ito T,Evans K,Kawai K,Hayashi K.Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J].Int.J.Rock Mech.Min.Sci.1999,36:811 -26.
    [35]Rutqvist J,Chin-Fu Tsang,Stephansson O.Uncertainty in maximum principal stress estimated from hydraulic fracturing measurements due to the the presence of the induced fracture[J].Int.J.Rock Mech.Min.Sci.2000,37(1-2):107- 120.
    [36]Shin S,Sugawara K,Okubo S.Application of Weibull's theory to estimating in situ maximum stress by hydro fracturing[J].Int.J.Rock Mech.Min.Sci.2001,38(3):413-420.
    [37]侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,24(5):840-844(?)
    [44]E.R.Leeman.The Measurement of Stress in Rock.Part Ⅱ.Borehole Rock Stress Measuring Instruments[J].J.S.Afric.Instn.Mining and Metallurgy,1964.
    [45]Cox,J.W.The High Resolution Dipmeter reveals dip-related borehole and formation characteristics[C],paper D,in 11th Annual Logging Symposium Transactions:Society of Professional Well Log Analysts,1970.
    [46]Geough,D.I.and Bell,J.S..Stress orientation from oil-well fractures in Alberba and Texas[J].Canadian J.Earth Sci.Lett.,1979,45
    [47]Mastin L Effect of hnrehole deviation nn(?)发,1987,(2):16-23
    [49]高阿甲,许忠淮,陈家庚.用钻孔崩落推断四川盆地的水平主应力方向[J].地震学报,1990,12(2):140-147
    [50]俞言祥,许忠淮.用钻孔崩落法研究冀中坳陷水平主应力方向[J].石油勘探与开发,1994,21(2):48-55
    [51]黄雨蕊,许忠淮,高阿甲等.利用钻孔崩落研究中原油田的构造应力场[J].地震学报,1994,16(2):195-203
    [52]Zoback,M.D.,Moos,D.,Mastin,L.,and Anderson,R.N.,Well bore breakouts and in situ stress[J].Journal of Geophysical Research,1985,90(B7):5523-5530.
    [53]Haimson B C,Song I.Laboratory Study of Bore hole Breakouts in Cordova Cream:A Case of Shear Failure Mechanism[J].Int J Rock Mech Min Sci & Geomech Abstr,1993:1047-1056
    [54]Vernik L,Zoback M D.Estimation of Maximum Horizontal Principal Stress Magnitude From Stress-Induced Well Bore Breakouts in the Cajon Pass Scientific Research Borehole[J].Journal of Geophysical Research,1992,97(B4):5109-5119
    [55]Cow gill S M,et al.Crustal Stresses in the North Sea From Breakouts and Other Borehole Data[J].Int J Rock Mech Min Sci & Geomech Abstr,1993,30(7):1111-1114
    [56]Qian W,Pedersen L B.Inversion of Borehole Breakout Orientation Data[J].Journal of Geophysical Research,1991,96(B 12):20093-20107
    [57]俞言祥,许忠淮,黄雨蕊.用斜井钻孔崩落资料反演上地壳应力状态的遗传算法[J].华北地震科学,2003,18(1):1-8
    [58]Michihiro K,Yoshioka H,Hata K,Fujiwara T.Strain dependence of the Kaiser effect for various rocks[C].In:Proceedings of the Fourth Conference on AE/MA in Geologic Structures and Materials.Clausthal-Zellerfeld:Trans Tech Publications,1989:87 - 95.
    [59]秦四清,李造鼎,张倬元等.岩石声发射技术概论[M].西南交通大学出版社,1993
    [60]Lavrov AV.The Kaiser effect in rocks:principles and stress[J].Int.J.Rock Mech.Min.Sci.2003,40:151 - 171
    [61]Kurita K,Fujii N.Stress memory of crystalline rocks in acoustic emission[J].Geophys Res Let,1979,6(1):9-12.
    [62]Yoshikawa S,Mogi K.Experimental studies on the effect of stress history on acoustic emission activity possibility for estimation of rock stress[J].Journal of Acoustic Emission,1989,8(4):113-123.
    [63]Filimonov YL,Lavrov AV,Shkuratnik VL.Prospects of memory effects for stress measurement applications in rock salt[C].In:Proceedings of EUROCK'2001 Symposium.Rotterdam:A.A.Balkema,2001:59 - 63.
    [64]Konecny P.Acoustic emission during cyclic loading of carboniferous rocks and the manifestation of Kaiser effect[C].In:Proceedings of the EUROCK 2000 Symposium.Essen:Verlag Gluckauf,2000:649 - 52.
    [65]Lavrov AV,Filimonov YL,Shafarenko YM,Shkuratnik VL.Experimental investigation of memory effects in rock salt at different regimes of cyclic loading.In:Physics and Mechanics of Geomaterials.Moscow:Vuzovskaya Kniga,2002:73-.93[in Russian with abstract in English].
    [66]Hardy Jr.HR,Zhang D,Zelanko JC.Recent studies of the Kaiser effect in geologic materials[C].In:Proceedings of the Fourth Conference.AE/MA in Geologic Structures and Materials.Clausthal-Zellerfeld:Trans Tech Publications,1989:27 - 55.
    [67]Michihiro K,Yoshioka H,Hata K,Fujiwara T.Strain dependence of the Kaiser effect for various rocks[C].In:Proceedings of the Fourth Conference on AE/MA in Geologic Structures and Materials.Clausthal-Zellerfeld:Trans Tech Publications,1989:87 - 95.
    [68]Stuart CE,Meredith PG,Murrell SAF,Van Munster JG.Anisotropic crack damage and stress-memory effects in rocks under triaxial loading[C].Int J Rock Mech Min Sci Geomech Abstr,1993,30:937 - 41.
    [69]Shin K,Kanagawa T.Kaiser effect of rock in acousto-elasticity,AE and DR[C].In:Proceedings of the Fifth Conference on AE/MA in Geologic Structures and Materials.Clausthal-Zellerfeld:Trans Tech Publications,1995:197 - 204.
    [70]Michihiro K,Hata K,Yoshioka H,Fujiwara T.Determination of the initial stresses on rock mass using acoustic emission method[J].J Acoust Emission 1991/1992,10(1 -2):S63 - 76.
    [71]Stuart CE,Meredith PG,Murrell SAF,Van Munster H.Influence of anisotropic crack damage development on the Kaiser effect under true tri axial stress conditions[C].In:Proceedings of the Fifth Conference on AE/MA in Geologic Structures and Materials.Clausthal-Zellerfeld:Trans Tech Publications,1995:205 - 19.
    [72]Holcomb DJ,Costin LS.Detecting damage surfaces in brittle materials using acoustic emissions[J].J Appl Mech 1986,53:536 - 44
    [73]黄润秋,王士天.用Kaiser效应测定地应力的新认识[C].全国第三次工程地质大会论文集,成都科技大学出版社,1988
    [74]黄志鹏,朱可善,郭映忠.岩石Kaiser效应方向独立性试验研究[J].长江科学院院报,1998,15(2):8-9,45.
    [75]Kojima T,Matsuki K.A fundamental study on the Kaiser effect in the rock for tectonic stress measurement[C].Proc 10th International Acoustic Emission Symposium.Sendai,Japan,1990:468-475
    [76]丁原辰,王红才,汪西海.声发射估计岩石古应力的实验研究[C].地质力学与地壳运动.地质力学开放研究实验室1991-1992年报.北京:地震出版社,1994,43-55
    [77]邓荣贵,付小敏,徐进.三向应力下长石石英砂岩凯塞尔效应试验研究[J].成都理工学院学报,2002,29(1):97-100
    [78]丁原辰,张大伦.以声发射估计岩石试样先存应力的新方法[J].现代地质,1989,3(3):359-388.
    [79]王连俊,肖淑芳,李志明.岩石KAISER效应测定地应力的几个问题及其在油田中的应用[J].土工基础,1996,10(3):44-48
    [80]孙宝珊,丁原辰,邵兆刚等.声发射法测量古今应力在油田的应用[J].地质力学学报,1996,2(2):11-17
    [81]Holcomb DJ.Using acoustic emission to determine in situ stress:problems and promise[J].In:Geomechanics,1983,57:11-21.
    [82]Li C,Nordlund E.Experimental verification of the Kaiser effect in rocks[J].Rock Mech Rock Eng 1993,26:333-51.
    [83]Lavrov A.Kaiser effect observation in brittle rock cyclically loaded with different loading rates[J].Mech Mater.2001,33:669-77.
    [84]黄荣樽.地层破裂压力预测的探讨[J].石油大学学报,1984,25(4):1-14
    [85]马建海,孙建孟.用测井资料计算地层应力[J].测井技术,2002,26(4):347-351
    [86]Warpinski N R.Elastic and Visco elastic Calculation of Stresses in Sedimentary Basins[J].SPE15243,1986
    [87]张义元,魏庆芝.利用测井资料计算连续地应力剖面[J].大庆石油地质与开发,1993,12(2):61-65
    [88]张筠,林绍文.利用测井进行地层弹性特征及应力场分析[J].测井技术,2001,25(6):467-472
    [89]刘金光,李涛,何传亮.新场气田沙溪庙组气藏地层应力场测井分析[J].测井技术,2002,26(6):496-499
    [90]阎树汶,乔文孝.用正交偶极声波计算砂泥岩剖面地层应力[J].测井技术,2003,27(2):122-124
    [91]赵军,蒲万丽,王贵文等.测井信息在前陆挤压区地应力分析中的应用[J].地质力学学报,2003,11(1):53-59
    [92]Hareland G.Use of Drilling Parameters To Predict In Situ Stress Bounds[J].SPE/IADC25727,1993:458-471
    [93]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994
    [94]杨林德等.岩土问题的反演理论与工程实践[M].北京:科学出版社,1996
    [95]王 仁.有限单元等数值方法在我国地球科学中的应用和发展[J].地球物理学报,1994,37(1):128-139
    [96]罗焕炎.有限单元法在地质力学中的应用[J].地质科学,1974,1:81-100
    [97]武汉地质学院普地教研室矿田构造小组.凹山矿田构造研究.地质科技,1977,2
    [98]王仁,何国琦,殷有泉等.华北地区地震迁移规律的数学模拟[J].地震学报,1980,2:30-32
    [99]殷有泉,陈虎,蒋阗.储层应力场的数值模拟[J].地质力学学报,1999,5(1):50-59
    [100]陈连旺,杨树新,谢富仁.中国大陆构造应力应变场现今年变化特征的数值模拟[J].中国地震,2005,21(3):341-349
    [101]谭成轩,王连捷,孙宝珊,含油气盆地三维构造应力场数值模拟方法[J].地质力学学报1997,3(1):71-80
    [102]宋惠珍,贾承造,欧阳健.裂缝性储层研究理论与方法[M].北京:石油工业出版社,2001
    [103]周锋,梅廉夫,刘麟.准噶尔盆地南缘喜马拉雅运动期构造应力场模拟[J].新疆石油地质,2005,26(6):240-243
    [104]侯贵廷,钱祥麟,李江海.华北克拉通中元古代岩墙群形成的构造应力场数值模拟[J].北京大学学报(自然科学版),2002,38(4):492-496
    [105]陈志德,蒙启安,万天丰.松辽盆地古龙凹陷构造应力场弹塑性增量法数值模拟[J].地学前缘,2002,9(2):483-492
    [106]Cundall,P.A Computer Model For Simulating Progressive Large Scale Movements In Blocky Rock Systems[C].Proc.Symp.ON ROCK FRACTURE ISRM NANCY,1971
    [107]Su S.and Stephansson O.,Effect of a fault on in situ stress studied by distinct element method[J].Int.J.Rock Mech.& Mining Sci.,1999,36(8):1501-1506
    [108]黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14(4):346-354
    [109]谢建华,夏斌,徐振华等.数值模拟软件FLAC及其在地学应用简介[J].地质与勘探,2005,41(2):77-80
    [110]杨立强,张中杰,林舸等.FLAC基本原理及其在地学中的应用[J].地学前缘,2003,10(1):13
    [111]王岳军,Y H Zhang,范蔚茗等.湖南印支期过铝质花岗岩的形成:岩浆底侵与地壳加厚效应的数值模拟[J].中国科学(D辑),2002,32(6):491-499.
    [112]许强,严明,黄润秋.某水电站左岸深裂缝对工程荷载下边坡稳定性影响的FLAC3D分析[J].地质灾害与环境保护,2002,13(1):81-84
    [113]朱继良,黄润秋.某大型水电站水文站滑坡蓄水后的稳定性三维数值模拟研究[J].岩石力学与工程学报,2005,24(8):1384-1389
    [114]冯夏庭.智能岩石力学导论[M].北京:科学技术出版社,2000
    [115]易达,陈胜宏,葛修润.岩体初始应力场的遗传算法与有限元联合反演法[J].岩土力学,2004,25(7):1077-1080
    [116]易达,徐明毅,陈胜宏.遗传算法在岩体初始应力场反演中的应用[J].岩石力学与工程学报,2001,20(增2):1618-1622.
    [117]T.Okabe,K.HAYASHI,N.Shinohara,S.takaskugi.inversion of drilling-induced Tensile Fracture Data Obtained from a single inclined borehole[J].Int J Rock Mech Min Sci &Geomech Abstr,1998,35(6):747-758
    [118]Takashi Okabe and Kazuo Hayashi,Estimation Of Stress Field By Using Drilling-Induced Tensile Fractures Observed At Well TG-2 And A Study Of Critically Stressed Shear Fractures Based On The Stress Field[C].Proceedings World Geothermal Congress 2000 Kyushu - Tohoku,Japan,May 28 - June 10,2000:1533-14538
    [119]E.J.Nelson,J.J.Meyer,R.R.Hillis,S.D.Mildren.Transverse drilling-induced tensile fractures in the West Tuna area,Gippsland Basin,Australia:implications for the in situ stress regime[J].Int J Rock Mech Min Sci & Geomech Abstr,2005,42(6):361-371
    [120]David Wiprutl,Mark Zoback,Tor-Harald Hanssen,Pavel Peska.Constraining The Full Stress Tensor From Observations Of Drilling-Induced Tensile Fractures And Leak-Off Tests:Application To Borehole Stability And Sand Production On The Norwegian Margin[J].Int.J.Rock Mech.& Min.Sci.1997,34:3-4,
    [121]Bol,G.M.,1986.The effect of various polymers and salts on borehole and cutting stability in water-base shale drilling fluids[J].Paper SPE 14802 presented at the IADC/SPE Drilling Conference,Dallas,February 10-12.
    [122]Darley,H.C.H.,Gray,G.R.,1988.Composition and Properties of Drilling and Completion Fluids,5th ed.Gulf Publishing,Houston.
    [123]Hale,A.H.,Mody,F.K.,1993.Mechanism for wellbore stabilization with lime-based muds[J].Paper SPE/IADC 25706 presented at the SPE/IADC Drilling Conference,Amsterdam,February 23-25.
    [124]van Oort,E.,1994.A novel technique for the investigation of drilling fluid induced borehole instability in shales[J].Paper SPE/ISRM 28064 presented at the SPE/ISRM Conference on Rock Mechanics in Petroleum Engineering,Delft,August 29-31.
    [125]Van Oort,E.,On the physical and chemical stability of shales[J].Journal of Petroleum Science and Engineering.2003.38:213- 235
    [126]徐同台,门廉魁,王奎才.中国陆上石油工业钻井液与完井液技术新进展[J].钻井液与完井液,1995,12(2):1-10
    [127]徐同台.井壁不稳定地层的分类及泥浆技术对策[J].钻井液与完井液,1996,13(4):42-45
    [128]鄢捷年.钻井液工艺学[M],山东东营:石油大学出版社,2001,5
    [129]唐林,冯文伟.钻井过程中井壁热应力数值模拟[J].西南石油学院学报,1998,20(4):38-42
    [130]蔚宝华,卢晓峰,王炳印等.高温井地层温度变化对井壁稳定性影响规律研究[J].钻井液与完井液,2004,21(6):15-18
    [131]李嗣贵,邓金根,蔚宝华.高温井地层破裂压力计算技术[J].岩石力学与工程学报,2005,26(增2):5669-5674
    [132]何湘清,刘向君,罗平亚.温度扰动对井壁稳定和油田开发的影响[J].天然气工业,2003,23(1):39-41
    [133]刘玉石,周煜辉,黄克累.温度对井壁稳定性的影响研究[J].石油钻采工艺,1996,18(4):1-5
    [134]唐林,罗平亚.破裂岩体中井壁稳定性分析[J].石油钻采工艺,1997,17(3):1-6
    [135]金衍,陈勉,陈治喜等.弱面地层的直井井壁稳定力学模型[J].钻采工艺,1999,22(3):13-14
    [136]刘向君,叶仲斌,陈一健.岩石弱面结构对井壁稳定性的影响[J].天然气工业,2002,22(2):41-43
    [137]Westergard,H.M..Plastic State of Stress around a Deep Well.J.Boston Soc.of Civ.Engrs.,1940,27(1):1-5.
    [138]Hubbert MK,Willis DG.Mechanics of hydraulic fracturing.J Pet Techno,Trans AIME.1957,210:153-66.
    [139]C.Fairhurst.Measurement of In Situ Rock Stress,with Particular Reference to Hydraulic Fracturing.Felsemechanik and Ingenieur geologic.1964,(2):129-143
    [140]Bradley WB.Failure of inclined boreholes.Trans ASME 1979,101:232-9.
    [141]AadnΦy BS.Modeling of the stability of highly inclined boreholes in anisotropic rock formations[J].Paper SPE 16526 Presented at SPE Offshore European Conference,Aberdeen,1987.
    [142]Detournay E,Cheng AH-D.Poroelastic response of a borehole in a non-hydrostatic stress field[J].Int J Rock Mech Min Sci Geomech Abstr,1988,25(3):171 - 82.
    [143]Cui L,Cheng AH-D,Abousleiman Y.Poroelastic solution of an inclined borehole[J].ASME J Appl Mech,1997,64:32 - 8.
    [144]刘白石,白家祉,周煜辉等.考虑井壁岩石损伤时保持井眼稳定的泥浆密度[J].石油学报,1995,16(3):123-128
    [145]李忠华,潘一山.考虑损伤和孔隙压力的油井井壁稳定条件[J].钻采工艺,2002,25(1):27-29
    [146]Jincai Zhang,Mao Bai,J.-C.Roegiers.Dual-porosity poro-elastic analyses of wellbore stability[J].Int.J.Rock Mech.Min.Sci.,2003,40:473 - 483
    [147]Guenot,A.,Santarelli,F.J.,1988.Borehole stability:a new challenge for an old problem[J].In:Cundall,et al.(Eds.),U.S.Rock Mech.Symp..Key Questions in Rock.Mech.,pp.453- 459.
    [148]Papanastasiou,P.C.A coupled elasto-plastic hydraulic fracturing model[J].Int.J.Rock Mech.Min.Sci.1997,34(3/4).
    [149]Bernt S.AadnΦy,Mesfin Belayneh.Elasto-plastic fracturing model for wellbore stability using non-penetrating fluids[J].Journal of Petroleum Science and Engineering,2004,45:179- 192
    [150]Mictchell,R.E,Goodman,M.A.and Wood,E.T.(1987).Borehole Stresses:Plasticity and the Drilled Hole Effect[J].SPE/IADC Drilling Conf.,New Orleans,La,Mar.,pp.43-49.SPE/IADC 16053
    [151]Morita,N.And Gray,K.E.(1980).A Constitutive Equation For Non-linear Stress-Strain Curves in Rocks and its Application to Stress Analysis around a Borehole During Drilling[C].55th Annual Fall Tech.Conf.and Exhib.of SPE,Dallas,Sept.SPE 9328
    [152]Veeken,C.A.M.,Walters,J.V.,Kenter,C.J.and Davies,D.R.(1989).Use of Plasticity Models for Predicting Borehole Stability[J].Proc.Int.Syrup.ISRM-SPE,Pau,France,Aug.,pp.835-844
    [153]Bradford IDR,Cook JM.A semi-analytic elastoplastic model for wellbore stability with applications to sanding[J].In:Proceedings of the SPE/ISRM Eurock' 94.Balkema:Rotterdam,1994:347 - 354.
    [154]Hawkes CD,McLellan PJ.Modelling of yielded zone enlargement around a wellbore[J].In:Aubertin,Hassani and Mitri,editors.Rock Mechanics.Rotterdam:Balkema,1996:1051 - 1058.
    [155]Santarelli,F.J.Theoretical and Experimental Investigation of the Stability of the Axisymmetric Wellbore[D].Ph.D thesis,University of London.1987
    [156]Kwakwa,K.A.,Batchelor,A.S.and Clark,R.(1989).An assessment of the Mechanical Behavior of high-angle Wells In block 22/11.Proc.Offshore Europe 89,Aberdeen,sept.SPE 19240.
    [157]Mclean,M.R.& Addis,M.A.Wellbore Stability:The Effect of Strength Criteria on Mud Weight Recommendations[J],SPE 20405
    [158]Goodman RE.On the distribution of stresses around circular tunnels in nonhomogeneous rocks[C].In:Proceedings of the First International Congress ISRM,Lisbon,1966.p.249 -55.
    [159]Kwong A,Kaiser PK.Failure mechanisms of boreholes in rock with anisotropic strength and local weaknesses[C].In:Proceedings of the 44th Canadian Geotechnical Conference,1991,35:1 - 10.
    [160]Zheng Z,Kemeny J,Cook NGW.Analysis of borehole breakouts[J].J Geophys Res,1989,94(B6):7171 - 82.
    [161]Aoki T,Tan CP,Bamford WE.Effects of deformation and strength anisotropy on borehole failures in saturated shales[J].Int J Rock Mech Min Sci Geomech Abstr 1993,30(7):1031 - 4.
    [162]Xing Zhang,Nigel Last,William Powrie,Richard Harkness.Numerical modelling of weltbore behaviour in fractured rock masses[J].Journal of Petroleum Science and Engineering 23_1999.95-115
    [163]李军,陈勉,金衍等.定向井井壁稳定性三维有限元分析模型[J].石油钻探技术,2003,31(5):33-35.
    [164]杨小远.快速拉格朗日元方法在井壁稳定中的应用[J].石油大学学报,1997,21(4):91-93
    [165]邓金根,刘书杰,石得勤等.软泥岩井眼弹塑性变形的拉格朗日元法计算[J].地质力学学报,1999,5(1):33-37
    [166]Ottesen,S.,Zheng,R.H.,McCann,R.C.,1999.Wellbore stability assessment using quantitative risk analysis[J].SPE/IADC 52864.Presented at the SPE/IADC Drilling Conference,Amsterdam,The Netherlands,9 - 11 March.
    [167]McLellan,RJ.,Hawkes,C.D.,1998.Application of probabilistic techniques for assessing sand production and wellbore instability risks[J].SPE/ISRM,47334.
    [168]中石化西北分公司.塔河油田石炭系储层评价与勘探部署研究.科研报告,2002
    [169]中石化西北分公司.塔河油田1区三叠系下油组开发调整方案.科研报告,2005
    [170]高德利等.复杂地质条件下深井超深井钻井技术[M].北京:石油工业出版社,2004
    [171]祖峰,张宗林,丰全会等.异常地层压力检测和预测方法[J]石油钻采工艺,2004,26(1):35-38
    [172]樊洪海.地层孔隙压力预测检测新方法研究[M].北京:石油大学出版社,2001
    [173]Traugott,M.Pore/fracture pressure determinations in deep water,Deepwater Technology (Supplement to August 1997 World Oil and Pipe Line & Gas Industry),1997:68-70.
    [174]Han D H,Nur A,Morgan D.Effect of porosity and caly content onwave velocities in sandstone[J].Geophysics,1986,51(11):2093-2107.
    [175]Eberhart-Phillips D,Han D H,Zoback M D.Empirical relationships among seismic velocity,effective pressure,porosity,and clay content in sandstone[J].Geophysics,1989,54(1):82.
    [176]楚泽涵.声波测井原理[M].北京:石油工业出版社,1987
    [177]陈成宗.工程岩体声波探测技术[M].北京:中国铁道出版社,1990
    [178]雍世和等.测井数据处理与综合解释[M].山东东营:石油大学出版社,1996
    [179]戴启德,黄玉杰.油田开发地质基础[M].山东东营:中国石油大学出版社,2002
    [180]王均,黄尚瑶,黄歌山等.中国地温分布的基本特征[M].北京:地震出版社,1990
    [181]王厚华.传热学[M].重庆大学出版社,2006
    [182]董学晟,邬爱清等.岩体的基本力学性质,中国岩石力学与工程世纪成就[M].南京:河海大学版社,2004
    [183]孟召平,李明生,陆鹏庆等.深部温度、压力条件及其对砂岩力学性质的影响[J].岩石力学与工程学报,2006,25(6):1177-1181
    [184]陈顺,黄庭芳.岩石物理学[M].北京:北京大学版社,2001
    [185]杜守继,刘华.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364
    [186]谌伦建,吴忠.煤层顶板砂岩在高温下的力学性质及破坏机理[J].重庆大学学报,2005,28(3):123-126.
    [187]葛洪魁,陈顒,林英松.岩石动态与静态弹性参数差别的微观机理[J].石油大学学报,2001,25(4):34-36
    [188]葛洪魁,黄荣樽.三轴应力下饱和水砂岩动静态弹性参数的试验研究[J].石油大学学报,1994,18(3):41-47
    [189]JIZBA,D.and NUR,A.Static and dynamic moduli of tight gas sandstones and their relation to formation properties[R].SPWLA 31st Annual Logging symposium,1990.
    [190]林英松,葛洪魁,王顺昌.岩石动静力学参数的试验研究[J].岩石力学与工程学报,1998,17(2):216-222
    [191]胡国忠,王宏图,贾剑青.岩石的动静弹性模量的关系[J].重庆大学学报,2005,28(3):102-105
    [192]刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(4):408-411.
    [193]刘斌,席道瑛,王宝善.不同温度围压条件下岩石样品中泊松比的各向异性[C].年中国地球物理学会年刊--中国地球物理学会第十七届年会论文集.2001
    [194]汪素云,陈培善.中国现代构造应力场数值模拟[J].地球物理学报,1980,23(1):
    [195]王庆良等.由GPS观测确定的中国大陆现今地壳运动(大会报告).西部开发重大工程建设工程与环境问题学术研讨会,西安,2001
    [196]Haimson BC,Herrick CG.Borehole breakouts and in situ stress.In:12th Annual Energy-Sources Technology Conference and Exhibition,Houston,TX,1989.
    [197]Barton CA,Zoback MD,Burns KL.In-situ stress orientation and magnitude at the Fenton geothermal site,New Mexico,determined from wellbore breakouts.Geophys Res Lett,1988;15(5):467-70.
    [198]Lubinski A.The theory of elasticity for porous bodies displaying a strong pore structure[A].In:Proc.of 2nd U.S.National Congress of Applied Mechanics[C].[s.l.]:[s.n],1954
    [199]刘光中,李晓峰.人工神经网络BP算法的改进和结构的自调整[J].运筹学学报,2001,5(1):81-88.
    [200]Chandong Chang,Mark D.Zoback,Abbas Khaksar.Empirical relations between rock strength and physical properties in sedimentary rocks[J].Journal of Petroleum Science and Engineering,2006(51):223-237
    [201]陈庭根,管志川.钻井工程理论与技术[M].山东东营:石油大学出版社,2000
    [202]贾文玉等.成像测井技术与应用[M].北京:石油工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700