用户名: 密码: 验证码:
山东焦家金矿矿床地球化学特征及深部矿体预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶东地区是我国金矿资源主要密集区,焦家金矿田是我国最大的金矿田,焦家金矿床是破碎带蚀变岩型金矿(又称“焦家式”金矿)的代表。矿区位于滨太平洋成矿带西部大陆边缘活动带,为太古宙—元古宙花岗岩—绿岩带发育地区,是地壳构造运动、变质作用、岩浆作用和成矿作用多旋回发育地带。
     胶东地区的构造岩浆演化与成矿的关系一直是矿床学界研究和争论的重点之一,尤其是与矿床空间位置关系密切的玲珑和郭家岭花岗岩及矿床成因、成矿时代的研究,不同学者从不同的角度对此提出过不同观点。论文以科研课题为依托,在对关键区段重点解剖的基础上,结合地球物理、岩石化学、地球化学、构造演化和成矿作用的研究成果,对本区的构造岩浆演化与成矿的关系作了较系统的科学总结,建立了焦家金矿矿床地球化学勘查模式,预测并确立了焦家金矿深部存在第二成矿富集带盲矿体,并且认为这种规律可扩展到整个焦家金矿田。
     玲珑复合岩体的展布受控于相背倾向的NE向断裂带,微量元素环境判别投点于造山花岗岩或同造山花岗岩区域,属于典型的S型花岗岩。众多的同位素年龄数据变化于102Ma-1718Ma,并集中于早、中、晚三个区段,较晚的区段为110~160Ma。综合判断,玲珑复合岩体(超单元)定位于燕山期的岩浆—变质核杂岩。同位素定年研究表明,成矿年龄约124Ma±1Ma(Rb-Sr等时线法);Pb同位素及稀土元素地球化学研究得出成矿物质来源于前寒武纪变质基底和玲珑花岗岩的判别结果,表明成矿与岩浆—变质核杂岩的定位形成有直接关系。
     焦家金矿的断裂蚀变带从外带(片麻状花岗岩)到内带(主断裂面),有从韧性变形—韧脆性变形—脆性变形—多期脆性变形迭加的变形性质变化,有分布宽度从宽—窄的变化,在时间序列上有从先后(老新)的变化,反映了岩浆—变质核杂岩形成过程中,构造成矿层次由深至浅的变化。
     主蚀变带中的1、2号矿脉实际上是分支复合的同一条工业矿体,受主断裂控制,主矿体的特别厚大部位,往往是由3号脉与主矿体复合形成的,可作为生产
East Shandong (Jiaodong) is known as a concentrated district for gold resources and the Jiaojia is the biggest gold mine in China. As a typical altered fracture zone type (also referred as "Jiaojia type") gold deposit, the Jiaojia mine is located in the western active margin of the circum-Pacific metallogenic province, where Archean to Proterozoic granites and greenstones are well developed and multi-cycle events of tectonic movement, metamorphism, magmatism and mineralization happened.
    The tectonomagmatic evolution and its relationship to mineralization in East Shandong have been long debated. Much controversy has been provoked about the genesis of the Linglong and Guojialing granites, their relations to gold deposits, and the timing of gold mineralization. Based on complicated geological, geochemical and geophysical investigations, this dissertation summarized the tectonomagmatic evolution and mineralization of the study area and put forward a geochemical prospecting model for the Jiaojia deposit. It is then predicted that another gold enrichment zone should exist in deep sites of the deposit and that such a law may be applied to the whole Jiaojia gold mine.
    The Linglong granites are distributed along regional inverse-dipping NE-SW striking tectonic lineaments. On major and trace elements discrimination diagrams for petrogenetic-tectonic settings, the granites plot in orogenic or syn-orogenic field and exhibit characteristics of S-type granites. A large body of isotopic data changes from 102Ma-1718Ma, and concentrates in early Middle and late time-intervals. The late interval is from 110 Ma to 160 Ma. And this fact supports the opinion that the Lionglong core complex formed during the Yanshan epoch. Rb-Sr isotopic dating on fluid inclusions in Au-bearing quartz veins gives an age of 124±1 Ma. Lead isotopes and REE geochemistry indicate that the ore-forming materials were derived from pre-Cambrian metamorphosed basement and the Linglong granites. And all the above supports that the metallogenesis is directly related to the formation of Linglong core complex.
    From genissic granite inward to the major fault plane, the altered fault zone in the Jiaojia deposit varies from ductile deformation, through ductile-brittle deformation, to brittle deformation with decreasing thickness of the sub-zones. The inner sub-zones formed relatively later and seem to occur at a shallower depth than the outer
引文
1.曹新志,孙华山,徐伯骏.关于成矿预测研究的若干进展[J].黄金,2003,24(4):11-14.
    2.陈柏林.金矿床和金成矿作用研究进展[J].地质评论,2001,47(1):111—112.
    3.陈光远,孙岱生,邵伟.胶东金矿成因矿物学与找矿[M].重庆:重庆出版社,1989.
    4.陈衍景,Franco PIRAJNO,赖勇,等.胶东矿集区大规模成矿时间和构造环境[J].岩石学报,2004,20(04):907-922.
    5.陈毓川,裴荣富,宋天锐,等.中国矿床成矿系列初论[M].北京:地质出版社,1998.
    6.陈振胜,张理刚,刘敬秀,等.胶东不同类型金矿氧同位素地球化学成矿特征及产状模式[J].华南矿产与地质.1996,(2):44—51.
    7.陈振胜,张理刚,刘敬秀,等.胶东区域岩石铅同位素地球化学背景研究[J].地质找矿论丛.1994,9(1):65—78.
    8.寸圭.“八五”黄金地质科研及其找矿效果[J].黄金科学技术,1999,7(2):1—8.
    9.代西武,杨建民,张成玉,等.利用矿床原生晕进行矿床深部隐伏矿体预测[J].矿床地质.2000,19(3):245—256.
    10.邓军,杨立强,孙忠实,等.矿源系统地质—地球化学例析[J].现代地质.2000,14(2):165—172.
    11.邓军,杨立强,方云,等.胶东地区壳—幔作用与金成矿效应[J].地质科学.2000,35(1):60—70.
    12.丁弍江,翟裕生.胶东焦家金矿蚀变岩中元素的质量迁移[J].地质与勘探,2000,36(4):28—31.
    13.邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    14.丁清峰.煌斑岩及其与金矿关系研究的进展[J].世界地质,2001,20(1):17-25.
    15.关康,罗镇宽,苗来成,等.胶东招掖郭家岭花岗岩锆石SHRIMP年代学研究[J].地质科学.1998,33(3):318—328.
    16.郭涛,邓军,吕古贤.焦家金矿床容矿裂隙特征及流体运移机制[J].地质找矿论丛.1999,14(2):65—78.
    17.候景儒,郭光裕.矿床统计预测及地质统计学理论的应用[M].北京:冶金工业出版社.1993.
    18.黄德业.胶东金矿成矿系列硫同位素研究[J].矿床地质.1994,13(1):75—87.
    19.胡世玲,王松山,桑海清,等.山东玲珑和郭家岭岩体的同位素年龄及其地质意义[J].岩石学报,1987,(3):83-89.
    20.胡受溪,王鹤年,王德滋,等.中国东部金矿地质学及地球化学[M].北京:科学出版社,1998.
    21.江为为,郝天珧,于昌明.山东栖霞百里店地区综合地质地球物理研究[J].地球物理学进展,1997,12(2):41—49.
    22.纪瑛瑛,孙忠实.灰色系统理论在海沟金矿成矿预测中的应用[J].吉林地质.1999,18(4):38—42.
    23.金章东.江西德兴铜厂斑岩体铜矿品位的分形结构[J].矿床地质.1998,17(4):363—368.
    24.李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.
    25.李德亭.焦家金矿床深部矿化及工艺矿物特征(硕士学位论文).北京科技大学,2001.
    26.李德亭,庞绪成,李纪玉.山东焦家金矿床深部矿石矿物成分及微量元素特征[J].华南地质与矿产,2002,(1):10—16.
    27.李厚民,毛景文,沈远超,等.胶西北东季金矿床钾长石和石英的Ar-Ar年龄及其意义[J].??矿床地质.2003,22(1):72—77.
    28.李华芹,刘家齐,魏琳.热液矿床流体包裹体年代学研究及其地质应用[M].北京:地质出版社,1993.
    29.李惠,张文华.胶东大型金矿床的地球化学分带特征[J].贵金属地质.1999,8(4):217—222.
    30.李惠芬等.鲁西花岗岩—绿岩带[M].北京:地质出版社,1992.
    31.李献华,孙贤钵.“煌斑岩”与金矿的实际观察与理论评述[J].地质论评,1995,41(3):252—260.
    32.李兆鼐等著.中国东部中、新生代火成岩及其深部过程[M].北京:地质出版社,2003.
    33.李兆龙,杨敏之.胶东金矿床地质地球化学[J].天津:天津科学技术出版社,1993.
    34.林丽,朱利东.蓝细菌聚金作用实验研究[J].地质科学,1998,33(4):483—488.
    35.林蔚文,殷秀兰.胶东金矿成矿流体同位素特征[J].岩石矿物学杂志.1998,17(3):249—259.
    36.刘家军,郑明华,顾雪祥,等.海底喷流作用对金富集成矿的作用[J].矿产与地质,1997,11(5):289—295.
    37.刘建明,刘家军,郑明华,等.微细浸染型金矿床的稳定同位素特征与成因探讨[J].地球化,1998,27(6):585-591.
    38.刘英俊,曹励明,李兆麟,等.元素地球化学[M].科学出版社,1984.
    39.卢作祥等.胶东焦家金矿田断裂控矿特征及矿化富集规律[A].中国金矿主要类型区域成矿条件文集[C],5.胶东地区.北京:地质出版社,1988:85-117.
    40.吕古贤,孔庆存.胶东玲珑—焦家式金矿地质[M].北京:科学出版社,1993.
    41.吕古贤,孙之夫,郝献晟,等.山东焦家金矿隐伏矿床构造物化探预测及构造物理化学研究[R].山东省焦家金矿,地质矿产部地质力学研究所,山东省冶金地质勘查局二队,1995.
    42.吕古贤,林文蔚,罗元华,等.构造物理化学与金矿成矿预测[M].北京:地质出版社,1999.
    43.吕古贤.胶东玲珑-焦家式金矿床矿源岩系(序)列研究[J].地质地球化学.2001,29(3):140-143.
    44.吕国安.成矿区带地球化学异常评价方法[M].北京:冶金工业出版社,2002.
    45.栾世伟等.金矿床地质与找矿方法[M].成都:四川科学技术出版社,1987.
    46.罗镇宽,关康,王曼祉,等.中国金矿床概论[M].天津:天津科学技术出版社,1993.
    47.骆万成,伍勤生.应用蚀变矿物测得胶东金矿的成矿年龄[J].科学通报,1987,32:1245—1248.
    48.马田生.山东焦家金矿床深部成矿预测研究(硕士论文).成都理工大学,2004.
    49.毛景文.矿床学研究的一些最新动态[J].矿床地质,1997,16(4):61.
    50.苗来成等.山东招掖金矿带内花岗岩类侵入体锆石SHRIMP研究及意义[J].中国科学(D辑),1997,27(3):207—213.
    51.欧阳宗圻,李惠,刘汉忠.典型有色金属矿床地球化学异常模式[M].北京:科学出版社,1990.
    52.庞绪成,郝献晟,孙之夫,等.焦家金矿床地球物理、地球化学特征及异常模式[J].黄金.1999,20(2):1—6.
    53.庞绪成,孙之夫.焦家金矿床矿体赋存规律及深部预测[J].山东黄金.1998,(2):30-34.
    54.庞绪成,王玉平,郑广玉,等.焦家金矿床成矿元素富集及成因分析[J].黄金科学技术.2003,11(2):15-19.
    55.裘有守,王孔海,杨广华,等.山东招远—掖县地区金矿区域成矿条件[C].沈阳:辽宁科??学技术出版社,1988.
    56.曲晓明,王鹤年.郭家岭岩体壳幔岩浆混合作用与侵位机制的动力学研究[J].地质科学.1997,32(4):445—454.
    57.山东招金集团公司.招远金矿集中区地质与找矿[M].北京:地震出版社,2002.
    58.宋明春,王沛成主编.山东省区域地质[M].济南:山东省地图出版社,2003.
    59.邵世才.剪切带型金矿床中含金石英脉的一种可能成生机制[J].1994,18(2):155-162.
    60.沈远超,谢宏远,李光明,等.山东蓬家夼金矿基本地质特征及其找矿方向[J].地质与勘探,1998,34(5):3-5.
    61.石昆法,张庚利,李英贤,等.CSAMT法庄山东蓬家夼地区层间滑动角砾岩型金矿成矿预测中的应用[J].地质与勘探,2001,377(1):86-90.
    62.帅德权,胡晓强.我国菌藻生物成因的金矿研究[J].黄金地质,1995,1(2):1-8.
    63.孙景贵.胶东地区地质体的含金性与金成矿关系[J].地质找矿论丛.1999,14(2):43-54.
    64.孙景贵,胡受溪,赵懿英,等.初论胶东地区金矿成矿模式[J].矿床地质.2000,19(1):26-36.
    65.涂光炽.本世纪80年代地球科学若干问题的进展[J].地质评论,1990,35(6):510-517.
    66.涂光炽.超大型矿床的寻找与研究的若干进展[J].地学前缘,1994,1(3-4):45-53.
    67.涂光炽.过去20年矿床事业发展的概略回顾[J].矿床地质,2001,20(1):1-9.
    68.王鹤年,徐克勤,陈延安,等.胶东中元古代玲珑花岗岩及后期叠加改造作用的地质地球化学证据[J].南京大学学报(地球科学版).1988,(1):105-118.
    69.王鹤年,汪耀.山东焦家金矿床的成因探讨[J].地质评论.1991,37(3):250—257.
    70.王学求,谢学锦.金的勘查地球化学[M].山东科学技术出版社,2000.
    71.文子中.玲珑花岗岩同位素年代学问题讨论[J].山东地质,1985,1(2):1-9.
    72.吴磊伯,沈淑敏.经向构造体系的分布规律及其地质力学意义.地质力学文集(6)[C],1982.
    73.伍宗华,古平等著.隐伏矿床的地球化学勘查[M].北京:地质出版社,2000.
    74.伍家善、耿元生、沈其韩等.中朝古大陆太古宙地质特征及构造演化[M].北京:地质出版社,1998.
    75.夏湘蓉,李仲钧,王根元.中国古代矿业开发史[M].北京:地质出版社,1980.
    76.肖庆辉,邓晋福,马大铨,等著.花岗岩研究思维与方法[M].北京:地质出版社,2002.
    77.徐红,徐光平.胶东煌斑岩的地球化学特征及成因探讨[J].岩石矿物学杂志,2000,19(1):36-44.
    78.徐克勤等.华南花岗岩地质与成矿花岗岩地质及其与成矿的关系[M].南京:江苏科学技术出版社,1984.
    79.徐金方,沈步云,牛良柱,等.胶北地块与金矿有关的花岗岩类的研究[J].山东地质,1989,5(2):1-125.
    80.徐金方.玲珑复式岩基的构成及其形成时代[J].岩石学报,1991,(2):43-49.
    81.徐九华,谢玉玲,申世亮.小秦岭与胶东金矿床的成矿流体特征对比[J].矿床地质.1997,16(2):151-162.
    82.杨敏之,吕古贤.胶东绿岩带金矿地质地球化学[M].北京:地质出版社,1996.
    83.杨言辰,王文学,乔君义.吉林晖江微细浸染型金矿床地质特征及成因研究[J].吉林地质,1997,16(1):42-50.
    84.杨忠芳,徐景奎,赵伦山,等.胶东区域地壳演化与金成矿作用地球化学[M].北京:地质出版社,1998.
    85.姚凤良,刘连登.胶东西北部脉状金矿[M].长春:吉林科学技术出版社,1990.
    86.于昌明.CSAMT方法在寻找隐伏金矿中的应用[J].地球物理学报,1998,411(1):133-138.87.余汉茂.胶东西北部地区岩石同位素地质年代学研究[J].山东地质.1987,3(1):75-88.
    88.于又华,祁风茹,程玉明.世界金矿勘查及黄金工业的发展[J].黄金科学技术,2000,8(2):1-9.
    89.余中平.成矿与找矿导论[M].北京:冶金工业出版社,1998.
    90.张鸿钊.古矿录[M].北京:地质出版社,1954.
    91.张理刚,陈振胜,刘敬秀.焦家式金矿水—岩交换作用—蚀变岩石氢氧同位素组成研究[J].矿床地质,1995,14(3):261—272.
    92.张韫璞.孙之夫,姜洪利,等.山东莱州市焦家金矿床地质勘探—生产勘探总结地质报告[R].山东省地质矿产局第六地质队,山东省焦家金矿 1996.
    93.张振海,张景鑫,叶素芝.胶东金矿同位素年龄的厘定[M].北京:地震出版社.1994.
    94.赵利青,李占芳,李志宏,等.现代金矿成矿理论的若干进展[J].黄金地质,2004,10(2):59-68.
    95.赵振华,涂光炽.中国超大型矿床(Ⅱ)[M].北京:科学出版社,2003.
    96.曾庆栋,沈远超,刘铁冰,等.胶东牟平发云夼金矿区地球物理综合找矿研究[J].湘潭矿业学院学报,2001,16(4):17-19.
    97.翟裕生,邓军,宋鸿林.同生构造对超大型矿床的控制[J].中国科学(D辑),1998,28(3):214—218.
    98.翟裕生.成矿系统分析与新类型矿床预测[J].地学前缘,2000,7(1):123—132.
    99.朱奉三.混合岩化热液型金矿床成矿作用初步研究-以招掖地区的金矿床为例[J].地质与勘探.1980,(7):1-9.
    100.朱奉三.中国金矿床的成因类型划分及基本特征研究.国际金矿地质与勘探学术会议论文集[C].沈阳:东北工学院出版社.1989.12-20.
    101. Barbarin B. Granitoids main petrogenetic classifications in relation to origin and tectonic setting. Geol. J. 1990, 25: 227-238.
    102. Barbarin B. Genesis of the two main types of peraluminous granitoids.. Geology. 1996, 24: 295-298.
    103. Barbarin B. A review of the relationships between granitoid types, their origrins and their geodynamic environments. Lithos. 1999, 46: 605-626.
    104. Barley, M. E., Groves, D. I.. Supercontinent cycles and the distribution of metal deposits through time. Geology, 1992, 20: 291-294.
    105. Batchelor, R. A., Bowden, V. E. Petrogenetic interpretation of granitoid rock series using multications parameters. Chem. Geol. 1985, 48(1): 43-55.
    106. Beccaluva, L. et al. Petrology of northern Apennine ophiolites and composition with other Tethyan ophiolites, In Ophiolites, ed. By Panayioton, A., Proc. Int. Ophiolites Symp., Nicosia, Geol. Sury. Dep., 1980: 313-337.
    107.著,刘连登等译.黄金开采和勘探发展的世界趋势[J].世界地质,1998,17(3):36-40.
    108. Boyle, R. W.. The geochemistry of gold and its deposits, Geological Survey Bulletin 280, 1979.
    109.Cameron E.M.,Hattori K.著,杨剑光泽.太古代金矿化和氧化热液流体[J].地质地球化学,1988,9:42—54.
    110. Cameron E. M.. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1. Conceptualmodel. Journal of Geochemical Exploration. 1989, 31: 135-147.
    111. Clayton, R. N., O'Neil, J. R., Mayeda, T. K.. Oxygen isotope exchange between quartz and??water, J. Geophys. Res.. 1972, 77(17): 3057-3067.
    
    112. Collins, W.J., Beams, S.D., White, A.J. and Chappell, B.W.. Nature and origin of A-type granites with particular reference to south-eastern Australia, Contrib. Mineral. Petrol., 1982, 80: 189-200.
    
    113. Daly, R.A.. Igneous rocks and the depots of the earth, McGraw-Hill, New york. 1933.
    
    114. Doe, B. R. et al.. Plumbotectonics, In: Barnes, H.L. (ed.). Geochemistry of hydrothermal ore deposits. New York: Wiley, 1979: 22-70.
    
    115.D.S.巴尔克[美]著,黄福生等译.火成岩[m] .北京: 地质出版社, 1992.
    
    116. Eby, G. N.. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 1992,20: 641-644.
    
    117. Enkin, R. J., Yang Z. Y., Chen Y., Courtilot, V.. Palaeomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the persent. J. Geophys. Res., 1992, 97: 13953-13989.
    
    118. Grant J A. The isocon diagram-A simple solution to Gresens' equation for metasomatic alteration [ J ]. Econ Geol ,1986,81 :1976-1982.
    
    119. Groves D J, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13:7-27.
    
    120. Hacker, B. R., Gnos, E., Ratschbacher, L. et al.. Hot and dry xenoliths from the lower crust of Tibet. Science, 2000, 287: 2463-2465.
    
    121. Harris N. B. W., Pearce, J.A. and Tindle, A.G.. Geochemical characteristics of collisionzone magmatism, In Collision Tectonic, ed. By Coward, M.P. et al, Geol. Soc. Sp. Publ.,1986, 19: 67-81.
    
    122. Hawkesworth, C. J., Hergt, J.M., Ellam, R.M. and McDermott, F.. Element fluxes associated with subduction, related magmatism, Philosophical Transactions of the Royal Society of London Series A, 1991,335:393-405.
    
    123. Hine, R., Williams, O.S., Chappell, B.W. etc. Contrasts between and S-type granitoids of the Kosciusko batholith, Joum. Sco.Austra., 1978,25:4.
    
    124. Kerrich Robert, Goldfarb Richard, Groves David, et al. The characteristics, origins and geodynamic settings of supergiant gold metaflogenic provinces[J]. Science in China (Series D), 2000, 43(Supplement):1-68.
    
    125. Laznicka Peter. Quantitative relationships among giant de posits of metals[J].Econ. Geol, 1999, 94:455-473.
    
    126. Maniar P. D., Piccoli P.M.. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101:635-643.
    
    127. Myers, R.E. and Breitkopf, J.H.. Basalt geochemistry and tectonic settings: a new approach to relate tectonic and magmatic processes, Lithos, 1989,23: 53-62.
    
    128. Newman J, Mitra G. Lateral variations on mylonite zone thickness as imfluenced by fluid-rockinterctions, Linville Falls fault, North Carolina[ J ]. J Struct Geol, 1993 , 15 : 849-863
    
    129. Nesbitt B.C., Murowchick J. R., Muhlenbachs K. Dual origins of lode-gold deposits in the Canadian Cardillers. Geology. 1986, 14: 501-509.
    
    130. Pearce, T. H.. A contribution to the theory of variation diagrams, Contrib. Mineral. Petrol., 1968,19: 142-157.
    131. Pearce, J. A.. Trace element characteristics of lavas from destructive plate boundaries, In Andesites, ed. By Thorps. R.S., Chichester,Wiley, 1982: 525-548.
    
    132. Pearce. J. A., Harris, N. B. W., and Tindle, A.G.. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petology, 1984,25(4):956-983.
    
    133. Pitcher, W. S.. Granite type and tectonic environment. Mountain Building Processes, London. 1983,19-40.
    
    134. Pitcher, W. S.. Granites and yet more granites forty years on. Geologische Rundschau. 1987, 76(1):51-79.
    
    135. Qiu Y M, Groves D I, McNaughton N J et al. Nature, age and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Miner.Den.,2002,37:283-305.
    
    136. Rickwood, P.C.. Boundary lines within petrologic diagram which use oxides of major and minor elements, Lithos, 1989,22: 247-263.
    
    137. Sheralong, J. W. and Black, C. P.. Chemical evolution of granitic rocks in the east Antarctic shield, with particular reference to post-orogenic granites, Lithos, 1988,21:37-52.
    
    138. Rock N M S. Lamprophyres[M].U K Blackie: Glasgow, 1991.
    
    139. Sun, S.S.. Lead isotopic study of young volcanic rocks from midocean ridgem ocean island and island arcs, Phil. Trans. R. Soc. London A297, 1980:409-445.
    
    140. Taylor, H. P.. The oxygen isotope geochemistry of igneous rocks, Contrib. Mineral, Petrol..1968,19(1):1-17.
    
    141. Taylor, S. R. et al. Genetic significance of Co, Ni, Cr, Sc and V content of andesites, Geochim. Cosmochim. Acta, 1969,33:275-286.
    
    142. Taylor, S. R.. Trace element chemistry of Andesites and Associated Calc-Alkaline Rocks. Proceedings of the Andesites Conference, Oregon Dept. Geol. Mineral Ind. Bull., 1969,65: 43-63.
    
    143. Taylor, S. R., McLennan, S.. The Continental crust: Composition and evolution. Blackwell Scientific Publications, 1985,209-230.
    
    144. Thompson, R. N.. Magmatism in the British Tertiary volcanic province. Scott. Journal of Geology, 1982,18:49-107.
    
    145. Voo, R. V., Spakman, W., Bijwaard, H.. Mesozoic subducted slabs under Siberia. Nature, 1999,397:246-249.
    
    146. Wang D Z, Zhou X M.Origin of Late Mesozoic Granitic Volcanic-Intrusive Complexes in Southeast China and Crustal Evolution.Beijing; Science Press (in Chinese),2002.
    
    147. Wang H N, Xu K Q, Chen Y A et al.The middle Proterozoic Linglong gneissic granite and the geological and geoehemical evidence of its late transformation effects.In:Tu G Z, Xu K Q, Qiu Y Z(eds.).Petrogenesis and Mineralization of Granitoids. Beijing;Science Press, 1992:464-473.
    
    148. Whalen, J.B., Currie, K.L. and Chppell, B.W.. A-type granites: geochemical characteristics discrimination and petrogenesis, Contrib. Mineral. Petrol.,1987, 95:407-419.
    
    149. Wood, D.A.. A variably veined suboceanic upper mantle-genetic significance for midocean ridge basalts from geochemical evidence, Geology, 1979,7: 499-503.
    
    150. Xuexiang Gu. Turbidite-hosted Micro-disseminated Gold Deposits. Chengdu: Printing Factory of Chengdu Institute of Technology. 1996.
    
    151. Zartman, R. E., Doe, B. R.. Plumbotectonics-the model. Tectonophysics. 1981,75:135-162.
    152. Zhao X. X., Coe, R. S., Zhou Y.X., Wu H. R., Wang J.. New plaeomagnetic results from northern China: Collision and suturing with Siberia and Kazakhstan. Tectonophysics, 1990,181:43-81.
    
    153. Zhou, X.H. and Armstrong, R.L.. Cenozoic volcanic rock of eastern China-secular and geographic trend in chemistry and strontium isotopic composition, Earth Planet. Sci. Lett., 1982,53: 301-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700