用户名: 密码: 验证码:
MiR-150对内皮祖细胞促深静脉血栓溶解再通作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深静脉血栓形成(Deep venous thrombosis DVT)是常见的外周血管疾病,可导致肢体肿胀、下肢缺血、血栓后综合症,甚至致死性肺栓塞的发生。现在对于DVT的治疗主要是各种抗凝溶栓药物的使用,但效果并不令人满意,同时抗凝药物的副作用可导致机体凝血功能下降、消化道出血、手术患者切口并发症发生。
     研究人员发现骨髓来源的内皮祖细胞(Bone marrow-derived endothelialprogenitor cells BMEPCs)可以分化为血管内皮细胞,分泌各种促血管生成因子从而促进缺血组织的血管新生。研究证实,EPCs可以归巢到深静脉血栓中促进血栓机化再通。我们实验组前期的研究也发现移植EPCs后可以改善血栓内的微环境,促进急性静脉血栓溶解及慢性血栓再通。但是由于EPCs增殖能力及迁移归巢能力较弱,EPCs的应用受到很大的限制。如何更好的改善EPCs的功能成为广大学者的研究方向。
     MicroRNAs(miRNAs)是一类小分子非编码RNAs,可在转录后水平调控基因表达。研究证明MicroRNAs在血管新生过程中扮演了重要角色。miR-150最初被发现于免疫相关细胞中,控制着淋巴细胞的生长分化。研究发现,miR-150可促进间充质干细胞迁移。单核细胞分泌的miR-150可以提高人微血管内皮细胞迁移及成血管能力。但是,miR-150对于EPCs的功能影响,特别在深静脉血栓再通中的作用却未见相关报道。
     本实验研究中,我们采用密度梯度离心法分离SD大鼠的骨髓单个核细胞(Bonemarrow-derived mononuclear cells, BMMNCs),EGM-2MV培养基诱导、培养、扩增骨髓源性EPCs并鉴定。体外实验中,我们将对照寡核苷酸和miR-150的模拟物或抑制物采用电转的方法,转染EPCs,探讨miR-150对EPCs的功能影响。为了进一步研究miR-150对EPCs在深静脉血栓机化再通中的作用,我们构建了携带miR-150的慢病毒表达载体并转染到大鼠EPCs中,将转染后的EPCs注入到大鼠深静脉血栓模型中。研究结果发现,过表达miR-150能够促进大鼠EPCs的迁移成管能力,促进EPCs归巢到静脉血栓中,加速血栓的机化再通。我们的研究揭示了miR-150对EPCs功能的影响,可能为深静脉血栓治疗带来新的希望。本实验研究,将分为4个部分。主要研究方法及结果如下。
     第一部分大鼠骨髓源性内皮祖细胞的分离、培养及鉴定
     目的:分离、培养并鉴定大鼠骨髓源性内皮祖细胞(endothelial progenitor cells,EPCs)。
     方法:采用密度梯度离心方法分离大鼠骨髓单个核细胞,采用内皮培养体系EGM-2培养剂进行诱导分化定向诱导培养14-21天,观察细胞的生长形态变化,结合免疫组化、免疫荧光、流式细胞仪技术检测内皮细胞表面标记及造血干细胞表面标记,采用Matrigel成管实验及DiI-ac-LDL摄取实验检测内皮细胞的功能学特性。
     结果:新分离的骨髓单个核细胞(BMMNCs)呈圆形,48h后部分细胞开始贴壁,贴壁细胞呈纺锤型形态,细胞集落形成,细胞培养至第10~12天逐渐融合,细胞形态呈现出鹅卵石样改变。DiI-acLDL摄取结果显示,细胞能够吸收DiI-ac-LDL。Matrigel成管实验显示培养的细胞能形成管状、网络状结构。流式细胞仪分析及免疫荧光检测结果显示,细胞主要表达内皮特异性标记物VEGFR、vWF;几乎不表达造血干细胞表面标记CD133。
     结论:本实验成功地建立了一套大鼠骨髓血管内皮祖细胞分离、培养、诱导分化及鉴定的方法体系。在特定培养体系诱导下,可从大鼠骨髓单个核细胞中获得内皮祖细胞,培养到第10~14天的内皮祖细胞呈现late-EPCs表型特征。
     第二部分MiR-150对内皮祖细胞功能影响的体外实验研究
     目的:探讨miR-150对大鼠内皮祖细胞(endothelial progenitor cells,EPCs)增殖、迁移、及成管能力的影响
     方法:将miR-150模拟物或抑制剂或阴性对照用电转的方法转染到EPCs中。采用MTT、流式细胞术检测miR-150对EPCs增殖及细胞周期的影响。采用划痕实验、穿膜实验检测miR-150对EPCs运动迁移能力的影响。采用Matrige管腔形成实验检测miR-150对EPCs成血管能力的影响。为了探查miR-150对EPCs功能影响的可能靶基因,我们使用在线microRNA数据库寻找miR-150调控EPCs的潜在靶基因。
     结果:miR-150对内皮组细胞的增殖及细胞周期没有影响。划痕实验及穿膜实验都证实了miR-150模拟物能够显著促进EPCs的迁移运动能力; miR-150抑制剂则能抑制EPCs的迁移运动能力。过表达miR-150能增强EPCs的成管能力。c-Myb的3’UTR区内有miR-150两个潜在的结合位点。
     结论:miR-150对细胞增殖及细胞周期没有作用。过表达miR-150促进大鼠EPCs迁移及运动及成管能力。c-Myb可能是miR-150的靶基因。
     第三部分构建miR-150慢病毒表达载体及其在内皮祖细胞有效性表达
     目的:构建miR-150慢病毒表达载体,感染大鼠EPCs后检测miR-150的表达,为研究体内条件下miR-150在EPCs中的生物学功能奠定基础。
     方法:将聚合酶链反应(PCR)扩增得到的miR-150前体序列pre-miR-150和慢病毒载体pLVX-IRES-ZsGreenl经酶切后连接产生pLVX-IRES-ZsGreenl-miR-150,经酶切及测序鉴定正确后在HEK293T细胞中包装病毒,收集病毒上清后感染EPCs。用实时荧光定量PCR(qPCR)方法检测感染后的EPCs中miR-150的表达。
     结果:酶切及测序结果示慢病毒表达载体pLVX-IRES-ZsGreenl-miR-150构建正确,病毒上清液感染EPCs后能有效提高miR-150的表达。
     结论:成功构建了pLVX-IRES-ZsGreenl-miR-150慢病毒表达载体及稳定表达miR-150的EPCs细胞系。
     第四部分miRNA-150对内皮祖细胞在深静脉血栓再通中的作用
     目的:探讨miRNA-150对大鼠内皮祖细胞(endothelial progenitor cells, EPCs)在血栓机化再通中的作用。
     方法:我们通过结扎大鼠下腔静脉构建深静脉血栓模型,将构建成功的慢病毒载体pLVX-IRES-ZsGreen1/pLVX-IRES-ZsGreen1-miR-150转染到EPCs中并移植到血栓模型中。在术后7天、14天收集标本称重。通过荧光示踪观察EPCs归巢到静脉血栓的情况。采用HE染色,CD34免疫组化染色观察转染miR-150后EPCs对静脉血栓机化再通的影响。为了探查miR-150促进血栓机化再通的可能机制,我们采用免疫组化染色检测血栓中MMP-2的表达情况。
     结果:移植的EPCs出现在静脉血栓中。EPCs/miR-150组中GFP阳性细胞数目较EPCs/vector组明显增多。EPCs移植后抑制静脉血栓形成,EPCs/miR-150组中静脉血栓的重量最低。HE染色和CD34免疫组化染色提示EPCs促进血栓的机化再通。相对于EPCs/vector组,EPCs/miR-150组中血栓机化再通最为明显。不论在术后7天还是14天,MMP-2在EPCs/miR-150组和EPCs/vecto组的表达皆高于空白对照组。其中,EPCs/miR-150组中MMP-2的表达最为丰富。
     结论:移植的EPCs可以归巢到静脉血栓中促进血栓溶解。EPCs显著抑制血栓形成,促进血栓的机化再通。miR-150增强了EPCs的归巢能力,促进了EPCs在血栓机化再通中的作用。提高EPCs中miR-150的表达水平可能为DVT的治疗带来希望。
Deep venous thrombosis (DVT) is a common peripheral vascular disease. DVTmay lead to the abnormal swelling and ulceration of lower limb, post-thromboticsyndrome (PTS) or even pulmonary embolism (PE) which can lead to the sudden deathof patients. Currently, the clinical treatment for DVT is using of anticoagulants to reducethe incidence of PE, PTS and recurrence of DVT. However,the usage of anticoagulantsis associated with the high risk of bleeding and wound complications.
     The discovery of marrow-derived circulating endothelial progenitor cells (EPCs)cause people's great interest because of their plasticity to differentiate into endothelialcells (ECs) and as a source of paracrine proangiogenic factors. It has been proven thatEPCs are recruited into resolving venous thrombi. Our previous studies also showed thatEPCs significantly improved the microenvironment and promoted the resolution of acutevenous thrombus and the recanalization of chronic thrombus. However, studiesdemonstrated that EPCs recruitment to sites of neovascularition was limited due to theweak viability, migration and homing ability. Therefore, looking for a method toimprove the function of EPCs is being widely discussed.
     MicroRNAs are a class of~22nucleotides non-coding RNAs that suppress geneexpression at the posttranscriptional level by promoting mRNA degradation or inhibitingmRNA translation. Recent studies have shown that microRNAs are involved in theangiogenesis process. MiR-150, a key regulator for the development of immune cells,was originally detected in mature lymphocyte. It has been proven that miR-150regulatesthe migration of bone marrow stem cells. MiR-150, secreted by monocytes, enhanced the migration of human microvascular endothelial cells. However, the function ofmiR-150in rat EPCs, especially in the ischemia condition such as DVT, remainsunknown.
     In this study, rat bone marrow was obtained by rinsing bone marrow cavity, thenbone marrow mononuclearcells were isolated by gradient centrifugation using Ficollcentrifugate. mononuclearcells were then cultivated with EGM-2MV mediumcultivation. To investigate the role of miR-150in rat endothelial progenitor cells (EPCs)proliferation and migration, EPCs were transfected with control oligoes and miR-150mimics or inhibitor by electroporation. To further explore the role of miR-150in EPCsunder ischemia condition, EPCs stably expressing miR-150were achieved by lentivirusand delivered into rats with DVT. We demonstrated that ectopic expression of miR-150enhanced rat EPCs motility and tube formation in vitro. MiR-150promoted rat EPCshoming and venous thrombus recanalization and resolution in vivo. Our study revealedthe function of miR-150in EPCs and presents a promising clinical therapy for ischemiadiseases.
     ChapterⅠ Isolation, culture and identification of endothelialprogenitor cells
     Objectives:The goal of this study was to isolate, culture and identify endothelialprogenitor cells from rat bone marrow.
     Methods:Mononuclear cells (MNCs) from rat bone marrow isolated by densitygradient centrifugation were cultured in EGM-2medium. Morphological changes wereobserved with an inverted microscope. The EPCs were identified by the combinedDil-labeled acetylated low density lipoprotein(Dil-ac-LDL), in vitro tube formationassay, and the cell surface antigen was detected by immunofluorescence technology andflow cytometry.
     Results:Mononuclear cells isolated from rat bone marrow cultured in EGM-2Medium is round. Cells begin to adherel after48h.The adherent cells are fusiform shape,and cell colony appears. After10~12days culture, cell morphology presentscobblestone appearance. The cells uptake Dil-ac-LDL. Matrigel tubule test show thatcultured cells can form a tubular structure. The resultes of flow cytometry analysis andimmunofluorescence show that the main expression on the surface of cells is VEGFR、vWF; almost no expression of CD133.
     Conclusions: MNCs isolated from rat bone marrow cultured in EGM-2mediumcan proliferate and differentiate to late EPCs after10~12days culture.
     Chapter II Studies of miRNA-150effects on endothelialprogenitor cells in vitro
     Objectives: To investigate the role of miR-150in rat endothelial progenitor cells(EPCs) proliferation,migration and tube formation.
     Methods: EPCs were transfected with control oligoes and miR-150mimics orinhibitor by electroporation. MTT and flow cytometry analysis was performed toevaluate the growth of EPCs subjecting to miR-150. Cell migration analysis was doneby wound healing and transwell assay. To test whether miR-150affected the angiogenicactivity of EPCs in vitro, we performed matrigel tube formation assay. Bygain-of-function examination, we searched for its putative target genes using onlinesearch tool (TargetScan).
     Results: The EPCs growth and cell cycle was immue from miR-150application.Both the wound healing and transwell assay showed that miR-150promoted EPCsmigration and miR-150inhibitor inhibited EPCs migration in vitro. Ectopic expressionof miR-150enhanced EPCs tube formation in vitro. C-Myb was predicted to have twoputative miR-150binding sites within its3’UTR.
     Conclusions: MiR-150had no effect on the growth and cell cycle of EPCs.MiR-150enhanced the migration, tube formation ability of rat EPCs. C-Myb may be amiR-150target gene.
     Chapter III Construction of the miR-150Lentiviral ExpressionVector and its Expression in endothelial progenitor cells
     Objectives: To construct the miR-150lentiviral vector, and to detect itseffectiveness in EPCs.It is the bases of functional study of miR-150effects on ratendothelial progenitor cells (EPCs) in vivo.
     Methods: MiR-150was amplified from the genomic DNA and inserted intopLVX-IRES-ZsGreenl vector after double digestion to generate pLVX-IRES-ZsGreenl-miR-150.The vector was then confirmed by PCR and DNA sequencing. EPCs wasinfected by the concentrated lentivirus293T produced. MiR-150were assessed byqPCR.
     Results: The recombinant lentiviral vector was Successfully established andconfirmed by PCR and DNA sequencing. MiR-150was integrated into the genome ofEPCs and miR-150expression was enhanced effectivcly by qPCR.
     Conclusions: The miR-150lentiviral expression vector was successfullyconstructed, and the miR-150overexpressed in EPCs.
     Chapter IV Studies of miRNA-150effects on endothelialprogenitor cells in deep venous thrombosis
     Objectives: To investigate the functional role of miR-150in rat endothelialprogenitor cells (EPCs) and its potential application in deep venous thrombosis.
     Methods: We ligated the inferior vena cava(IVC) of rats and developed the DVTmodels. EPCs with stable expression of miR-150or empty vector viapLVX-IRES-ZsGreen1lentivirus were transplanted into these DVT models. On the dayof7and14after the transplantation, the rats were sacrificed and the thrombi wereweighed. The homing of EPC was shown by GFP expression and observed using fluorescence microscope. To observe the thrombus organization and recanalization, thesections were performed with HE staining and immunohistochemicalstaining for CD34.To investigate the molecular mechanisms underlying the increased thrombus resolvingability of EPCs overexpressing miR-150, the intrathrombotic expression of MMP-2wasdetected using immunohistochemical staining.
     Results: Compared with control group, transplanted EPCs were situated around thethrombus in both EPCs/vector and EPCs/miR-150group. The larger number of GFPpositive cells appeared in EPCs/miR-150group at day7and14compared withEPCs/vector group. Compared with control group, significant decrease of thrombusweight was observed in EPCs/vector and EPCs/miR-150groups. The thrombus weightof EPCs/miR-150group was even lower than that of EPCs/vector group. HE stainingand CD34immunohistochemical analysis showed that thrombus organization andrecanalization were better in EPCs/vector and EPCs/miR-150group than control group.Larger and more channels were seen in EPCs/miR-150group in comparison withEPCs/vector group. Compared at the indicated time points, there were moreMMP-2-positive cells in EPCs/vector and EPCs/miR-150group in contrast with controlgroup. Furthermore, there were more MMP-2-positive cells in EPCs/miR-150groupcompared with EPCs/vector group.
     Conclusions: The exogenous EPCs are recruited into resolving venous thrombi.EPCs transplantation significantly inhibited thrombus formation and improved thrombusorganization and recanalization. MiR-150enhanced the homing, thrombusrecanalization and resolution ability of rat EPCs. Restoring miR-150in EPCs presents apromising clinical therapy for DVT therapy.
引文
[1] Goldhaber SZ. Risk factors for venous thromboembolism. Journal of the AmericanCollege of Cardiology.2010;56:1-7.
    [2] Alexander P, Giangola G. Deep venous thrombosis and pulmonary embolism:diagnosis, prophylaxis, and treatment. Annals of vascular surgery.1999;13:318-27.
    [3] Kahn SR, Shrier I, Julian JA, Ducruet T, Arsenault L, Miron MJ, et al.Determinants and time course of the postthrombotic syndrome after acute deepvenous thrombosis. Annals of internal medicine.2008;149:698-707.
    [4] Kahn SR. The post thrombotic syndrome. Thrombosis research.2011;127Suppl3:S89-92.
    [5] Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursorfor hematopoietic and endothelial cells. Development.1998;125:725-32.
    [6] Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelialprogenitor cells are rapidly recruited to myocardium and mediate protective effectof ischemic preconditioning via "imported" nitric oxide synthase activity.Circulation.2005;111:1114-20.
    [7] Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al.Transplantation of ex vivo expanded endothelial progenitor cells for therapeuticneovascularization. Proceedings of the National Academy of Sciences of the UnitedStates of America.2000;97:3422-7.
    [8] Masuda H, Asahara T. Post-natal endothelial progenitor cells for neovascularizationin tissue regeneration. Cardiovascular research.2003;58:390-8.
    [9] Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis andresolution. Arteriosclerosis, thrombosis, and vascular biology.2008;28:387-91.
    [10] Moldovan NI, Asahara T. Role of blood mononuclear cells in recanalization andvascularization of thrombi: past, present, and future. Trends in cardiovascularmedicine.2003;13:265-9.
    [11] Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells arerecruited into resolving venous thrombi. Circulation.2005;111:2645-53. Epub005May9.
    [12] Li XQ, Meng QY, Wu HR. Effects of bone marrow-derived endothelial progenitorcell transplantation on vein microenvironment in a rat model of chronic thrombosis.Chinese medical journal.2007;120:2245-9.
    [13] Meng QY, Li XQ, Yu XB, Lei FR, Jiang K, Li CY. Transplantation ofVEGF165-gene-transfected endothelial progenitor cells in the treatment of chronicvenous thrombosis in rats. Chinese medical journal.2010;123:471-7.
    [14]姜坤,孟庆友,杨吉成,于小滨,雷锋锐,李晓强.内皮祖细胞移植治疗慢性深静脉血栓形成的实验室研究.中华普通外科杂志.2010;25:61-4.
    [15] Meng Q, Li X, Yu X, Lei F, Jiang K, Li C. Transplantation of ex vivo expandedbone marrow-derived endot8helial progenitor cells enhances chronic venousthrombus resolution and recanalization. Clinical and appliedthrombosis/hemostasis: official journal of the International Academy of Clinicaland Applied Thrombosis/Hemostasis.2011;17:E196-201.
    [16] Ott I, Keller U, Knoedler M, Gotze KS, Doss K, Fischer P, et al. Endothelial-likecells expanded from CD34+blood cells improve left ventricular function afterexperimental myocardial infarction. FASEB journal: official publication of theFederation of American Societies for Experimental Biology.2005;19:992-4.
    [17] Lei FR, Li XQ, Liu H, Zhu RD, Meng QY, Rong JJ. Rapamycin and3-methyladenine regulate apoptosis and autophagy in bone-derived endothelialprogenitor cells. Chinese medical journal.2012;125:4076-82.
    [18] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004;116:281-97.
    [19] Vatolin S, Navaratne K, Weil RJ. A novel method to detect functional microRNAtargets. Journal of molecular biology.2006;358:983-96.
    [20] Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis inanimals. Molecular cell.2010;38:323-32.
    [21] Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalianmicroRNA expression atlas based on small RNA library sequencing. Cell.2007;129:1401-14.
    [22] Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al.Mammalian microRNAs: experimental evaluation of novel and previouslyannotated genes. Genes&development.2010;24:992-1009.
    [23] Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E.Phylogenetic shadowing and computational identification of human microRNAgenes. Cell.2005;120:21-4.
    [24] Landskroner-Eiger S, Moneke I, Sessa WC. miRNAs as modulators ofangiogenesis. Cold Spring Harb P8erspect Med.2013;3:a006643. doi:10.1101/cshperspect.a.
    [25] Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, et al. MiR-150controls B cell differentiation by targeting the transcription factor c-Myb. Cell.2007;131:146-59.
    [26] Lin YC, Kuo MW, Yu J, Kuo HH, Lin RJ, Lo WL, et al. c-Myb is an evolutionaryconserved miR-150target and miR-150/c-Myb interaction is important forembryonic development. Mol Biol Evol.2008;25:2189-98.
    [27] Rolland-Turner M, Goretti E, Bousquenaud M, Leonard F, Nicolas C, Zhang L, etal. Adenosine Stimulates the Migration of Human Endothelial Progenitor Cells.Role ofCXCR4and MicroRNA-150. PloS one.2013;8:e54135.
    [28] Tano N, Kim HW, Ashraf M. microRNA-150regulates mobilization and migrationof bone marrow-derived mononuclear cells by targeting Cxcr4. PloS one.2011;6:e23114.
    [29] Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150enhances targeted endothelial cell migration. Molecular cell.2010;39:133-44.
    [1] Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation ofputative progenitor endothelial cells for angiogenesis. Science.1997;275:964-7.
    [2] Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelialprogenitor cells are rapidly recruited to myocardium and mediate protective effectof ischemic preconditioning via "imported" nitric oxide synthase activity.Circulation.2005;111:1114-20.
    [3] Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al.Transplantation of ex vivo expanded endothelial progenitor cells for therapeuticneovascularization. Proceedings of the National Academy of Sciences of the UnitedStates of America.2000;97:3422-7.
    [4] Masuda H, Asahara T. Post-natal endothelial progenitor cells for neovascularizationin tissue regeneration. Cardiovascular research.2003;58:390-8.
    [5] Schatteman GC. Adult bone marrow-derived hemangioblasts, endothelial cellprogenitors, and EPCs. Current topics in developmental biology.2004;64:141-80.
    [6] Matsumura G, Miyagawa-Tomita S, Shin'oka T, Ikada Y, Kurosawa H. Firstevidence that bone marrow cells contribute to the construction of tissue-engineeredvascular autografts in vivo. Circulation.2003;108:1729-34. Epub2003Sep8.
    [7] Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cellsand endothelial outgrowth from blood. The Journal of clinical investigation.2000;105:71-7.
    [8] Weiss MJ, Orkin SH. In vitro differentiation of murine embryonic stem cells. Newapproaches to old problems. The Journal of clinical investigation.1996;97:591-5.
    [9] Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin ofendothelial progenitors in human postnatal bone marrow. The Journal of clinicalinvestigation.2002;109:337-46.
    [10] Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitorcells for neovascularization. Nature medicine.1999;5:434-8.
    [11] Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitrodifferentiation of endothelial cells from AC133-positive progenitor cells. Blood.2000;95:3106-12.
    [12] Boyer M, Townsend LE, Vogel LM, Falk J, Reitz-Vick D, Trevor KT, et al.Isolation of endothelial cells and their progenitor cells from human peripheralblood. J Vasc Surg.2000;31:181-9.
    [13] Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, et al. Diverseorigin and function of cells with endothelial phenotype obtained from adult humanblood. Circulation research.2003;93:1023-5.
    [14] Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role invascular biology. Circulation research.2004;95:343-53.
    [15] Cheng CC, Chang SJ, Chueh YN, Huang TS, Huang PH, Cheng SM, et al. Distinctangiogenesis roles and surface markers of early and late endothelial progenitor cellsrevealed by functional group analyses. BMC genomics.2013;14:182.
    [16] Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y, et al. Bonemarrow monocyte lineage cells adhere on injured endothelium in a monocytechemoattractant protein-1-dependent manner and accelerate reendothelialization asendothelial progenitor cells. Circulation research.2003;93:980-9.
    [17] Rookmaaker MB, Vergeer M, van Zonneveld AJ, Rabelink TJ, Verhaar MC.Endothelial progenitor cells: mainly derived from themonocyte/macrophage-containing CD34-mononuclear cell population and only inpart from the hematopoietic stem cell-containing CD34+mononuclear cellpopulation. Circulation.2003;108:e150; author reply e.
    [18] Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, et al. Characterization oftwo types of endothelial progenitor cells and their different contributions toneovasculogenesis. Arteriosclerosis, thrombosis, and vascular biology.2004;24:288-93.
    [19] Thill M, Strunnikova NV, Berna MJ, Gordiyenko N, Schmid K, Cousins SW, et al.Late outgrowth endothelial progenitor cells in patients with age-related maculardegeneration. Investigative ophthalmology&visual science.2008;49:2696-708.
    [20] Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, et al. Synergisticneovascularization by mixed transplantation of early endothelial progenitor cellsand late outgrowth endothelial cells: the role of angiogenic cytokines and matrixmetalloproteinases. Circulation.2005;112:1618-27.
    [21] Yang N, Li D, Jiao P, Chen B, Yao S, Sang H, et al. The characteristics ofendothelial progenitor cells derived from mononuclear cells of rat bone marrow indifferent culture conditions. Cytotechnology.2011;63:217-26.
    [22] Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, et al. Intravenoustransfusion of endothelial progenitor cells reduces neointima formation aftervascular injury. Circulation research.2003;93:e17-24.
    [23] Zhao X, Huang L, Yin Y, Fang Y, Zhou Y. Autologous endothelial progenitor cellstransplantation promoting endothelial recovery in mice. Transplant international:official journal of the European Society for Organ Transplantation.2007;20:712-21.
    [24] He T, Smith LA, Harrington S, Nath KA, Caplice NM, Katusic ZS. Transplantationof circulating endothelial progenitor cells restores endothelial function of denudedrabbit carotid arteries. Stroke; a journal of cerebral circulation.2004;35:2378-84.
    [25]Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schachinger V, Lehmann R,et al. Transplantation of progenitor cells and regeneration enhancement in acutemyocardial infarction (TOPCARE-AMI): final5-year results suggest long-termsafety and efficacy. Clinical research in cardiology: official journal of the GermanCardiac Society.2011;100:925-34.
    [26] Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al.Transplantation of progenitor cells and regeneration enhancement in acutemyocardial infarction: final one-year results of the TOPCARE-AMI Trial. Journalof the American College of Cardiology.2004;44:1690-9.
    [27] Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al.Transplantation of Progenitor Cells and Regeneration Enhancement in AcuteMyocardial Infarction (TOPCARE-AMI). Circulation.2002;106:3009-17.
    [28]Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al.Therapeutic angiogenesis for patients with limb ischaemia by autologoustransplantation of bone-marrow cells: a pilot study and a randomised controlledtrial. Lancet.2002;360:427-35.
    [29] Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, et al.Therapeutic angiogenesis by autologous bone marrow cell implantation forrefractory chronic peripheral arterial disease using assessment ofneovascularization by99mTc-tetrofosmin (TF) perfusion scintigraphy. CellTransplant.2004;13:429-37.
    [30] Hasebe H, Osada M, Kodama Y, Fujioka D, Sano K, Nakamura T, et al.
    [Therapeutic angiogenesis by autologous transplantation of bone-marrow cells in apatient with progressive limb ischemia due to arteriosclerosis obliterans: a casereport]. J Cardiol.2004;43:179-83.
    [31] Leon MB, Teirstein PS, Moses JW, Tripuraneni P, Lansky AJ, Jani S, et al.Localized intracoronary gamma-radiation therapy to inhibit the recurrence ofrestenosis after stenting. The New England journal of medicine.2001;344:250-6.
    [32] Douglas JS, Jr. Pharmacologic approaches to restenosis prevention. The Americanjournal of cardiology.2007;100:10K-6K.
    [33] Camenzind E, Steg PG, Wijns W. Stent thrombosis late after implantation offirst-generation drug-eluting stents: a cause for concern. Circulation.2007;115:1440-55; discussion55.
    [34] Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology ofdrug-eluting stents in humans: delayed healing and late thrombotic risk. Journal ofthe American College of Cardiology.2006;48:193-202.
    [35] Kipshidze N, Dangas G, Tsapenko M, Moses J, Leon MB, Kutryk M, et al. Role ofthe endothelium in modulating neointimal formation: vasculoprotective approachesto attenuate restenosis after percutaneous coronary interventions. Journal of theAmerican College of Cardiology.2004;44:733-9.
    [36] Aoki J, Serruys PW, van Beusekom H, Ong AT, McFadden EP, Sianos G, et al.Endothelial progenitor cell capture by stents coated with antibody against CD34:the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits NeointimalGrowth-First In Man) Registry. Journal of the American College of Cardiology.2005;45:1574-9.
    [37] Shi HJ, Cao AH, Chen J, Deng G, Teng GJ. Transjugular intrahepatic portosystemicshunt with an autologous endothelial progenitor cell seeded stent: a porcine model.Academic radiology.2010;17:358-67.
    [1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodessmall RNAs with antisense complementarity to lin-14. Cell.1993;75:843-54.
    [2] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al.The21-nucleotide let-7RNA regulates developmental timing in Caenorhabditiselegans. Nature.2000;403:901-6.
    [3] Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K,et al. TRBP recruits the Dicer complex to Ago2for microRNA processing and genesilencing. Nature.2005;436:740-4.
    [4] Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can up-regulate translation. Science.2007;318:1931-4.
    [5] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.2009;136:215-33.
    [6] Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1is an RNA Slicer thatselectively recruits microRNAs and short interfering RNAs. Proceedings of theNational Academy of Sciences of the United States of America.2005;102:11928-33.
    [7] Vatolin S, Navaratne K, Weil RJ. A novel method to detect functional microRNAtargets. Journal of molecular biology.2006;358:983-96.
    [8] Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis inanimals. Molecular cell.2010;38:323-32.
    [9] Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. A new frontier formolecular medicine: noncoding RNAs. Biochimica et biophysica acta.2005;1756:65-75.
    [10] Pan Z, Zhang J, Li Q, Li Y, Shi F, Xie Z, et al. Current advances in epigeneticmodification and alteration during mammalian ovarian folliculogenesis. Journal ofgenetics and genomics=Yi chuan xue bao.2012;39:111-23.
    [11] Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalianmicroRNA expression atlas based on small RNA library sequencing. Cell.2007;129:1401-14.
    [12] Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al.Mammalian microRNAs: experimental evaluation of novel and previouslyannotated genes. Genes&development.2010;24:992-1009.
    [13] Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E.Phylogenetic shadowing and computational identification of human microRNAgenes. Cell.2005;120:21-4.
    [14] Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, et al.Expression of microRNAs is dynamically regulated during cardiomyocytehypertrophy. J Mol Cell Cardiol.2007;42:1137-41. Epub2007Apr14.
    [15] Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M. Temporal differences inmicroRNA expression patterns in astrocytes and neurons after ischemic injury. PloSone.2011;6:e14724.
    [16] Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, et al. Functionalanalysis of microRNAs in human hepatocellular cancer stem cells. Journal ofcellular and molecular medicine.2012;16:160-73.
    [17] Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: novel players in theregulation of normal immune function and inflammation. Seminars in cancerbiology.2008;18:131-40.
    [18] Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Advances ingenetics.2010;70:87-99.
    [19] Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, et al. Endothelialprogenitor cells are rapidly recruited to myocardium and mediate protective effectof ischemic preconditioning via "imported" nitric oxide synthase activity.Circulation.2005;111:1114-20.
    [20] Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al.Transplantation of ex vivo expanded endothelial progenitor cells for therapeuticneovascularization. Proceedings of the National Academy of Sciences of the UnitedStates of America.2000;97:3422-7.
    [21] Masuda H, Asahara T. Post-natal endothelial progenitor cells for neovascularizationin tissue regeneration. Cardiovascular research.2003;58:390-8.
    [22] Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al.MicroRNAs modulate the angiogenic properties of HUVECs. Blood.2006;108:3068-71.
    [23] Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, et al. Theendothelial-cell-derived secreted factor Egfl7regulates vascular tube formation.Nature.2004;428:754-8.
    [24] Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126regulates endothelial expression of vascular cell adhesion molecule1. Proceedingsof the National Academy of Sciences of the United States of America.2008;105:1516-21.
    [25] Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. Theendothelial-specific microRNA miR-126governs vascular integrity andangiogenesis. Developmental cell.2008;15:261-71.
    [26] Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126regulates angiogenic signaling and vascular integrity. Developmental cell.2008;15:272-84.
    [27] Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependentmicroRNAs regulate gene expression and functions in human endothelial cells.Circulation research.2007;100:1164-73.
    [28] Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha forendothelial microRNA expression and angiogenesis. Circulation research.2007;101:59-68.
    [29] Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation ofputative progenitor endothelial cells for angiogenesis. Science.1997;275:964-7.
    [30] Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrow-derived endothelialcell precursors. American journal of physiology Heart and circulatory physiology.2007;292:H1-18.
    [31] Nuzzolo ER, Iachininoto MG, Teofili L. Endothelial progenitor cells and thrombosis.Thrombosis research.2012;129:309-13.
    [32] Kwaan HC, Samama MM. The significance of endothelial heterogeneity inthrombosis and hemostasis. Seminars in thrombosis and hemostasis.2010;36:286-300.
    [33] Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133controls cardiac hypertrophy. Nature medicine.2007;13:613-8.
    [34] Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation ofmicroRNA-126in endothelial progenitor cells from diabetes patients, impairs theirfunctional properties, via target gene Spred-1. J Mol Cell Cardiol.2012;53:64-72.doi:10.1016/j.yjmcc.2012.04.003. Epub Apr16.
    [35] Zhang X, Mao H, Chen JY, Wen S, Li D, Ye M, et al. Increased expression ofmicroRNA-221inhibits PAK1in endothelial progenitor cells and impairs itsfunction via c-Raf/MEK/ERK pathway. Biochemical and biophysical researchcommunications.2013;431:404-8.
    [36] Goretti E, Rolland-Turner M, Leonard F, Zhang L, Wagner DR, Devaux Y.MicroRNA-16affects key functions of human endothelial progenitor cells. Journalof leukocyte biology.2013;93:645-55.
    [37] Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF. miR-150, a microRNA expressedin mature B and T cells, blocks early B cell development when expressedprematurely. Proc Natl Acad Sci U S A.2007;104:7080-5.
    [38] Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, et al. MiR-150controls B cell differentiation by targeting the transcription factor c-Myb. Cell.2007;131:146-59.
    [39] Fleissner F, Jazbutyte V, Fiedler J, Gupta SK, Yin X, Xu Q, et al. Shortcommunication: asymmetric dimethylarginine impairs angiogenic progenitor cellfunction in patients with coronary artery disease through amicroRNA-21-dependent mechanism. Circ Res.2010;107:138-43. doi:10.1161/CIRCRESAHA.110.216770. Epub2010May20.
    [40] Tsitsiou E, Lindsay MA. microRNAs and the immune response. Current opinion inpharmacology.2009;9:514-20.
    [41] Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA, Jr., et al.MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. TheJournal of clinical endocrinology and metabolism.2009;94:320-3.
    [42] Tano N, Kim HW, Ashraf M. microRNA-150regulates mobilization and migrationof bone marrow-derived mononuclear cells by targeting Cxcr4. PloS one.2011;6:e23114.
    [43] Tano N, Kim HW, Ashraf M. microRNA-150regulates mobilization and migrationof bone marrow-derived mononuclear cells by targeting Cxcr4. PLoSOne.6:e23114.
    [44] Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150enhances targeted endothelial cell migration. Mol Cell.39:133-44.
    [45] Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, et al. Microvesicle-mediated transfer ofmicroRNA-150from monocytes to endothelial cells promotes angiogenesis. TheJournal of biological chemistry.2013;288:23586-96.
    [46] Prouse MB, Campbell MM. The interaction between MYB proteins and their targetDNA binding sites. Biochim Biophys Acta.2012;1819:67-77. doi:10.1016/j.bbagrm.2011.10.010. Epub Oct28.
    [47] Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nature reviewsCancer.2008;8:523-34.
    [48] Zhang Y, Jin H, Li L, Qin FX, Wen Z. cMyb regulates hematopoieticstem/progenitor cell mobilization during zebrafish hematopoiesis. Blood.2011;118:4093-101.
    [1] Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, et al.Therapeutic angiogenesis by autologous bone marrow cell implantation forrefractory chronic peripheral arterial disease using assessment ofneovascularization by99mTc-tetrofosmin (TF) perfusion scintigraphy. CellTransplant.2004;13:429-37.
    [2] Hasebe H, Osada M, Kodama Y, Fujioka D, Sano K, Nakamura T, et al.
    [Therapeutic angiogenesis by autologous transplantation of bone-marrow cells in apatient with progressive limb ischemia due to arteriosclerosis obliterans: a casereport]. J Cardiol.2004;43:179-83.
    [3] Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al.Endothelial progenitor cell vascular endothelial growth factor gene transfer forvascular regeneration. Circulation.2002;105:732-8.
    [4] Meng QY, Li XQ, Yu XB, Lei FR, Jiang K, Li CY. Transplantation ofVEGF165-gene-transfected endothelial progenitor cells in the treatment of chronicvenous thrombosis in rats. Chinese medical journal.2010;123:471-7.
    [5] Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clinicalpharmacokinetics.2002;41:901-11.
    [6] Lois C, Refaeli Y, Qin XF, Van Parijs L. Retroviruses as tools to study the immunesystem. Current opinion in immunology.2001;13:496-504.
    [7] Bogoslovskaia EV, Glazkova DV, Shipulin GA, Pokrovskii VV.[Safety ofretroviral vectors in gene therapy]. Vestnik Rossiiskoi akademii meditsinskikh nauk/Rossiiskaia akademiia meditsinskikh nauk.2012:55-61.
    [8] Gabriel R, Schmidt M, von Kalle C. Integration of retroviral vectors. Currentopinion in immunology.2012;24:592-7.
    [9] Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo genedelivery and stable transduction of nondividing cells by a lentiviral vector. Science.1996;272:263-7.
    [10] Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of humanCD34+cells that mediate long-term engraftment of NOD/SCID mice by HIVvectors. Science.1999;283:682-6.
    [11] Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission andtissue-specific expression of transgenes delivered by lentiviral vectors. Science.2002;295:868-72.
    [12] Pfeifer A, Ikawa M, Dayn Y, Verma IM. Transgenesis by lentiviral vectors: lack ofgene silencing in mammalian embryonic stem cells and preimplantation embryos.Proc Natl Acad Sci U S A.2002;99:2140-5.
    [13] Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration,and sustained long-term expression of the transgene in adult rat brains injected witha lentiviral vector. Proceedings of the National Academy of Sciences of the UnitedStates of America.1996;93:11382-8.
    [14] Matrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vectordevelopment and applications. Molecular therapy: the journal of the AmericanSociety of Gene Therapy.2010;18:477-90.
    [15] chida N, Washington KN, Hayakawa J, Hsieh MM, Bonifacino AC, Krouse AE, etal. Development of a human immunodeficiency virus type1-based lentiviral vectorthat allows efficient transduction of both human and rhesus blood cells. Journal ofvirology.2009;83:9854-62.
    [16] Poeschla EM, Wong-Staal F, Looney DJ. Efficient transduction of nondividinghuman cells by feline immunodeficiency virus lentiviral vectors. Nature medicine.1998;4:354-7.
    [17] Delenda C. Lentiviral vectors: optimization of packaging, transduction and geneexpression. The journal of gene medicine.2004;6Suppl1:S125-38.
    [18] Lever AM, Strappe PM, Zhao J. Lentiviral vectors. J Biomed Sci.2004;11:439-49.
    [19] Miyoshi H, Takahashi M, Gage FH, Verma IM. Stable and efficient gene transferinto the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A.1997;94:10319-23.
    [20] Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. A packaging cell line forlentivirus vectors. Journal of virology.1999;73:576-84.
    [21] Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. Development of aself-inactivating lentivirus vector. Journal of virology.1998;72:8150-7.
    [22] Chang LJ, Gay EE. The molecular genetics of lentiviral vectors--current and futureperspectives. Curr Gene Ther.2001;1:237-51.
    [23] Cronin J, Zhang XY, Reiser J. Altering the tropism of lentiviral vectors throughpseudotyping. Curr Gene Ther.2005;5:387-98.
    [24] Croyle MA, Callahan SM, Auricchio A, Schumer G, Linse KD, Wilson JM, et al.PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector preventsinactivation in serum. J Virol.2004;78:912-21.
    [25] Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al.Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. JVirol.1998;72:9873-80.
    [26] Kafri T, van Praag H, Gage FH, Verma IM. Lentiviral vectors: regulated geneexpression. Molecular therapy: the journal of the American Society of GeneTherapy.2000;1:516-21.
    [1] Li XQ, Meng QY, Wu HR. Effects of bone marrow-derived endothelial progenitorcell transplantation on vein microenvironment in a rat model of chronic thrombosis.Chinese medical journal.2007;120:2245-9.
    [2] Meng QY, Li XQ, Yu XB, Lei FR, Jiang K, Li CY. Transplantation ofVEGF165-gene-transfected endothelial progenitor cells in the treatment of chronicvenous thrombosis in rats. Chinese medical journal.2010;123:471-7.
    [3]姜坤李,孟庆友,杨吉成,于小滨,雷锋锐,李晓强.内皮祖细胞移植治疗慢性深静脉血栓形成的实验室研究.中华普通外科杂志.2010;25:61-4.
    [4] Meng Q, Li X, Yu X, Lei F, Jiang K, Li C. Transplantation of ex vivo expandedbone marrow-derived endothelial progenitor cells enhances chronic venousthrombus resolution and recanalization. Clinical and appliedthrombosis/hemostasis: official journal of the International Academy of Clinicaland Applied Thrombosis/Hemostasis.2011;17:E196-201.
    [5] Goldhaber SZ. Risk factors for venous thromboembolism. Journal of the AmericanCollege of Cardiology.2010;56:1-7.
    [6] Alexander P, Giangola G. Deep venous thrombosis and pulmonary embolism:diagnosis, prophylaxis, and treatment. Annals of vascular surgery.1999;13:318-27.
    [7] Kahn SR, Shrier I, Julian JA, Ducruet T, Arsenault L, Miron MJ, et al.Determinants and time course of the postthrombotic syndrome after acute deepvenous thrombosis. Annals of internal medicine.2008;149:698-707.
    [8] Kahn SR. The post thrombotic syndrome. Thrombosis research.2011;127Suppl3:S89-92.
    [9] Wakefield TW, Linn MJ, Henke PK, Kadell AM, Wilke CA, Wrobleski SK, et al.Neovascularization during venous thrombosis organization: a preliminary study.Journal of vascular surgery.1999;30:885-92.
    [10] McGuinness CL, Humphries J, Waltham M, Burnand KG, Collins M, Smith A.Recruitment of labelled monocytes by experimental venous thrombi. Thrombosisand haemostasis.2001;85:1018-24.
    [11] Varma MR, Varga AJ, Knipp BS, Sukheepod P, Upchurch GR, Kunkel SL, et al.Neutropenia impairs venous thrombosis resolution in the rat. Journal of vascularsurgery.2003;38:1090-8.
    [12] Sevitt S. The mechanisms of canalisation in deep vein thrombosis. The Journal ofpathology.1973;110:153-65.
    [13] Meissner MH, Zierler BK, Bergelin RO, Chandler WL, Strandness DE, Jr.Coagulation, fibrinolysis, and recanalization after acute deep venous thrombosis.Journal of vascular surgery.2002;35:278-85.
    [14] Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG.Monocyte chemotactic protein-1(MCP-1) accelerates the organization andresolution of venous thrombi. Journal of vascular surgery.1999;30:894-9.
    [15] Waltham M, Burnand KG, Collins M, Smith A. Vascular endothelial growth factorand basic fibroblast growth factor are found in resolving venous thrombi. Journal ofvascular surgery.2000;32:988-96.
    [16] Henke PK, Varma MR, Moaveni DK, Dewyer NA, Moore AJ, Lynch EM, et al.Fibrotic injury after experimental deep vein thrombosis is determined by themechanism of thrombogenesis. Thrombosis and haemostasis.2007;98:1045-55.
    [17] Comerota AJ. Quality-of-life improvement using thrombolytic therapy foriliofemoral deep venous thrombosis. Reviews in cardiovascular medicine.2002;3Suppl2:S61-7.
    [18] Folkman J. What is the role of endothelial cells in angiogenesis? Lab Invest.1984;51:601-4.
    [19] Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolationof putative progenitor endothelial cells for angiogenesis. Science.1997;275:964-7.
    [20]Massberg S, Konrad I, Schurzinger K, Lorenz M, Schneider S, Zohlnhoefer D, et al.Platelets secrete stromal cell-derived factor1alpha and recruit bone marrow-derivedprogenitor cells to arterial thrombi in vivo. The Journal of experimental medicine.2006;203:1221-33.
    [21] Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R, El Makhfi N, et al. Role ofbeta2-integrins for homing and neovascularization capacity of endothelialprogenitor cells. The Journal of experimental medicine.2005;201:63-72.
    [22] Langer H, May AE, Daub K, Heinzmann U, Lang P, Schumm M, et al. Adherentplatelets recruit and induce differentiation of murine embryonic endothelialprogenitor cells to mature endothelial cells in vitro. Circulation research.2006;98:e2-10.
    [23] Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, et al.Importance of CXC chemokine receptor2in the homing of human peripheral bloodendothelial progenitor cells to sites of arterial injury. Circulation research.2007;100:590-7.
    [24] Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrow-derived endothelialcell precursors. American journal of physiology Heart and circulatory physiology.2007;292:H1-18.
    [25] Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. Mobilizationof endothelial progenitor cells in patients with acute myocardial infarction.Circulation.2001;103:2776-9.
    [26] Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, et al.Vascular endothelial growth factor(165) gene transfer augments circulatingendothelial progenitor cells in human subjects. Circ Res.2000;86:1198-202.
    [27] Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, et al.Therapeutic angiogenesis by autologous bone marrow cell implantation forrefractory chronic peripheral arterial disease using assessment ofneovascularization by99mTc-tetrofosmin (TF) perfusion scintigraphy. CellTransplant.2004;13:429-37.
    [28] Hasebe H, Osada M, Kodama Y, Fujioka D, Sano K, Nakamura T, et al.
    [Therapeutic angiogenesis by autologous transplantation of bone-marrow cells in apatient with progressive limb ischemia due to arteriosclerosis obliterans: a casereport]. J Cardiol.2004;43:179-83.
    [29] Jung C, Sorensson P, Saleh N, Arheden H, Ryden L, Pernow J. Effects ofmyocardial postconditioning on the recruitment of endothelial progenitor cells.Journal of interventional cardiology.2012;25:103-10.
    [30] Smadja DM, Duong-van-Huyen JP, Dal Cortivo L, Blanchard A, Bruneval P,Emmerich J, et al. Early endothelial progenitor cells in bone marrow are abiomarker of cell therapy success in patients with critical limb ischemia.Cytotherapy.2012;14:232-9.
    [31] Klomp M, Beijk MA, Varma C, Koolen JJ, Teiger E, Richardt G, et al.1-yearoutcome of TRIAS HR (TRI-stent adjudication study-high risk of restenosis) amulticenter, randomized trial comparing genous endothelial progenitor cellcapturing stents with drug-eluting stents. JACC Cardiovascular interventions.2011;4:896-904.
    [32] Zeng W, Yuan W, Li L, Mi J, Xu S, Wen C, et al. The promotion of endothelialprogenitor cells recruitment by nerve growth factors in tissue-engineered bloodvessels. Biomaterials.2010;31:1636-45.
    [33] Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteriesengineered in vitro. Circulation research.2006;98:25-35.
    [34] Mizuno T, Sugimoto M, Matsui H, Hamada M, Shida Y, Yoshioka A. Visualevaluation of blood coagulation during mural thrombogenesis under high shearblood flow. Thrombosis research.2008;121:855-64.
    [35] Smadja DM, Basire A, Amelot A, Conte A, Bieche I, Le Bonniec BF, et al.Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties onendothelial progenitor cells. Journal of cellular and molecular medicine.2008;12:975-86.
    [36] Feng W, Madajka M, Kerr BA, Mahabeleshwar GH, Whiteheart SW, Byzova TV.A novel role for platelet secretion in angiogenesis: mediating bone marrow-derivedcell mobilization and homing. Blood.2011;117:3893-902.
    [37] Abou-Saleh H, Yacoub D, Theoret JF, Gillis MA, Neagoe PE, Labarthe B, et al.Endothelial progenitor cells bind and inhibit platelet function and thrombusformation. Circulation.2009;120:2230-9.
    [38] Moldovan NI, Asahara T. Role of blood mononuclear cells in recanalization andvascularization of thrombi: past, present, and future. Trends Cardiovasc Med.2003;13:265-9.
    [39] Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells arerecruited into resolving venous thrombi. Circulation.2005;111:2645-53.
    [40] Nishimura H, Asahara T. Bone marrow-derived endothelial progenitor cells forneovascular formation. Exs.2005:147-54.
    [41] Nuzzolo ER, Iachininoto MG, Teofili L. Endothelial progenitor cells andthrombosis. Thrombosis research.2012;129:309-13.
    [42] Kwaan HC, Samama MM. The significance of endothelial heterogeneity inthrombosis and hemostasis. Seminars in thrombosis and hemostasis.2010;36:286-300.
    [43] Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, et al.Bone marrow-derived cells do not incorporate into the adult growing vasculature.Circ Res.2004;94:230-8. Epub2003Dec4.
    [44] Myers DD, Hawley AE, Farris DM, Wrobleski SK, Thanaporn P, Schaub RG, et al.P-selectin and leukocyte microparticles are associated with venous thrombogenesis.Journal of vascular surgery.2003;38:1075-89.
    [45] Wojcik BM, Wrobleski SK, Hawley AE, Wakefield TW, Myers DD, Jr., Diaz JA.Interleukin-6: a potential target for post-thrombotic syndrome. Annals of vascularsurgery.2011;25:229-39.
    [46] Diaz JA, Ballard-Lipka NE, Farris DM, Hawley AE, Wrobleski SK, Myers DD, etal. Impaired fibrinolytic system in ApoE gene-deleted mice with hyperlipidemiaaugments deep vein thrombosis. Journal of vascular surgery.2012;55:815-22.
    [47] Alvarado CM, Diaz JA, Hawley AE, Wrobleski SK, Sigler RE, Myers DD, Jr. Malemice have increased thrombotic potential: sex differences in a mouse model ofvenous thrombosis. Thromb Res.2011;127:478-86. doi:10.1016/j.thromres.2011.01.004. Epub Feb5.
    [48] McDonald AP, Meier TR, Hawley AE, Thibert JN, Farris DM, Wrobleski SK, et al.Aging is associated with impaired thrombus resolution in a mouse model of stasisinduced thrombosis. Thromb Res.2010;125:72-8. doi:10.1016/j.thromres.2009.06.005. Epub Jul18.
    [49] Diaz JA, Obi AT, Myers DD, Jr., Wrobleski SK, Henke PK, Mackman N, et al.Critical review of mouse models of venous thrombosis. Arteriosclerosis,thrombosis, and vascular biology.2012;32:556-62.
    [50] Jeske WP, Iqbal O, Fareed J, Kaiser B. A survey of venous thrombosis models.Methods in molecular medicine.2004;93:221-37.
    [51] Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling andatherogenesis: the good, the bad, and the ugly. Circulation research.2002;90:251-62.
    [52] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors ofmetalloproteinases: structure, function, and biochemistry. Circulation research.2003;92:827-39.
    [53] Deatrick KB, Eliason JL, Lynch EM, Moore AJ, Dewyer NA, Varma MR, et al.Vein wall remodeling after deep vein thrombosis involves matrixmetalloproteinases and late fibrosis in a mouse model. Journal of vascular surgery.2005;42:140-8.
    [54] Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis andresolution. Arteriosclerosis, thrombosis, and vascular biology.2008;28:387-91.
    [55]Dewyer NA, Sood V, Lynch EM, Luke CE, Upchurch GR, Jr., Wakefield TW, et al.Plasmin inhibition increases MMP-9activity and decreases vein wall stiffnessduring venous thrombosis resolution. The Journal of surgical research.2007;142:357-63.
    [56] Sood V, Luke CE, Deatrick KB, Baldwin J, Miller EM, Elfline M, et al. Urokinaseplasminogen activator independent early experimental thrombus resolution: MMP2as an alternative mechanism. Thrombosis and haemostasis.2010;104:1174-83.
    [57] Nosaka M, Ishida Y, Kimura A, Kondo T. Immunohistochemical detection ofMMP-2and MMP-9in a stasis-induced deep vein thrombosis model and itsapplication to thrombus age estimation. International journal of legal medicine.2010;124:439-44.
    [58] Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, et al. Synergisticneovascularization by mixed transplantation of early endothelial progenitor cellsand late outgrowth endothelial cells: the role of angiogenic cytokines and matrixmetalloproteinases. Circulation.2005;112:1618-27.
    [59] Renault MA, Losordo DW. The matrix revolutions: matrix metalloproteinase,vasculogenesis, and ischemic tissue repair. Circulation research.2007;100:749-50.
    [1] Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolationof putative progenitor endothelial cells for angiogenesis. Science.1997;275:964-7.
    [2] Ying SY, Lin SL. Intronic microRNAs. Biochemical and biophysical researchcommunications.2005;326:515-20.
    [3] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequentcoexpression with neighboring miRNAs and host genes. RNA.2005;11:241-7.
    [4] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes aretranscribed by RNA polymerase II. The EMBO journal.2004;23:4051-60.
    [5] Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clusteringand conservation patterns of human microRNAs. Nucleic acids research.2005;33:2697-706.
    [6] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004;116:281-97.
    [7] Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, alink between genetic and biochemical analyses of RNAi. Science.2001;293:1146-50.
    [8] Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. Acellular function for the RNA-interference enzyme Dicer in the maturation of thelet-7small temporal RNA. Science.2001;293:834-8.
    [9] Schulman BR, Esquela-Kerscher A, Slack FJ. Reciprocal expression of lin-41andthe microRNAs let-7and mir-125during mouse embryogenesis. Developmentaldynamics: an official publication of the American Association of Anatomists.2005;234:1046-54.
    [10] Obernosterer G, Leuschner PJ, Alenius M, Martinez J. Post-transcriptionalregulation of microRNA expression. RNA.2006;12:1161-7.
    [11] Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, et al. Aminicircuitry comprised of microRNA-223and transcription factors NFI-A andC/EBPalpha regulates human granulopoiesis. Cell.2005;123:819-31.
    [12] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specificmicroRNA that targets Hand2during cardiogenesis. Nature.2005;436:214-20.
    [13] Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. Therole of microRNA-1and microRNA-133in skeletal muscle proliferation anddifferentiation. Nature genetics.2006;38:228-33.
    [14] O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulatedmicroRNAs modulate E2F1expression. Nature.2005;435:839-43.
    [15] Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, HammondSM. Extensive post-transcriptional regulation of microRNAs and its implicationsfor cancer. Genes&development.2006;20:2202-7.
    [16] Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer isessential for mouse development. Nat Genet.2003;35:215-7. Epub2003Oct5.
    [17] O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, etal. Essential role for Dicer during skeletal muscle development. Developmentalbiology.2007;311:359-68.
    [18] Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al.Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lackingmiRNA-1-2. Cell.2007;129:303-17.
    [19] Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, et al. Targeteddeletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure.Proceedings of the National Academy of Sciences of the United States of America.2008;105:2111-6.
    [20] Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required forembryonic angiogenesis during mouse development. J Biol Chem.2005;280:9330-5. Epub2004Dec21.
    [21] Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, etal. MicroRNAs regulate brain morphogenesis in zebrafish. Science.2005;308:833-8.
    [22] Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependentmicroRNAs regulate gene expression and functions in human endothelial cells.Circulation research.2007;100:1164-73.
    [23] Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha forendothelial microRNA expression and angiogenesis. Circulation research.2007;101:59-68.
    [24] Shilo S, Roy S, Khanna S, Sen CK. Evidence for the involvement of miRNA inredox regulated angiogenic response of human microvascular endothelial cells.Arteriosclerosis, thrombosis, and vascular biology.2008;28:471-7.
    [25] Lassegue B, Griendling KK. Reactive oxygen species in hypertension; An update.American journal of hypertension.2004;17:852-60.
    [26] Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms ofactivation. Cardiovascular research.2005;65:16-27.
    [27] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Droshainitiates microRNA processing. Nature.2003;425:415-9.
    [28] Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoieticlineage differentiation. Science.2004;303:83-6.
    [29] Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer.Nature reviews Cancer.2006;6:259-69.
    [30] Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al.MicroRNAs modulate the angiogenic properties of HUVECs. Blood.2006;108:3068-71.
    [31] Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, et al. MicroRNAregulation of cell lineages in mouse and human embryonic stem cells. Cell stemcell.2008;2:219-29.
    [32] Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a)that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood.2008;111:1217-26. Epub2007Oct23.
    [33] Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G,et al. MicroRNA-210modulates endothelial cell response to hypoxia and inhibitsthe receptor tyrosine kinase ligand Ephrin-A3. The Journal of biological chemistry.2008;283:15878-83.
    [34]Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al.A microRNA signature of hypoxia. Molecular and cellular biology.2007;27:1859-67.
    [35] Mendell JT. miRiad roles for the miR-17-92cluster in development and disease.Cell.2008;133:217-22.
    [36] Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al.Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster.Nature genetics.2006;38:1060-5.
    [37] Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, et al.Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis.Proceedings of the National Academy of Sciences of the United States of America.2008;105:14082-7.
    [38] Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al.Targeted deletion reveals essential and overlapping functions of the miR-17through92family of miRNA clusters. Cell.2008;132:875-86.
    [39] Bonauer A, Dimmeler S. The microRNA-17-92cluster: still a miRacle? Cell Cycle.2009;8:3866-73.
    [40] Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126regulates endothelial expression of vascular cell adhesion molecule1. Proceedingsof the National Academy of Sciences of the United States of America.2008;105:1516-21.
    [41] Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. Theendothelial-specific microRNA miR-126governs vascular integrity andangiogenesis. Developmental cell.2008;15:261-71.
    [42] Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, et al. Theendothelial-cell-derived secreted factor Egfl7regulates vascular tube formation.Nature.2004;428:754-8.
    [43] Schmidt M, Paes K, De Maziere A, Smyczek T, Yang S, Gray A, et al. EGFL7regulates the collective migration of endothelial cells by restricting their spatialdistribution. Development.2007;134:2913-23.
    [44] Lelievre E, Lionneton F, Soncin F, Vandenbunder B. The Ets family containstranscriptional activators and repressors involved in angiogenesis. The internationaljournal of biochemistry&cell biology.2001;33:391-407.
    [45] Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, et al.Attribution of vascular phenotypes of the murine Egfl7locus to the microRNAmiR-126. Development.2008;135:3989-93.
    [46] van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, vanOeveren-Rietdijk AM, et al. Antagomir-mediated silencing of endothelial cellspecific microRNA-126impairs ischemia-induced angiogenesis. Journal of cellularand molecular medicine.2009;13:1577-85.
    [47] Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126regulates angiogenic signaling and vascular integrity. Developmental cell.2008;15:272-84.
    [48] Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA, et al.MicroRNA-126inhibits invasion in non-small cell lung carcinoma cell lines.Biochemical and biophysical research communications.2008;373:607-12.
    [49] Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al.Endogenous human microRNAs that suppress breast cancer metastasis. Nature.2008;451:147-52. doi:10.1038/nature06487.
    [50] Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126restoration down-regulateVEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. LungCancer.2009;66:169-75.
    [51] Takata H, Kato M, Denda K, Kitamura N. A hrs binding protein having a Srchomology3domain is involved in intracellular degradation of growth factors andtheir receptors. Genes Cells.2000;5:57-69.
    [52] Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, et al. Roleof microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cellgrowth. Proceedings of the National Academy of Sciences of the United States ofAmerica.2010;107:3234-9.
    [53] Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, et al. miR-296regulates growth factor receptor overexpression in angiogenic endothelial cells.Cancer cell.2008;14:382-93.
    [54] Ewan LC, Jopling HM, Jia H, Mittar S, Bagherzadeh A, Howell GJ, et al. Intrinsictyrosine kinase activity is required for vascular endothelial growth factor receptor2ubiquitination, sorting and degradation in endothelial cells. Traffic.2006;7:1270-82.
    [55] Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378promotes cell survival,tumor growth, and angiogenesis by targeting SuFu and Fus-1expression.Proceedings of the National Academy of Sciences of the United States of America.2007;104:20350-5.
    [56] Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al.MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissuesin mice. Science.2009;324:1710-3.
    [57] Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21contributes to myocardial disease by stimulating MAP kinase signalling infibroblasts. Nature.2008;456:980-4.
    [58] Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, et al. MicroRNA-145, a novelsmooth muscle cell phenotypic marker and modulator, controls vascular neointimallesion formation. Circulation research.2009;105:158-66.
    [59] Huang W, Yu Q, Wang Q, Cao F. Roles of miRNA in cardiovascular developmentand dysfunction. Current medicinal chemistry.2013;20:3613-22.
    [60] Liu X, Cheng Y, Yang J, Qin S, Chen X, Tang X, et al. Flank sequences ofmiR-145/143and their aberrant expression in vascular disease: mechanism andtherapeutic application. J Am Heart Assoc.2013;2:e000407. doi:10.1161/JAHA.113..
    [61] van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics forheart disease: the sense in antisense. Circulation research.2008;103:919-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700