用户名: 密码: 验证码:
微砂絮凝新工艺优化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在给水处理工程中经常会遇到一些特殊水质的水净化工程,这些水源水如果用常规处理工艺处理,经常达不到后续的水处理设备的进水水质要求,从而影响水处理设备的正常工作。在这些难处理的水源中,低温低浊水是较难处理的水质之一,一般认为水温在4oC左右,浊度为20NTU上下的水都可以称为低温低浊水。这种水质在给水处理中是比较困难的。水的粘滞性大,热运动缓慢,相互碰撞机率少,胶体稳定性强,水中杂质浓度小,不利于颗粒碰撞沉降。这对后续工艺中沉淀池、滤池造成了不利的影响,使出水水质变差。
     絮凝是常规水处理工艺的关键环节,它直接影响着水处理工程的最终处理效果。随着工业发展和环境、水体污染的日趋严重,实现高效絮凝一直是现代水处理技术中极具价值的研究方向。在絮凝反应中,脱稳微粒间的凝聚结合成大颗粒絮凝体是一种结晶沉淀过程。絮凝核心的形成是絮凝反应的关键控制步骤,絮凝核心可由溶液中粒子自发形成(均相成核)或外界投加微粒晶核(异相成核)[2],但一般的水处理絮凝过程却缺乏这种核心。
     本研究采用一种高效絮凝的新方法,利用异相成核来强化絮凝过程。其特点是:在水处理过程中投加一定粒度的微细砂粒,作为絮凝反应中的晶核,诱导絮凝体的形成,进而使絮凝体颗粒迅速成长,同时大大增加了絮凝体的密度,其结果必然是絮凝体颗粒密实、体积大且沉降速度快。与传统工艺相比,本方法加快了絮凝体沉降速度、缩短絮凝反应时间,被认为是一种强化的物理化学水处理过程。
     微砂絮凝的实质是微砂颗粒通过彼此间的引力相互连接在一起,形成外形多样、尺寸增长、密度变大的絮凝体。探讨微砂絮凝的机理,主要是了解影响絮凝的若干环境因子作用的深层机制,为深入研究微砂在絮凝过程中所起的作用提供理论依据,也为该工艺在实际生产中的应用提供设计参数。
     试验研究表明,加砂絮凝工艺各因素的影响重要性顺序为:微砂粒径>混凝剂投加量>助凝剂投加量>微砂投加量。与常规絮凝工艺相比较,在同样的投药量条件下,加砂絮凝工艺不仅絮凝效果上优于常规絮凝方法,而且混凝效率大大提高,其混凝絮凝的时间与常规方法相比缩短了近70%。经微砂絮凝工艺处理的原水不仅出水浊度低于常规絮凝处理工艺,而且大大地缩短了混凝和沉淀过程的时间,提高了絮凝池及沉淀池的表面负荷,增加了两者的生产能力。
     以分形理论为依据,来反应絮凝体的成长情况,判断处理效果好坏。试验中在不同投药量以及不同原水浊度下测量絮凝体的分形维数,得到了不同情况下的絮凝体的分形维数变化,得到和常规检测方法相类似的变化规律。
Sometimes, we may meet the water with the special quality in the water treatment industry, if we deal it with the routine methods; usually it can’t reach the standards for the following water treatment plants, and will influence the normal processes of the water treatment plants. One of the raw water that hard to deal is the low temperature, low turbidity water. Normally, we regard the low temperature, low turbidity water as the temperature is 4℃and the turbidity is around 20NTU. The water with this kind quality is more difficult than normal. The high sticky, low thermodynamic activity, low colliding rate, high stability of the colloid and low concentration of the impurity is no good for the granule sedimentation. All of these are harmful to the sedimentation pool and the filter bed, also influence the quality of the water.
     Flocculation is an important process in the water treatment process, it directly influence the effect of the water treatment project. Along with the pollution in environment, water is worsening and the development of the industry; to make the high rate flocculation is a valuable direction in the modern water-processing technology. The forming of the flocculation nucleus as the key controlling process, can be formed spontaneous by the granules in solution (homogeneous nucleation) or the crystallite that is added outside (heterogeneous nucleation),which is lack in the flocculation process in the modern Water-processing.
     This research is aimed on a new method to make the high rate flocculation. The property is: add microsand in the process, in order to induce the form of the flocculation and make the flocculation grow up quickly and increase the density of the flocculation.The certain result is the flocculation has a high density and big volume and a fast sedimentation rate.Comparing with the normal method, this method quickens the sedimentation rate of flocculation and shorten the reaction time of flocculation. So the new method can be regarded as the intensity physicochemical water treatment process.
     The fact of the microsand flocculation is formed by the granule of microsand which is connected by the gravitation between each other, and form flocculation with the various shape and obviously enlarged size. To search the mechanism is to know how environmental factors take part in the process, and then we can provide the academic evidence for the microsand in flocculation; also we can provide some parameters that can be used in the practice.
     According to the research, the factors that influence the significance of the silicon flocculation are: minute silicon diameter > the adding amount of concrete coagulant > the adding amount of polymer > the adding amount of the microsand. Comparing with the routine flocculation, the effect of the microsand flocculation is better than the routine method in the same medicine dose, and the coagulation rate is highly increased which rise nearly 70% than the routine’s. The raw water that using the microsand flocculation method has the low turbidity than the routine’s; the less time in the process of concrete and sedimentation; raise the load of the flocculation pool and sedimentation pool, increase the manufacture ability.
     We can use the shaping fractal theory as the gist to reflect the developing state of the flocculation, and then estimate the process. During the research, we can get different data in various stations, for example, under the different coagulant and polymer dose, or under the different turbidity. So we can summarize the data to get the law of the new method as the routine one.
引文
[1]龚云峰,吴春华,丁桓如.低温低浊水处理技术.华东电力.2004,32(11):14~16
    [2]路光杰,黄柱崇,段杰辉.新型高效强化絮凝法的原理与应用.清华大学学报. 2000,40(S1):114~116.
    [3]李镜明,姚志强.低浊度水絮凝新工艺的初步研究.给水排水. 1989(6) 2~6.
    [4]张素霞,徐阳,刘永康. ACTIFLO微砂加重絮凝高效沉淀技术.中国给水排水. 2006,22(4):26~31.
    [5] Victoria Plum,Claus P Dahl The ACTIFLO Method[J]. Wat Sci Tech, 1998, 37 (1) : 269 - 275.
    [6]郑怀礼等.生物絮凝剂与絮凝技术.北京:化学工业出版社,2004 1~50
    [7]范瑾初.混凝技术.北京:中国环境科学出版社,1992.
    [8] M.N.Baker. The Quest for Pure Water. N.Y.American Water Works Association, 1948.
    [9] Manual of British Water Engineering Practice. Cambridge, Heffer and Sons Ltd, 1961.
    [10] A.S.Hyatt.IIat.CIIIA:293740(1884).
    [11] K.E.Oehier.Vom Wasser 1963, Bd.30.Weinheim Bergstr., 1964, S.127.
    [12] J.E.Singley, A.P.Black, J.Amer.Qater Works Assoc., 59, 1549(1967) .
    [13] P.Y.Austen, F.A.Wilber.Annual Report of the State Geologist of New Jersey, 1884,141.
    [14] G.W.Fuller. Report of the Investigations into the Purification of the Ohio River Water at Louisville.N.Y.,D.Van Nostrand, 1898.
    [15] E·巴宾科夫.论水的混凝.郭连起译.北京:中国建筑工业出版社.1982.
    [16]汪大翊,雷乐成.水处理新技术及工程设计.北京:化学工业出版社2001.
    [17]郑怀礼等.生物絮凝剂与絮凝技术.北京:化学工业出版社,2004.62~94
    [18]夏忠欢.南方典型微污染原水强化混凝研究:[硕士学位论文] .北京科技大学,2005
    [1]龚云峰,吴春华,丁桓如.低温低浊水处理技术.华东电力.2004,32(11):14~16
    [2]路光杰,黄柱崇,段杰辉.新型高效强化絮凝法的原理与应用.清华大学学报. 2000,40(S1):114~116.
    [3]李镜明,姚志强.低浊度水絮凝新工艺的初步研究.给水排水. 1989(6) 2~6.
    [4]张素霞,徐阳,刘永康. ACTIFLO微砂加重絮凝高效沉淀技术.中国给水排水. 2006,22(4):26~31.
    [5] Victoria Plum,Claus P Dahl The ACTIFLO Method[J]. Wat Sci Tech, 1998, 37 (1) : 269 - 275.
    [6]郑怀礼等.生物絮凝剂与絮凝技术.北京:化学工业出版社,2004 1~50
    [7]范瑾初.混凝技术.北京:中国环境科学出版社,1992.
    [8] M.N.Baker. The Quest for Pure Water. N.Y.American Water Works Association, 1948.
    [9] Manual of British Water Engineering Practice. Cambridge, Heffer and Sons Ltd, 1961.
    [10] A.S.Hyatt.IIat.CIIIA:293740(1884).
    [11] K.E.Oehier.Vom Wasser 1963, Bd.30.Weinheim Bergstr., 1964, S.127.
    [12] J.E.Singley, A.P.Black, J.Amer.Qater Works Assoc., 59, 1549(1967) .
    [13] P.Y.Austen, F.A.Wilber.Annual Report of the State Geologist of New Jersey, 1884,141.
    [14] G.W.Fuller. Report of the Investigations into the Purification of the Ohio River Water at Louisville.N.Y.,D.Van Nostrand, 1898.
    [15] E·巴宾科夫.论水的混凝.郭连起译.北京:中国建筑工业出版社.1982.
    [16]汪大翊,雷乐成.水处理新技术及工程设计.北京:化学工业出版社2001.
    [17]郑怀礼等.生物絮凝剂与絮凝技术.北京:化学工业出版社,2004.62~94
    [18]夏忠欢.南方典型微污染原水强化混凝研究:[硕士学位论文] .北京科技大学,2005
    [34] J.G.Jacangelo et al. Selected processes for removing NOM:an overview. JAWWA,1995, 97(1):64~77.
    [35] J.K.Edzwald et al. Enhanced coagulation:US requirements and a broader view. Wat.Sci.Tech.,1999, 40(9):63~70.
    [36]姜小东.水处理工艺中强化混凝技术的研究与应用.重庆工业高等专科学校学报, 20(1):39~42.
    [37] S.J.Randtke et al. Organic Contaminants Remoral by Coagulation and Related Processes Combination. JAWWA, 1988, 80(5):40.
    [38]黄廷林,熊向陨.微污染源水中DBPs先质的去除方法.中国给水排水,1999,15(11):27~28.
    [39]李尔,范跃华.采用强化混凝法提高污水处理效能.华中科技大学学报(城市科学版). 2002,19(3):92~94.
    [40]王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002.
    [41]许保玖.给水处理理论.北京:中国建筑工业出版社,2000.
    [42]王绍文,姜宝玺等.混凝动力学的涡旋理论探讨(上).中国给水排水,1991,7(1):4~7.
    [43]王绍文.惯性效应在絮凝中的动力学作用.中国给水排水,1998,14(2):13~16.
    [44]王绍文.亚微观传质在水处理反应工艺中的应用.中国给水排水,2000,16(1):30~32.
    [45]王东升,汤鸿宵.分形理论在混凝研究中的应用与展望.工业水处理,2001,21(7):16~20
    [46]汤鸿宵.羟基聚合氯化铝的絮凝形态学.环境科学学报,1998,19(1):1~10
    [47] M.Kostoglou,A.G.Konstandopoulos.Evolution of Aggregate Size and Fractal Dimension during Brownian Coagulation.Jouranl of Aerosol Science,2001,32:1339~1420
    [48] A.S.Kim,K.D.Stolzenbach.The Permeability of Synthetic Fractal Aggregates with Realistic Three-dimensional Stucture.Joural of Colloid and Interface Science,2002,253:315~328
    [49] K.C.Rajat,F.A.Joseph and F.V.B.John.Characterization of Alum Floc by Image Analysis.Environment Science Technology,2000,34(18):3969~3976
    [50]潭万春,王云波,李冬梅等.计算机模拟技术在絮体成长研究中的应用.水处理技术,2005,31(1):16~19
    [51]杨铁笙,熊祥忠,詹秀玲等.粘性细颗粒泥沙絮凝研究概述.水利水运工程学报,2003,30(2):65~78
    [52]常颖,张金松.絮凝体分形维数投药控制研究.环境污染治理技术与设备,2006,7(4):46~49
    [53]李冬梅,金同轨,梅胜等.含沙高浊水架桥絮体质量分形.中国给水排水,2004,20(11):52~54
    [54] Bushell G.C. ,Yan Y.D,Woodfield D. et all.On of aggregates.Advance In Colloid and Interface Science,2002,95:1~50
    [55]李孟,陆谢娟,黄功洛.絮凝分形技术处理有机污染物原水的研究.武汉理工大学学报,2004,26(2):21~23
    [56]金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件.环境化学学报,2001,21(6):23~28
    [57] G.machowski.Aggregate structure and size distribution at steady state shear aggregation.Colloid and Surface,2002,201:41~46
    [58] Logan B.E.,Kilps J.R..Fractal dimensions of aggregates formed in different mechanical environments.Wat.Res,1995,29(2):443~453
    [59] Jung S.J.,Amal R.,Raper J.A..Monitoring effects of shearing on floc structure using small-angle light scattering.Powder Technol,1996,88(1):51~54
    [60] Gregory J.,Nelson D.W..Montitoring of aggregates in flowing suspensions.Colloids and Surfaces,1986,18:175~186
    [61]蒋新.MATLAB平台上的DLCA过程模拟.计算机仿真,2003,20(6):68~71
    [62]周有丹,梁虹.团簇-团簇聚集模型及模拟实现.计算机与自动化,2005,24(2):81~84
    [63]程锦荣,丁锐.三维分形聚集生长的计算机模拟.安徽大学学报,2005,29(4):33~36
    [64]杨艳玲.透光脉动检测技术在低浊度水中的应用研究[硕士学位论文].哈尔滨建筑大学,1997.
    [65]朱海月.投药于与混合技术.北京:中国环境科学出版社,1992.
    [66] Tambo N, Watanabe Y. Physical aspect of flocculation process I. The floc density function and aluminum floc. Water Research,1979,13:409~419.
    [67]孙哲.混凝反应与沉淀动力学的实验研究[硕士学位论文].哈尔滨建筑大学,1990.
    [68]高廷耀,顾国维.水污染控制工程.第二版.北京:高等教育出版社,1999
    [69]汪大,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001
    [70]余明书.应用概率统计.武汉:华中理工大学出版社,1988
    [71] Hong S N , Hui K C. ACTIFLO process for drinking water and storm water treatment [A ]. WEAUTECH 96 [C ]. Utah: St George, 1996. 06,547 555.
    [72]罗启达,周克明,陈伟,孙家熊. Actiflo—一种新型高效水处理澄清工艺.净水技术. Vol.23 NO.1 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700