用户名: 密码: 验证码:
混凝—微滤工艺的饮用水除砷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年国家新颁布的生活饮用水卫生标准(GB 5749-2006)首次把砷的浓度限值降低到了10μg/L,但目前与此标准匹配的除砷方法少、费用也较高,亟需研究新的除砷方法。
     膜法饮用水除砷技术已经开始在国际上应用,而我国目前关于膜法除砷的研究报道比较少,针对中国高砷饮水区主要分布在经济欠发达的农村地区这一现状,本课题进行了混凝-微滤工艺的饮用水除砷(Ⅴ)研究。
     混凝-微滤除砷试验主要分为烧杯试验、小试试验和含砷污泥处置试验三部分。烧杯试验采用人工配置的含砷原水,通过FeCl3混凝和微孔膜过滤器抽滤试验,考察混凝-微滤工艺的除砷效果和原水水质等因素对除砷效果的影响;小试试验通过膜混凝反应器(MCR)的实际运行考察混凝-微滤工艺的除砷效果,研究膜污染特性,并进一步验证原水水质等因素对除砷效果的影响;污泥的处置试验主要通过含砷污泥的沉降、干化等试验研究了污泥的特性。
     研究结果表明,MCR的除砷效果很好,在FeCl3投量为4 mg/L(以Fe3+计)时,可将As(Ⅴ)的浓度从100μg/L左右降至小于10μg/L,出水平均值为4.40μg/L,能够满足标准的要求,砷的去除率为92.8%~98.2%;同时,MCR出水其他各项指标也符合标准要求,对原水的UV254等水质指标有一定的改善作用。混凝-微滤除砷的影响试验表明:原水中的不同组分对混凝-微滤除砷效果的影响各不相同:F-、Cl-、NO3-和SO42-对除砷的影响并不显著,在试验条件下几乎对除砷效果没有影响;原水中HCO3-、HPO42-浓度的增加会减弱混凝-微滤工艺的除砷效果;原水中K+、Ca~(2+)和Mg~(2+)的浓度变化对混凝-微滤除砷的效果没有明显的影响;原水中Si的含量越高,砷的去除率越低;pH值对混凝-微滤除砷效果的影响显著,同等试验条件下降低原水的pH值可以明显提高砷的去除率。膜污染研究表明,膜污染阻力的增加是膜比通量下降的主要原因,通过物理清洗和化学清洗可使膜比通量恢复到新膜的87.8%;膜污染的主要成分为有机污染,占总量的67.2%;浓差极化可以借助曝气搅动得到部分消除。
     含砷污泥试验表明:混凝-微滤除砷工艺的浓缩倍率可达3668;污泥的自然沉降性能良好;自然干化后的污泥含水率可降低到95.4%;含砷干污泥的主要结晶成分为CaCO3和FeO(OH)。
In the year of 2006,the Chinese government promulgated the new Standards for Drinking Water Quality (GB 5749-2006) and set the maximum contaminant level (MCL) for arsenic at 10μg/L for the first time. However, the available methods for arsenic removal in drinking water are very few, and most of them are less cost-effective. There is therefore a great need to develop new methods for arsenic removal from drinking water.
     In recent years, membrane separation technology has been used for arsenic removal from drinking water in many countries. As to China, there are few research reports about this application. Considering that endemic arsenic toxicosis occurs mainly in the rural areas, the feasibility of membrane coagulation reactor (MCR) was investigated for removing arsenate from drinking water.
     The whole MCR test could be divided into three parts: the jar test, the bench test and the disposal test of arsenical sludge. The jar test has studied the arsenic removal efficiency by coagulation and microfiltration from synthetic tap water. In addition, the factors affecting arsenic removal were also explored. The bench test was conducted through operation of a MCR, in which the removal efficiency of arsenic and the membrane fouling characteristic were investigated. Furthermore, the influence of various factors in the jar test was verified in the bench test. In the disposal test of arsenical sludge, the characteristics of arsenical sludge were studied through a series of experiments.
     The results showed that arsenic removal efficiency ranged from 92.8% to 98.2%. Arsenic removal to low levels (<10μg/L) was achieved using a coagulant dose of 4 mg/L (calculated as Fe3+) when the concentration of arsenic in raw water was about 100μg/L, and the average concentration of arsenic in treated water was 4.40μg/L. The quality of treated water satisfies new Standards for Drinking Water Quality. Also, it was observed that MCR improved the quality of treated water by reducing the concentration of organics measured by TOC and UV254.
     Tests about the effects of different factors on the MCR showed that different co-occurring substances in raw water could exert different influence on the removal efficiency of arsenic. F-, Cl-, NO3- and SO42- had a negligible effect on the removal of arsenic in the test conditions. The increasing of HCO3- and HPO42- in raw water would decrease the removal efficiency of arsenic. When the concentrations of K+, Ca~(2+) and Mg~(2+) increased, no apparent changes in arsenic removal were observed. The removal efficiency of arsenic was significantly reduced with the increasing of Si in raw water. The effect of pH on arsenic removal was studied by applying a constant ferric dose of 2.0 mg/L (calculated as Fe3+). The result showed that arsenic removal performance improved obviously with decreasing pH.
     The results of membrane cleaning showed that the membrane specific flux could recover to 87.8% of the initial value after physical and chemical cleaning. The membrane fouling was mainly caused by organic matters in raw water which contributed to 67.2% of the total membrane resistance. Concentration polarization could be attenuated to some extent by air agitation in the submerged system.
     The disposal test of arsenical sludge showed that arsenic could be well removed using MCR process with an enrichment coefficient of 3668. The sludge volume was acceptable after free sedimentation, and the water-content of the naturally dehydrated sludge could be reduced to 95.4%. The crystalloid components of dried arsenical sludge were CaCO3 and FeO(OH).
引文
[1]王浩.我国水资源合理配置的现状和未来[J].水利水电技术,2006,37(2):7~14.
    [2]白婕,杨晓春,刘阿莉.我国生态安全现状及维护措施[J].环境科学与管理,2005,30(3):60~65.
    [3]石虹.浅谈全球水资源态势和中国水资源环境问题[J].水土保持研究,2002,9(1):145~150.
    [4]周怀东.水污染与水环境修复[M].北京:化学工业出版社,2005,98~108.
    [5]李晶,岳恒,王建平,等.农村饮水安全现状分析及解决对策[J].中国水利,2006,(11):26~29.
    [6] Maria Tomaszewska,Sylwia Mozia,Antoni W.Morawski.Removal of organic matter by coagulation enhanced with adsorption on PAC[J].Desalination,2004,161(1):79~87.
    [7] Suty Herve,De Traversay C.,Cost M..Applications of advanced oxidation processes:Present and future[J].Water Science and Technology,2004,49(4):227~233.
    [8] Chien C.C.,Kao C.M.,Dong C.D.,et al.Effectiveness of AOC removal by advanced water treatment systems:a case study[J].Desalination,2007,202(1~3):318~325.
    [9] Toor Ramn,Mobseni Madiid.UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water[J].Chemosphere,2007,66(11):2087~2095.
    [10]中华人民共和国国家环保总局,GB3838-2002地表水环境质量标准[S].北京:中国标准出版社,2002-04-28.
    [11]康永滨,生物慢滤水处理技术在农村安全饮水中的应用研究[J].水利科技,2006,(01):55~57.
    [12] Momba M.N.B.,Tyafa Z.,Makala N.,et al.Safe drinking water still a dream in rural areas of South Africa. Case study:The Eastern Cape Province[J].Water SA,2006,32(5):715~720.
    [13] Mackintosh G.S.,De Souza P.F.,Delport E..Addressing the sustainability of small-user rural water treatment systems in South Africa[J].Water Science and Technology,2002,2(2):139~144.
    [14]宣昭林,刘戎,李艳杰.砷化物及其毒性[J].中国地方病防治杂志,2004,19(3):162~163.
    [15] Sujata De Chaudhuri,Julie Mahata,Jayanta K. Das,et al.Association of specific p53 polymorphisms with keratosis individuals exposed to arsenic through drinking water in West Bengal,India[J].Mutation Research,2006,601(1~2):102~112.
    [16] Viraraghavan T.,Subramanian K.S.,Aruldoss J.A..Arsenic in drinking water problems and solutions[J].Water Science and Technology,1999,40(2):69~76.
    [17] Shih Ming Cheng.An overview of arsenic removal by pressure-driven membrane processes[J].Desalination,2005,172(1):85~97.
    [18] Edwards M..Chemistry of arsenic removal during coagulation and Fe-Mn oxidation[J].Journal of the American Water Works Assocition,1994,86(9):64~78.
    [19] Loffredo C.A.,Aposhian H.V.,Cebrian M.E.,et al.Variability in human metabolism of arsenic[J].Environmental Research,2003,92(2):85~91.
    [20] Chen Chien Jen,Hsu Lin I,Wang Chih Hao,et al.Biomarkers of exposure,effect , and susceptibility of arsenic-induced health hazards in Taiwan[J].Toxicology and Applied Pharmacology,2005,206(2):198~206.
    [21] Meacher D.M.,Menzel D.B.,Dillencourt M.D.,et al.Estimation of multimedia inorganic arsenic intake in the US population[J].Human and Ecological Risk Assessment,2002,8(7):1697~1721.
    [22] Jaymie R. Meliker,Alfred Franzblau,Melissa J. Slotnick,et al.Major contributors to inorganic arsenic intake in southeastern Michigan[J].International Journal of Hygiene and Environmental Health,2006,209(5):399~411.
    [23] Pontius F.W.,Brown K.G.,Chen C.J..Healthy implications of arsenic in drinking water[J].Journal of the American Water Works Association,1994,85(9):52~63.
    [24] Marni Hall,Yu Chen,Habibul Ahsan,et al.Blood arsenic as a biomarker of arsenic exposure:Results from a prospective study[J].Toxicology,2006,225(2~3):225~233.
    [25] Hsueh Yu Mei,Wu Wen Lin,Huang Ya Li,et al.Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure[J].Atherosclerosis,1998,141(2):249~257.
    [26] Debabrata Ghosh, Soma Datta, Shelley Bhattacharya,et al.Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus[J].Aquatic Toxicology,2007,81(1):79~89.
    [27] Christopher A. Loffredo,Aposhian H. Vasken,Mariano E. Cebrian,et al.Variability in human metabolism of arsenic[J].Environmental Research,2003,92(2):83~91.
    [28] Hiroshi Yamauchi,Yoshito Aminaka,Katsumi Yoshida,et al.Evaluation of DNA damage in patients with arsenic poisoning : urinary 8-hydroxydeoxyguanine[J].Toxicology and Applied Pharmacology,2004,198(3):291~296.
    [29] Ko?uti? K.,Fura? L.,Sipos L.,et al.Removal of arsenic and pesticides from drinking water by nanofiltration membranes[J].Separation and Purification Technology,2005,42(2):137~144.
    [30]李伟英,李富生,高乃云,等.日本最新饮用水水质标准及相关管理[J].中国给水排水,2004,20(5):104~106.
    [31]王晓昌.从砷的水质标准修订看美国饮用水立法[J].给水排水,2001,27(9):25~27.
    [32] Abhijit Mukherjee,Alan E. Fryar,Harold D. Rowe.Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal,India[J].Journal of Hydrology,334(1~2):151~161.
    [33]沈雁峰,孙殿平,赵新华,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005,24(2):172~175.
    [34]付松波,陈志.我国地方性砷中毒基础研究工作进展[J].中国地方病学杂志,2006,25(5):585~587.
    [35]金银龙,粱超轲,何公理,等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32(6):519~540.
    [36] Song S.,Lopez-Valdivieso A.,Hernandez-Campos D.J.,et al.Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J].Water Research,2006,40(2):364~372.
    [37] Ayoob S.,Gupta A.K.,Bhakat P.B..Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic(Ⅲ) from aqueous environment[J].Colloids and Surfaces A,2007,293(1~3):247~254.
    [38] Jan Gregor . Arsenic removal during conventional aluminium-based drinking-water treatment[J].Water Research,35(7):1659~1664.
    [39] Pokhrel D.,Viraraghavan T..Arsenic removal from an aqueous solution by A modified fungal biomass[J].Water Research,2006,40(3):549~552.
    [40] Anastasios I. Zouboulis,Ioannis A. Katsoyiannis.Recent advances in the bioremediation of arsenic-contaminated groundwaters[J] . Environment International,2005,31(2):213~219.
    [41]刘转年,金奇庭,周安宁.膜过滤技术在废水处理中的应用研究新进展[J].工业水处理,2002,22(5):1~3.
    [42]张慧,朱淑飞,鲁学仁.膜技术在水处理中的应用与发展[J].水处理技术,2002,28(5):256~259.
    [43]张光辉.膜混凝反应器(MCR)制备饮用水和去除氟化物的研究[D].天津:天津大学,2003.
    [44] Jang Hae Nam,Lee Dae Sung,Park Min Koo,et al.Effects of the filtration flux and pre-treatments on the performance of a microfiltration drinking water treatment system[J].Water Science and Technology:Water Supply,2006,6(4):81-87.
    [45] Binbing Han,Timothy Runnells,Julio Zimbron,et al.Arsenic removal from drinking water by flocculation and microfiltration[J].Desalination,2002,145(1~3):293~298.
    [46] Wickramasinghe S.R.,Han Binbing,Zimbron J.,et al.Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh[J].Desalination,2004,169(3):231~244.
    [47] Erdogan Ergican,Hatice Gecol,Alan Fuchs.The effect of co-occurring inorganic solutes on the removal of arsenic(V) from water using cationic surfactant micelles and an ultrafiltration membrane[J].Desalination,2005,181(1~3):9~26.
    [48] Oh J. I.,Yamamoto K.,Kitawaki H.,et al.Application of low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater[J].Desalination,2000,132(1~3):307~314.
    [49] Ko?uti? K.,Fura? L.,Sipos L.,et al.Removal of arsenic and pesticides from drinking water by nanofiltration membranes[J].Separation and Purification Technology,2005,42(2):137~144.
    [50] Ernest O. Kartinen,Jr.,Christopher J.,et al.An overview of arsenic removal processes[J].Desalination,1995,103(1~2):79~88.
    [51] Philip Brandhuber,Gary Amy.Alternative methods for membrane filtration of arsenic from drinking water[J].Desalination,1998,117(1~3):1~10.
    [52] Ganesh Ghurye,Dennis Clifford,Anthony Tripp.Iron coagulation and direct microfiltration to remove arsenic from groundwater[J].Journal of the American Water Works Association,2004,96(4):143~152.
    [53]杨淑霞,刘晶.给水排水化学基础[M].北京:中国建筑工业出版社,2001,348~349.
    [54]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2006,473~474.
    [55] Waypa John J.,Elimelech Menachem,Hering Janet G..Arsenic removal by RO and NF membranes[J].Journal of the American Water Works Association,1997,89(10):102~114.
    [56]袁洪福,褚小立,王艳斌,等译.水分析手册[M].北京:中国石化出版社,2005,441~444.
    [57] Robinson B.,Reed G. D.,Frazier B.,et al.Iron and manganese sequestration facilities using sodium silicate[J].Journal of the American Water Works Association,1992,84 (2):77~82.
    [58] Huang J.Y.,Takizawa S.,Fujita K..Pilot-plant study of a high recovery membrane filtration process for drinking water treatment[J].Desalination,2000,41(10):77~84.
    [59] Glucina,Alvarez A.,La?néJ. M.,et al.Assessment of an integrated membrane system for surface water treatment[J].Desalination,2000,132(1~3):73~82.
    [60]常青.水处理絮凝学[M].北京:化学工业出版社,2003,28~30.
    [61]陈卫文.混凝-微滤工艺处理含镅和含铬废水及膜污染的研究[D].天津:天津大学,2002.
    [62]高永,张光辉,顾平.化学沉淀-微滤的临界混合液浓度的影响因素[J].水处理技术,2006,32(5):26~29.
    [63]高永,董亚玲,顾平.化学沉淀-微滤处理含铅废水[J].膜科学与技术,2005,25(5):40~44.
    [64] Choi Suing-il,Kim, Sung-gi,Yoon Jeyong,et al,Particle behavior in air agitation submerged membrane filtration[J].Desalination,2003,158(1~3),181~188.
    [65]何纯提.净水厂排泥水处理[M].北京:中国建筑工业出版社,2006,3~10.
    [66] Leist M.,Casey R.J.,Caridi D..The management of arsenic wastes:problems and prospects[J].Journal of Hazardous Materials,2000,76(1):125~138.
    [67]漆睿,戎永华.X射线衍射与电子显微镜分析[M].上海:上海交通大学出版社,1992,56~66.
    [68]莫罹,黄霞,吴金玲.混凝-微滤膜组合净水工艺中膜过滤特性及其影响因素[J].环境科学,2002,23(2):45~49.
    [69]杨静.建筑材料[M].北京:中国水利水电出版社,2004,269~271.
    [70]顾欢达,顾熙.酸雨环境对轻质土的工程性质的影响[J].环境科学与技术,2006,29(3):17~20.
    [71] Carroll T.,King S.,Gray S. R.,et al.The fouling of microfiltration membranes by NOM after coagulation treatment[J].Water Reserch,2000,34(11):2861~2868.
    [72] Baralla G.,Mattea M.,Gekas V..A computer-aided model to simulate membrane fouling processes[J].Separation and Purification Technology,2001,22~23:489~498
    [73]王湛,周羽中.膜分离技术基础[M].北京:化学工业出版社,2006,248~249.
    [74] Shimizu Y.,Okuno Y.,Uryu K.,et al.Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J].Water Research,1996,30 (10):2285~2392.
    [75] Lebeau T.,Lelievre C.,Buisson H.,et a1.Immersed membrane filtration for the production of drinking water:combination with PAC for NOM and SOCs removal[J].Desalination,1998,117(1~3):219~231.
    [76]莫罹,黄霞,吴金玲,等.混凝-微滤膜净水工艺的膜污染特征及其清洗[J].中国环境科学,2002,229(3):258~262.
    [77]罗虹,顾平,杨造燕.投加粉末活性炭对膜阻力的影响研究[J].中国给水排水,2001,17(2):1~4.
    [78] Cho Min ho,Lee Chung Hak,Lee Sangho.Effect of flocculation conditions on membrane permeability in coagulation-microfiltration[J].Desalination,2006,191(1~3):386~396.
    [79] Binbing Han,Timothy Runnells,Julio Zimbron,et al.Arsenic removal from drinking water by flocculation and microfiltration[J].Desalination,2002,145(1~3):293~298.
    [80] Garry Nathaniel B.Barona,Bong Jun Cha,Bumsuk Jung.Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation[J].Journal of Membrane Science,2007,290(1~2):46~54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700