用户名: 密码: 验证码:
聚合氯化铝(PAC)混凝絮体分形结构及气浮去除特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在城市用水和废水处理工艺中,混凝过程(混合、凝聚、絮凝)是应用最普遍的单元操作工艺技术,可作为沉淀、气浮、过滤等工艺流程的前置工艺技术环节。絮凝效果的好坏往往决定着后续流程的运行工况、出水质量和成本费用,它始终是水处理工程中重要的研究开发领域,其中絮凝剂是絮凝技术应用的关键。聚合氯化铝(PAC)是当前工业生产技术最成熟、应用最广泛的无机高分子絮凝剂(Inorganic polymer flocculants,IPF),因此对PAC混凝过程的深入研究有着重要的意义。
     本课题以水中腐殖酸有机物和高岭土胶体颗粒为去除对象,采用静态显微图像法和环流气浮反应器(ES-DAF)研究了聚合氯化铝混凝絮体的分形结构和气浮去除特性。实验结果表明:在本实验的各种条件下,絮体的分形维数都在1~2之间,且数据点的相关性很好,说明了混凝沉淀絮体的形成具有“分形”特征。以卷扫絮凝为主要混凝机理时,形成的絮体趋向于多分枝的松散结构,分形维数低。絮体的长短比大约80%分布在1.2~2.5之间,证明了絮体的形状是极不规则的。与实验室配水的絮体分形值相比,湖水中的絮体分形值较低,从1.0314—1.4600。pH值、污染物种类和聚合铝形态以及混凝机理对絮体的密实性、规整性和絮体分形维数有很大的影响。采用环流气浮反应器去除腐殖酸和高岭土混合物,达最高去除率的投药量要比分别去除腐殖酸和高岭土时大,但去除效果更好。实验中选用的大港工业聚合铝对腐殖酸和高岭土的去除率达70%左右,比实验制备的聚合铝有更好的混凝气浮去除效果,且其受溶液pH条件的影响也较小。气泡粒径与Zeta电位使聚合铝混凝吸附污染物表现出与混凝沉淀中不同的现象。同时,pH值、污染物种类和聚合铝形态也会对聚合铝的气浮去除特性产生影响。
In the treatment process of domestic water and waste water, coagulation process (mixing,agglomeration,flocculation) is the most popular unit operation, used as pre-process of precipitation,flotation ,filteration and so on.the effect of flocculation decides the condition of operation, the quality of effulent and the cost. It is important research branch in the treatment of water and waste water, and flocculant is the key in application of flocculation technology. Polyaluminum chloride is one of the mature and popular inorganic polymer flocculants, so the deep study on the coagulation process have significance.
    The humic acid and the kaolin are removal object in this paper. Image analysis and a novel ES dissolved air flotation reactor(ES-DAF) are used in the study on fractal structure of alum floe and removal characteristics by flotation. The results of the experiment show that in varies conditions the fractal dimention of floe is between one and two. The correlation of the experiment data is good, which illustrates fractal characteristic of floe. When sweep flocculation acts as the main mechanism, floe tend to forming branch structure and have lower fractal dimention. The distributions of Elongation ratio show that the majority of the particles, approximately 80%, possessed ratios in the range between 1.2 and 2.5, which proves the irregular shape of floe. The fractal dimention of floe in Lake contrasting with man-made waste water's, are lower. The value is from 1.0314 to 1.4600. The type of pollutants, pH, form of PAC and coagulation mechanism have important influence on the density, regulation and fractal dimention of floe. The floccution of removal the humic acid and the kaolin by ES-DAF has better removal effect than the removal organic or clay respectively. But the quantity of flocculants is more. The industry PAC has high turbidity and organic removal. The removal efficiency is about 70% higher than the PAC made in lab, and is affected little. Contrast to coagulation precipitation, flotation exhibit the different phenomenon because of the size of bubble and Zeta potentials. At the same time, the type of pollutants, pH, form of PAC and coagulation mechanism have important influence on the removal characteristics in flotation..
引文
[1] 钱易,唐孝炎.环境保护与可持续发展.第一版.北京:高等教育出版社,2001,38-41
    [2] 许保玖.论水质科学与工程兼论21世纪的水处理科技.工业水处理,2000,20(1):1-4
    [3] Edzwald J K,Tobiason J E and Amato T. Intergrating high-rate DAF technology into plant design. JAWWA, 1999, 91(12):41-45
    [4] Kempeneers S, Menxel F Van and Gille L. A decade of large scale experience in dissolved air flotation. Wat. Sci. Tech., 2001, 43(8):27-34
    [5] Edzwald J K. Principles and applications of dissolved air flotation. Water Sci. Tech., 1995,31 (3/4): 1-24
    [6] Edzwald J K, Malley J P Jr and Yu C. A conceptual model for dissolved air flotation in water treatment. Water Supply, 1990, 8:14-150
    [7] Malley J P and Edzwald J K. Concepts for dissolved air flotation treatment of drinking Waters. Aqua. (J.Water Supply Res. & Techy.),1991,40:1-7
    [8] Edzwald J K, Malley J P Jr and Yu C. A conceptual model for dissolved air flotation in water treatment. In:IWSA/AWPRC joint Speciallized Conference on Coagulation, Flocculation, Filtration, Sedimentation and Floation, Bernhardt H and Ives K(eds.),1991,9(1): 141-150
    [9] Fukushi K, Tambo N and Matsui Y.A kinetic model for dissolved air floation in water and wastewater treatment. Wat.Sci.Tech, 1995,31(3-4):25-35
    [10] 胡熙庚,黄和慰,毛锯凡等.浮选理论与工艺.中南工业大学出版社,1991
    [11] Hayness, W. English Patent 488,1860
    [12] Bessel and Bessel. German Patent 42, class 22,1877
    [13] Froment A. English Patent 12778,1902
    [14] Delprat. U.S. Patent 735071,1903
    [15] Potter V. U.S. Patent 776145,1904
    [16] Potter V. Victorian Patent 18775,1901
    [17] Elmore F E. English Patent 13578,1904
    [18] Elmore F E. English Patent 17816,1904
    [19] Sulman H L.Picard, and Ballot, J.U.S. Patent 835120,1906
    [20] Hoover T J. U.S. Patent 953746,1910
    
    
    [21] Gergory R and Zabel T F. "Sedimentation and Flotation,"in Water Quality and Treament.A Handbook of Community Water Supplies, A.W.W.A. 4th ed. McGraw Hill, New York, USA,1990,367-453.
    [22] 陈翼孙,胡斌.气浮净水技术的研究与应用.上海科学技术出版社,1985
    [23] 陈翼孙,胡斌.环境工程治理丛书:气浮净水技术,中国环境科学出版社,1992
    [24] Edzwald J K and Van Benschofen J B. Aluminum Coagulation of natural organic matter. In Chemical Water and Wastewater Treatment (Hahn H H and Klute R ed.),Springer Verlag, Berlin, 1990,341-359
    [25] Heinanen J, Jokela P and Peltokangas J. Exprimental Studies on the Kinetics of Flotation in Chemical Water and Wastewater Treatment Ⅱ, (Klute R and Hahn H H ed.), Springer Verlag,USA, 1992,247-262
    [26] Van Puffelen J, Buijs P J, Nuhn P N A M and Hijnen W A M. Dissolved air flotation in potable water treatment: The Dutch Experience. Water Sci. Tech., 1995,31(3/4): 149-158.
    [27] Haarhoff J, Rakaart E M. Rational design of packed saturators. Water Sci.Tech., 1995,31(3-4): 179-190
    [28] Rykaart E M, Haarhoff J.Behavior of air injection nozzles in dissolved air flotation.Wat.Sci.Tech. 199531 (3-4):25-35
    [29] Haarhoff J,Steinbach S.A comprehensive method for measuring the air transfer efficiency of pressure saturators. Wat.Res. 1997,31(5):981-990
    [30] Malley J P, Jr and Edzwald J K. Laboratory comparison of DAF with conventional treatment. JAWWA,1991,83(9):56-61
    [31] Zable T F. Flotation in water treatment. In: Innovations in flotation technology (Marros P and Matis ed K A) NATO AIS Series. The Dordrecht: Kluwer Academic Publishers, 1992
    [32] Zable T F. Flotation in water treatment. In: The scientific basis of flotation. 1984
    [33] 张自杰,林荣枕,金儒林编.排水工程(下册).第四版.北京:中国建筑工业出版社,2000
    [34] Jameson G J.Hydrophobicity and floc density in induced-air flotation for water treatment. Colloids and surfaces A: Physicochemical and Engineering Aspects., 1999,151:269-281
    [35] Zlokarnik M.Separation of activated sludge from purified waste water by induced
    
    air flotation(IAF). Wat.Res., 1998,32(4): 1095-1102
    [36] Bunker D Q Jr, Edzwald J K.,Dahlquist J and Gillberg L. Pretreatment considerations for dissolved air flotation: water type, coagulants and flocculation. Wat. Sci. Tech., 1995,31 (3/4):45-56
    [37] Ponasse M, Dupre V, Aurelle Y and Secq A. Bubble formation by water release in nozzle-Mechanism. Wat.Res., 1998,32(8):2491-2497
    [38] Ponasse M, Dupre V, Aurelle Y and Secq A. Bubble formation by water release in nozzle-Influence of various parameters on bubble size. Wat.Res., 1998,32(8):2491-2497
    [39] Solanki M K S, Mukherjee A K and Das T R, Bubble formation at closely spaced orifices in aqueous solution. Chem.Eng.J. 1992,49:65-71
    [40] Wang L and Quyang F. Hydrodynamics characteristics of the process of depressurization of saturated water. Chin.J.Chem.Eng.J. 1994,2:211-218
    [41] Puffelen J Van, Buijs P J, Nuhn P N A M and Hijnen W A M. Dissolved air flotation in potable water treatment: The Dutch Experience. Water Sci. Tech.,1995.31 (3/4):149-158
    [42] 许志,姚剑峰,加压气浮的现状与发展方向.环境工程.1985.3(5):5-8
    [43] 许保玖.当代给水与废水处理原理.高等教育出版社,1990
    [44] 汤鸿霄,天然水体中的环境胶体水化学,环境化学专题报告文集,11,1984
    [45] 徐国想,阮复昌.铁系和铝系无机絮凝剂的性能分析.重庆环境科学,2001(23,3):52~55
    [46] 万鹰昕,程鸿德.无机高分子絮凝剂絮凝机制的研究进展.矿物岩石地球化学通报,2001(20,1):62~65
    [47] 汤鸿霄(1998)羟基聚合氯化铝的絮凝形态学,环境科学学报,18(1),1-10
    [48] 栾兆坤博士论文,无机高分子絮凝剂聚合氯化铝的基础理论与应用研究,1997
    [49] 栾兆坤,冯利,汤鸿霄.水中聚合铝溶液中形态分布的定量模拟研究.环境科学学报,1995.15(1):39-47
    [50] Bersillon et al. Soil Sci Soc Am J,1980,44:630
    [51] Akitt J W, Farthing A. J Magn Reson,1978,32:345
    [52] Bottero J Yet al. J Phys Chem,1980,84:2933
    [53] Parker D.R and Bertsch P.M, Formation of the Al_(13) Tridecameric polycation under diverse synthesis conditions, Environ.Sci.Technol.,26(5):914,1992
    [54] O'Melia, C.R., Coagulation in wastewater treatment, In The Scientific Basis of
    
    Flocculation, NATO ASI Series, Ives, K. J.,Ed.,Sijthoff and Noordhoff, Aalphen aan den Rijn, Netherlands, 1978.
    [55] LaMer V.K., Healy T.W..Adsorption-flocculation reactions of macromolecules at the solid-liquid interface. Rev.Pure Appl. Chem., 1963 (13): 112.
    [56] LaMer V.K..Coagulation symposium introduction. J.Colloid Science, 1964(19): 291.
    [57] Packham, R.F., Some studies of the coagulation of dispersed clays with hydrolyzed salts, J.Colloid Sci.,20:81,1965
    [58] 黄昀,分形发展三十年,物理,27(2):90-93,1998
    [59] 王东升,汤鸿霄等,分形理论及其研究方法,环境科学学报21(S):10-16,2001
    [60] Thomas D.N., Judd S.J., Fawcett N., Flocculation modeling:a review[J]. Water Res, 1999,33(7): 1579-1592
    [61] Huang H., Fractal properties of floes formed by fluid shear and differential setting[J]. Phys of Fluids, 1994, 6 (10): 3229-3234
    [62] 李剑超等,絮凝过程的分形研究进展,福建农林大学学报(自然科学版),31(1):128-131,2002
    [63] Rajat K. Chakraborti, Joseph F. Atkinson and John E. Van Benschoten, Characterization of Alum Floe by Image Analysis. Environ. Sci. Teehnol., 2000,34,3969-3976
    [64] 陈云,王洪艳,分形理论及其在高分子科学中的应用.高分子通报(4): 41-46,2002
    [65] Li K H, Ganczarcay k J . Saroboscopic determnation of settling velocity, size and porocity of a sediment flocs[J]. Wat. Res, 1987,21:257-262
    [66] Li D H, Ganczarcay k J. Fractal geometry of partical aggregates generated in water and wasterwater treatment pocess, ES&T[J], 1989,23(11): 1385-1390
    [67] Logan B E Kilps J R. Fractal dimensions of aggregates formed in different fluid mechanical environments[J], War. Res,1995,29(2):443-453
    [68] Li X, Logan B E. Collision frequencies of fractal aggregates with small particles by differential sedimentation[J], ES&T1997,31 (4):1229-1236
    [69] Johnson C P, Li X Y, Logan B E., Settling velocities of fractal aggregates[J], ES&T1996,30(6):1911-1918
    [70] Teixeira B J., Small-angle scattering by fractal systems[J], Appl Cryst,1988,21(6):781-785
    [71] Jung S J Amal R, Raper J A. Monitoring effects of shearing on floc structure using
    
    small-angle light scattering[J], Powder Technol, 1996,88(1):51-54
    [72] Gregory J.Nelson D W monitoring of aggregates in flowing suspensions[J]. Colloids and Surfaces, 1986,18:175-186
    [73] Jokela P, Ihalainen E, Heinanen J, Viitasaari M. Dissolved air flotation treatment of concentrated fish farming wastewaters. Wat. Sci. Tech.,2001,43(8): 115-121
    [74] 栾兆坤,陈福泰,裴元生,贾智萍,高效环流引射溶气气浮方法及装置,专利申请号:02158538.5
    [75] Yasuo M, Kunio H and Takashi N. Effect of dissolved gas on bubble nucleation. Int.J.Heat Mass Transfer, 1976,19:1153-1481
    [76] Kiuru H J.Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions). Wat. Sci. Tech.,2001.43(8):1-7
    [77] 王东升博士后出站报告,无机高分子絮凝剂得混凝作用机理与计算模式,1999,10
    [78] 王东升,汤鸿霄等,IPF-PAC混凝动力学研究:形态组成的重要性,环境科学学报,2001,21(增):17-22
    [79] C.W.K.Chow, J.A.Van Leeuwen, M.Drikas, R.Fabris et al, The Impact of The Character of Natural Organic Matter In Conventional Treatment with Alum, Wat. Sci. Tech, 40 (9): 97-104, 1999
    [80] Gibbs R J, Effect of natural organic coatings on the coagulation of particles, Environmental science & technology, 1983, 17: 237
    [81] Jekel M R.,Interaction of humic axids and aluminum salts in the locculation process. Wat. Res.,1986, 20:1535
    [82] 曲久辉,水中天然有机大分子对混凝影响的电动特征,环境科学学报,1997,17(4):160-166
    [83] 吴舜泽,王宝贞,水中有机物和水处理工艺相关性分析,哈尔滨建筑大学学报,32(6),1999
    [84] Dyer K R, Manning A J., Observation of the size, settling velocity and effective density offlocs, and their fractal dimensions[J], J of Sea Res, 1999, 41 (1-2): 87-95
    [85] 陈福泰博士论文,新型环流气浮反应器研制与机理研究,2003
    [86] Thomas R.H,O'Melia C R. Aluminum-fulvic acid interactions: mechanisms and applications[J]. JAWWA,1988,80 (4): 176-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700