用户名: 密码: 验证码:
纳米Al_(13)的混凝行为、絮体特性及对膜污染的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在综合国内外大量相关文献的基础上,基于新型纳米Al13混凝研究的应用前景,对Al13的混凝行为和效果进行系统、深入的研究。同时,对纳米Al13形成的絮体特性,包括絮体粒径、强度、再生能力以及分形结构等进行了系统的研究。另外基于目前混凝/超滤联合工艺的发展现状和研究背景,将Al13应用于混凝/超滤工艺中,探索了其对出水水质和膜污染的影响。主要研究内容及结论如下:
     1、采用预水解Al13对模拟染料废水、腐植酸(HA)模拟水样和黄河实际水样进行混凝处理,并通过脱色率、浊度、UV254以及DOC等指标的测定来对Al13的混凝效果进行评价。实验结果表明:Al13形态具有稳定性及高正电荷性,在低投加量下能够有效发挥吸附电中和作用,混凝效果较A12(SO4)3或PAC1好;在高投加量下的混凝效果同其它铝盐混凝剂相似。在水样pH变化时,Al13的混凝行为和效果较其它铝盐混凝剂(A12(SO4)3或PAC1)稳定;Al13在处理黄河水样时对亲水性小分子有机物的去除效果较PAC1好。
     2、采用透光率脉动检测技术和激光粒度散射技术对混凝动态过程进行监测,并通过对絮体以0、强度因数、恢复因数等指标的计算来评价Al13形成的絮体特性。实验结果表明:与其它铝盐混凝剂相比,预水解Al13在投入水体后能迅速发挥作用,絮体生长速度快,且形成的絮体特性受pH的影响较小。处理直接紫模拟染料废水时,与PACl相比,在投加量相同的条件下,Al13形成的絮体颗粒较小,但密实性较高,沉降性能好。Al13处理分散黄棕时形成的絮体颗粒破碎后较易再生。处理HA模拟水样时,与PACl相比,Al13在低投加量时形成的絮体粒径较大,当投加量增大时,HA-Al13絮体的粒径小于HA-PAC1的粒径。处理黄河水样时,铝盐混凝剂形成的絮体大小顺序为:Al2(SO4)3>PAC1>Al13。处理HA和黄河水样时,在相同的投加量和剪切力下,Al13絮体均比其它铝盐混凝剂形成的絮体的抗剪切能力强,破碎后的恢复能力高。
     3、采用小角激光散射法测定了不同铝盐混凝剂在处理HA模拟水样和黄河水样时形成絮体的分形结构并进行比较。实验结果表明:铝盐混凝剂在酸性和弱酸性条件下形成的絮体较密实,在碱性条件下形成的絮体较松散。与PAC1相比,相同投加量下Al13形成的絮体分形维数较大。在混凝过程中,絮体分形维数随混凝时间先显著增加,然后逐渐趋于稳定。絮体破碎再生后,分形维数增大,结构更加密实,且在低投加量和低pH下絮体分形维数的增加更显著。与PAC1相比,Al13形成的絮体在破碎后分形维数的增长更明显。
     4、采用单次投加和分次投加两种投药方式对HA水样进行混凝,并通过对UV254和zeta电位的测定,比较两种投药方式的混凝效果并探讨二次投加混凝剂的混凝机理。实验结果表明:在总投药量相等的前提下,采用二次投加方式能够在一定程度上提高传统单次投加混凝工艺的出水水质。在絮体破碎后二次投入的Al13,既发挥电中和作用,又发挥吸附架桥和共沉淀作用;且二次投加的Al13混凝剂,能够更有效提高絮体破碎后的再生能力。当Al13的二次投加量在等电点附近时,絮体再生能力最强,出水效果最好。絮体破碎后,适当投加Al13混凝剂可以增加絮体的分形维数。由于PAC1的正电荷较Al13低,所以二次投加的PAC1电中和作用较弱,主要是通过吸附架桥和共沉淀发挥作用,对絮体分形结构的影响不明显。Al13和PAC1采用二次投加方式均能够减轻高速剪切力对絮体的破碎程度。
     5、将Al13应用于混凝(沉淀)/超滤和混凝/超滤工艺中对HA水样进行处理,并通过测定UV254的去除率及膜通量下降来评价Al13混凝出水对后续超滤工艺的影响。实验结果表明:Al13在混凝(沉淀)/超滤和混凝/超滤工艺中对HA的去除效率与PAC1相似,只在投加量很低时,对HA的去除率较PAC1高。在混凝(沉淀)/超滤工艺中,与PAC1相比,Al13混凝出水引起的过膜总阻力较小,膜通量较大;而在混凝—超滤工艺中,Al13混凝出水引起的吸附阻力和滤饼层阻力较大,膜通量小于A12(SO4)3和PAC1混凝出水的通量。混凝过程中絮体破碎再生后,Al13出水的过膜通量变化最小,而A12(SO4)3混凝出水受絮体破碎影响最大。絮体破碎程度越高,混凝出水引起的膜通量越低。长时间絮体破碎能够进一步增大滤饼层阻力,降低膜通量。采用A12(SO4)3为混凝剂时,混凝—超滤膜通量受剪切时间的影响最严重,而Al13混凝出水引起的膜通量几乎不受混凝过程中破碎时间的影响。
     6、将聚硅铝盐混凝剂应用于混凝*超滤工艺中,并将其对超滤工艺的影响与铝盐混凝剂对比,实验结果表明:与铝盐混凝剂相比,聚硅铝盐混凝剂形成的絮体粒径较大,强度较高,但是絮体破碎后的再生能力较弱,分形维数较低,结构较松散。所以采用聚硅铝盐混凝剂对水样进行预处理,能够显著降低吸附阻力和滤饼层阻力,提高膜通量。另外,聚硅酸的加入缩小了Al13和PAC1混凝形成的絮体特性之间的差异,包括絮体粒径、强度、再生能力、分形维数等,因此,聚硅氯化铝和聚硅Al13混凝出水的膜阻力和膜通量差异较小
Based on the previous researches on Al13species, coagulation behavior and efficiency of Al13were investigated in this study. Meanwhile, the floc characteristics formed by Al13, including floc size, strength, re-growth ability and fractal dimension, were systemically studied. Additionally, on the basis of previous studies on ultrafiltration technology, Al13was applied in coagulation/ultrafiltration hybrid process, and its effects on water quality and membrane fouling were evaluated. The main research and conclusions are as follows:
     1. Simulated dye wastewater, humic acid (HA) solution and the Yellow River water were coagulated by Al13species. The decolorization efficiency as well as turbidity, UV254and DOC removal efficiencies were measured to evaluate the coagulation behaviors of Al13. The results showed that:at low dose, pre-hydrolyzed Al13with high positive charge could keep stable after addition into the coagulation system and contribute to effective charge neutralization and thus higher efficiencies compared with A12(SO4)3and PACl. At high doses, besides charge neutralization, bridging and sweep mechanisms caused by Al13aggregates and amorphous precipitates also played important roles in Al13coagulations and the coagulation efficiencies of Al13were similar with those of other Al-based coagulants, Al2(SO4)3and PACl. Al13presented more stable coagulation behaviors and efficiencies than Al2(SO4)3and PACl when pH of water sample varied. Al13could better remove the small hydrophilic natural organic matters than PACl in the Yellow River water treatment.
     2. Using light transmittance pulse testing technology and laser light scattering technology to monitor the dynamic flocs during coagulation. Floc properties were assessed by measuring floc d50and determining the strength factor, recovery factor of flocs. The results showed that:compared with other Al-based coagulants, Al13could react immediately after addition into the coagulation systems and the flocs grew fast. Additionally, the flocs formed by Al13had stable properties when exposed to various pHs. For simulated dye wastewater, Al13contributed to smaller and denser flocs with better settling than PACl at the same dose. Flocs formed by Al13had better recovery abilities than those formed by PACl due to the better charge neutralization of Al13. For HA samples, Al13contributed to larger flocs than PACl at lower doses; while PACl flocs were larger at higher doses. The sequence of floc size in the Yellow River water treatment by Al-based coagulants was as follows: Al2(SO4)3>PACl>Al13. Flocs formed by Al13were stronger and had better recovery abilities than those formed by other aluminum coagulants in both HA and the Yellow River water treatments.
     3. Floc fractal structures formed by various Al-based coagulants in HA water and the Yellow River water treatments were measured using small-angle laser light scattering (SALLS). The results showed that:at acidic ambience, aggregates formed by Al-based coagulants were compacter and denser than those formed at alkaline pH. Al13contributed to flocs with larger fractal dimension (Df) than PACl under the same coagulation conditions. The Df of flocs increased continuously during the whole coagulation process. Breakage of flocs could improve floc fractal structure at acidic pH while this effect was not so evident at alkaline pH. Compared with PACl coagulation, the increase of floc Df caused by floc breakage was more evident in Al13coagulation.
     4. HA solution was coagulated with two dosing methods:1-shot dosing and2-times dosing methods. The coagulation efficiencies and mechanisms by these two dosing methods were evaluated through the measurements of UV254and zeta potentials. The experimental results showed that:at the same total dose with1-shot dosing,2-times dosing could increase the removal efficiency of HA. The additional Al13dosed at the end of breakage phases displayed charge neutralization, adsorption, bridging and sweep mechanisms, which could apparently improve the recovery abilities of broken flocs. The additional Al13dose near the isoelectric point contributed to the flocs with best recovery abilities and highest HA removal efficiency. Proper additional dose of Al13could improve the floc fractal structure. Compared with Al13, PACl had less positive charge and thus the charger neutralization of additional PACl was weaker and the main coagulation mechanisms of additional PACl were adsorption, bridging and co-sedimentation, which had negative effect on floc fractal structures. For both Al13and PACl, the2-times dosing could alleviate the damage of high shear on flocs.
     5. Al13was applied in the coagulation/ultrafiltration hybrid processes to treat HA solution, and its effects on HA removal and membrane fouling were evaluated by measuring UV254removal and flux declines, respectively. The results indicated that:HA removal efficiency treated by coagulation (sedimentation)-ultrafiltration and coagulation-ultrafiltration hybrid processes with PACl and Al13were similar. Al13contributed to higher HA removal efficiency at low doses. In coagulation (sedimentation)/ultrafiltration process, feed water pre-coagulatd by Al13caused smaller total resistance and thus less flux decline than that coagulated by PACl; while in coagulation/ultrafiltration process, the feed water treated by Al13caused larger adsorption and cake layer resistances when compared with those coagulated by Al2(SO4)3and PACl, and thus Al13coagulation effluent caused the least ultrafiltration flux. The flux changed least when pre-generated flocs by Al13were exposed to higher shears; while the flux of Al2(SO4)3effluents fluctuated most with the increased shears during coagulation unit. The membrane flux decreased with the increasing of breaking shear. Long breaking time could lead to larger cake layer resistance and smaller membrane flux. The flux caused by Al2(SO4)3effluents decreased most evidently by the prelonged breaking time during coagulation; while that caused by Al13was almost unaffected by the breaking time.
     6. PACl-Si and Al13-Si were applied in the coagulation/ultrafiltration process, and their effects on ultrafiltration were compared with those by PACl and Al13. The results proved that:compared with PACl and Al13, PACl-Si and Al13-Si contributed to flocs with larger sizes and strength but weaker recovery abilities and fractal dimensions. As a consequence, the feed water pre-coagulated by PACl-Si and Al13-Si could decrease the adsorption and cake layer resistances and thus higher membrane fluxes. Additionally, the addition of pSi reduced the differences bewteen floc properties generated by Al13and PAC1in terms of floc sizes, strength, recovery abilities and fractal structures. The gap between fluxes caused by PACl-Si and Al13-Si coagulation effluents was rather limited.
引文
[1]Bertsch P.M. Aqueous Polynuclear Aluminum Species, in "The Environmental Chemistry of Aluminum" [M]. Sposito G(Eds), CRC Press, Boca Raton, Fla.,1989,87-115.
    [2]Baes C.F., Jr. Mesmer R.E. The hydrolysis of cations [M]. Wiley-Interscience, NewYork,1976.
    [3]Burrows M.D. Aquatic Aluminum Chemistry, Toxicology and Environmental prevalebce [M]. CRC Critical Reviews in Environmental Control,1977,7,167.
    [4]Nodstrom D.K., May H.M. Aqueous equilibrium data for mononuclear aluminum species [M]. In The environmental chemistry of aluminum, Sposito G., Eds., CRC press, Boca Raton, Fla., Chapter 1,1989
    [5]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学,1990,(3),1-12.
    [6]栾兆坤.水中铝的形态及其形态研究方法[J].环境化学,1987,6(1),46.
    [7]栾兆坤.铝的水化学反应及其形态组成[J].环境科学丛刊,1987,8(2),1.
    [8]Kubota H. The Hydrolysis of aluminum in dilute solutions [J]. Diss.Abstr.,1956, 16,864.
    [9]Frink C.R., Peech M. Hydrolysis of the aluminum ion in dilute aqueous solutions [J]. Inorg.Chem.,1963,2,473.
    [10]Hem J.D., Roberson C.E. From and stability of aluminum hydroxide complexes in dilute aqueous acid [J]. U.S. Geol. Sur. Water-Supply Pap.,1967, 1827.
    [11]Smith, R.W. Reactions among equilibrium and non-equilibrium aqueous species of aluminum hydroxy complexes [J]. Adv. Chem. Ser.,1971,106,250-256.
    [12]Smith R.W., Hem J.D. Effect of aging on aluminum hydroxide complexes in dilute solutions [J]. U.S. Geol. Sur. Water-Supply Pap.,1970,1827.
    [13]Akitt J.W., Greenwood W.N., Lester, S.D. Aluminum—27 nuclear magnetic resonance, Studies of acidic solutions of aluminum salts [J]. J. Chem. Soc. Dalton Trans.,1969,803.
    [14]汤鸿霄.无机高分子絮凝剂的研究,生产和应用[J].资源、发展与环境保护,1995,27-33.
    [15]Manual of British Water Enginearing Practice. Cambridge, Heffer and Sons Ltd. 1961
    [16]池野亮当,森本达雄.铝或铁的碱式氯化物的制造方法[J].日本特许公报,昭36-24055,1961-02
    [17]森本达雄.碱式铝盐的制造方法.日本特许公告,昭40-5044,1965-03.
    [18]川村静夫,后藤克已.聚铝离子的凝聚.工业用水,1963,1.
    [19]伴繁雄,幡野照玉.聚氯化铝凝聚剂的基础研究.水道协会杂志,1968,5.
    [20]哈尔滨市自来水公司等.碱式络合铝盐凝聚剂的初步实验研究.1964,5.
    [21]沈阳市饮水洁治研究小组.羟基氯化铝混凝剂试制和研究总结.1969,11.
    [22]Bertsch P.M. Conditions for Al13 polymer formation in partially neutralized aluminum solutions [J]. Soil Sci. SOC. Am. J.,1987,51,825-829.
    [23]汤鸿霄.羟基聚合氯化铝的絮凝形态学[J].环境科学学报,1998,18(1),1-10.
    [24]Parthasarathy N., Buffle J. Study of Polymeric Aluminum(Ⅲ) Hydroxide Solutions for Application in Waste Water Treatment. Properties of the Polymer and OptimalConditions for Preparation [J]. Wat.Res.,1985,19,25.
    [25]高宝玉,岳钦艳,王占生,汤鸿霄.聚硅氯化铝混凝剂的混凝效果研究[J].中国给水排水,1999,15(12),14-17.
    [26]高宝玉,王占生,汤鸿霄.聚硅氯化铝(PASC)混凝剂颗粒大小及分子量分布[J].中国环境科学,1999,19(4),297-300.
    [27]于慧,高宝玉,岳钦艳,王艳.红外光谱法研究聚硅氯化铝混凝剂的结构特性[J].山东大学学报,1999,34(2),198-201
    [28]高宝玉,岳钦艳,王占生,汤鸿霄.聚硅氯化铝(PASC)的形态分布及转化规律Ⅰ.Al-Ferron逐时络合比色法研究PASC溶液中铝的形态分布及转化规律[J].环境化学,2000,19(1),1-7.
    [29]高宝玉,岳钦艳,王占生,汤鸿霄.聚硅氯化铝(PASC)的形态分布及转化规律Ⅱ.27Al-NMR法研究PASC溶液中铝的形态分布[J].环境化学,2000,19(1),8-12.
    [30]高宝玉,岳钦艳,王占生,汤鸿霄.聚硅氯化铝(PASC)的形态分布及转化规律Ⅲ. Al-Ferron逐时络合比色法与27Al-NMR法的比较[J].环境化学,2000,19(1),13-17.
    [31]高宝玉,岳钦艳,王占生,汤鸿霄.硅氯化铝(PASC)混凝剂的混凝性能[J]. 环境科学,2000,21(2),46-49.
    [32]高宝玉,王占生,汤鸿霄.聚硅氯化铝混凝剂中Al(Ⅲ)水解—聚合历程及铝硅作用特性研究[J].环境科学学报,2000,20(2),151-155.
    [33]高宝玉,岳钦艳,王春省.用透射电镜研究聚硅氯化铝混凝剂的结构形貌[J].上海环境科学,2001,20(9),414-416,421.
    [34]Lin J.L., Chin C.J.M., Huang C.P., Pan J.R., Wang D.S. Coagulation behavior of Al13 aggregates [J]. Water Res.,2008,42,4281-4290.
    [35]Hu C., Liu H., Qu J., Wang D., Ru J. Coagulation behavior of aluminum salts in eutrophic water:significance of Al13 species and pH control [J]. Environ. Sci. Technol.,2006,40,325-331.
    [36]Kazpard V., Lartiges B.S., Frochot C., d'Espinose de la Caillerie J.B., Viriot M.L., Portal J.M., Gorner T., Bersillon J.L. Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13 polycations [J]. Water Res.,2006,40,1965-1974.
    [37]Akitt J.W., Farthing A.27Al NMR studies of the hydrolysis and polymerization of the hexa-aquoaluminium(Ⅲ) cation [J]. J.Chem.Soc.Dalton Trans.,1972, 604-610.
    [38]Akitt J.W., Farthing A. New 27Al NMR studies of the hydrolysis of the aluminum (Ⅲ) cation [J]. J.Magn.Reson.,1978,32,345.
    [39]Akitt J.W., Farthing A. Aluminium-27NMR aluminum (Ⅲ), Part 2-5 [J]. J.C.S. Dalton Trans.,1981,1606-1626.
    [40]Bottero J.Y. et al. Studies of hydrolyzed aluminum chloride solutions. I. Nature of aluminum species and composition of aqueous solutions [J]. J. Phys. Chem., 1980,84,2933-2939.
    [41]Bottero J.Y. et al. Investigation of the hydrolysis of aqueous of Aluminum Chloride Ⅱ. Nature and structure of small Angle X-ray Scattering [J]. J. phys. Chem.,1982,86,3667-3673.
    [42]Bottero, J.Y., et al. Mechanism of formation of aluminum trihydroxide from Keggin Al13 Polymers [J]. J.Colloid Interface Sci.,1987,117(1),47-57.
    [43]Buffle J., Parthasarty N., Haerdi W. Importance of speciation methods in analytical control of water treatment processes with application to fluride removal from waste waters [J]. Water Res.,1985,19(1),7-21.
    [44]Bertsch P.M. et al. Quantitative determination of aluminum-27Al NMR by high resolution nuclear magnetic resonance spectrometry [J]. Anal.Chem.,1986,58, 2583.
    [45]Bertsch P.M. et al. Speciation of hydroxy-aluninurn solution by wet chemical and aluminum-27Al NMR methods [J]. Soil Sci. Soc. Am.J.,1986,50,1449.
    [46]Parker D.R., Bertsch P.M. Identification and quantification of the Al13 tridecameric polycation using Ferron [J]. Environ.Sci.Technol.,1992,26(5), 908-914.
    [47]Parker, D.R., Bertsch, P.M. Formation of the Al13Tridecameric polycation under diverse synthesis conditions [J]. Environ.Sci.Technol.,1992,26(5),914-921.
    [48]Brosset C. On the reactions of the aluminum ion with water [M]. Acta Chem. Scand.,1952,6,910.
    [49]Bersillon J.L. et al. Studies of hydroxyaluminum complexes in aqueous solution [J]. J. research U.S.Geol.Survey.,1978,6(3),325.
    [50]Letterman R.D., Asolekar S.R. Surface ionization of polynuclear species in Al(Ⅲ) hydrolysis-Ⅱ. A conditional equilibrium model [J]. Water Res.,1990,24(8),941.
    [51]汤鸿霄.无机高分子混凝剂“聚合铝”(Ⅰ)基本认识[J].哈尔滨建筑工程学院科研报告,1972,10.
    [52]Tang H.X., Stumm W. The coagulating behaviors of Fe(Ⅲ) polymeric species, I II, III [J]. Water Res.,1987,21(1),115-128.
    [53]Jander G., Winkel A. Diffusion coefficients of basis aluminum solutions [J]. Z.Anorg.Chem.,1931,200,257.
    [54]Brosset C. et al. Studies on the hydrolysis of metal ions, XI. The aluminum ion [J].Acta. Chem., Scand.,1954,8,1917.
    [55]Sillen L.G. On the reaction of the aluminum ion with water [M]. Acta. Chem. Scand,1952,6,910.
    [56]Sillen L.G. On equilibria in systems with polynuclear complex formation [J]. Chem. Scand,1961,15,1981-1992.
    [57]Hsu P.H., Bates T.F. Formation of X-ray amorphous and crystalline aluminum hydroxide [J]. Mineral. Mag.,1964,33,749.
    [58]Hem J.D. Roberson C.E. Aluminum reactions and products in mildly acidic aqueous systems [M]. In Chemical Modeling and Aqueous systems Ⅱ,429, 1990.
    [59]Holmes L.P. et al. Kinetics of aluminum hydrolysis in dilute solutions [J]. J. Phys.Chem.,1968,72,301-304.
    [60]Vermeulen A.C., Stol R.J. et al. Hydrolysis-precipitation studies of aluminum(Ⅲ) solutions, Ⅰ Titration of acidified aluminum solutions [J]. J. Colloid and Inter. Sci.,1975,51(3),449.
    [61]Stol R.J., Vermeulen A.C. et al. Hydrolysis-precipitation studies of aluminum (Ⅲ) solutions, ⅡA kinetic study and model [J]. J. Colloid and Inter.Sci.,1976,51(1), 115-131.
    [62]Letterman R.D., Asolekar S.R. Surface ionization of polynuclear species in Al(Ⅲ) hydrolysis-Ⅰ. Titration results [J]. Water Res.,1990,24(8),931-939.
    [63]Dehek H., Stol R.J. et al. Hydrolysis-precipitation studies of aluminum (Ⅲ) solutions, Ⅰ The role of the sulfate ion [J]. J. Colloid and Inter. Sci.,1978,51(3), 449.
    [64]Fitzgerald J.J. et al. Temperature effects on the 27Al NMR spextra of polymeric aluminum hydrolysis species [J]. J. Magn. Reson.,1989,84,121-127.
    [65]Thomas F., Masion A., Bottero J.Y. et al. Aluminum(Ⅲ) speciation with hydroxy carboxylic acids.27Al NMR study [J]. Environ. Sci. Technol,1993,27,2511.
    [66]Fu G., Nazar L.F., Bain A.D. Aging processes of alumina sol-gels: characterization of new aluminum polyoxycations by 27Al NMR spectroscopy [J]. Chem. Mater.,1991,3,602.
    [67]Axeol M. et al. Fractal structure from small angle X-ray scattering[J]. Physical Review Letters,1986.
    [68]Wang D.S., Tang H. X., Gao Q. Environmental Chemistry,2000,19(5),389-394.
    [69]Zhao H.Z., Luan Z.K., Su Y.B. Chem. J. Chinese Universities,2002,23(5), 751-755.
    [70]Okura T., Goto K., Votuyanagi T. Forms of aluminum determined by an 8-quinolinolate extraction method [J]. Anal. Chem.,1970,48,723.
    [71]Turner R.C. Three froms of aluminum in aqueous system determined by 8-quinolinolate extraction method [J]. Anal. Chem.,1969,34,581.
    [72]Turner R.C., Ross G.J. Conditions in solution during the formation of gibbsite in dilute Al salt solutions.4. Effect of Cl concentration and temperature and a proposed mechanism for gibbsite formation [J]. Can. J. Chem.,1970,48,723.
    [73]冯利,栾兆坤等.铝水解聚合形态研究方法的对比[J].环境化学,1993,12(5),130.
    [74]栾兆坤,冯利等.铝水解聚合形态分布的定量模拟研究[J].环境科学学报,1995,15(1),39-47.
    [75]栾兆坤.无机高分子絮凝剂聚合氯化铝的基础理论与应用研究[D].中国科学院生态环境研究中心,1997.
    [76]冯利.无机高分子絮凝剂的絮凝机理的对比研究[D].中国科学院生态环境研究中心,1997.
    [77]Akitt J.W., Farthing A. Aluminum-27 Nuclear Magnetic Resonance Studies of Heteropolyanions containing aluminum as Heteroatom [J]. J. Chem. Soc. Dalton Trans.1981,1615-1616.
    [78]Akitt J.W., Elders J.M. Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 7. Spectroscopic Evidence for the cation [A1(OH)]2+from Line-broadening studies at High dilution [M]. J. Chem. Soc. Dalton Trans.1985,81,1923-1930.
    [79]Kloprogge J.T., Don seykens John W.G., Jansen J.B.H. The effects of concentration and hydrolysis on the oligomerization and polymerization of Al(Ⅲ) as evident from the 27Al NMR chemical shifts and linewidths [J]. J. Non-Crystalline Solids.,1993,160,144-151.
    [80]姚重华.聚合氯化铝的27Al NMR研究[J].环劈科学学报,1989,9(1),116-119.
    [81]姚重华.水中稀释对聚合氯化铝形态分布的影响[J].环境化学,1991,10(2),1-6.
    [82]郑忠.胶体科学导论[M].第一版.北京:高等教育出版社,1989.
    [83]Overbeek J.T. The rule of Schuldz and Hardy [J]. Pure and Applied Chem.,1962, 52,1151-1161.
    [84]Deryagin B.V., Landau L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes [J]. Acta Physicichim. URSS.14,733-762
    [85]Verwey E.J.W., Overbeek J.T.G. Theory of the stability of lyophbic colloids [J]. New York, Elsevier. Publishing Co.,1948.
    [86]郑忠.胶体稳定性[M].第一版.广州:广东省科技出版社,1993.
    [87]The Faraday Society London. Colloid stability in aqueous and non-aqueous media. Discusstions of the Faraday Society. NO.42
    [88]Ottewill R.H. Faraday Discuss [J]. Chem. Soc.,90,1-15.
    [89]Dentel S.K., Gossett J.M. Mechanisms of coagulation with aluminum salts [J]. JAWWA.,1988,80(4),187-198.
    [90]Licsko I. Realistic coagulation mechanisms in the use of aluminum and iron (Ⅲ) salts [J]. Wat. Sci. Tech.,1997,36(4),103-110.
    [91]汤鸿霄.天然水体中的环境胶体水化学[J].环境学专题报告文集,1984,11.
    [92]狄平宽,单忠健.无机电解质和有机高分子絮凝剂对高岭土表面zeta电位的影响[J].水处理技术,1991,17(6),394-398.
    [93]施振南.絮凝理论综述[J].西南给水排水,1982,(3),30-37.
    [94]Stumm W., Morgan J.J. Aquatic Chemistry [M], Wiley-Interscience, New York, 1981.
    [95]顾夏声,黄铭荣,王占生.水处理工程[M].清华大学出版社,1985,53-80.
    [96]刘昌学译.高分子混凝剂的作用原理[M].西南给排水,1980,(1),30-33.
    [97]陈立丰,李明俊,万诗贵等.高浊度原水絮凝过程的动力学和机理研究[J].水必理技术,1996,22(3),157-161.
    [98]Parker D S, Kaufman W J, Jenkins D. Floc Breakup in Turbulent Flocculation Processes [J]. Journal of the Sanitary Engineering Division:Proceeding of the American Society of Civil Engineers SA 1,1972:79-99.
    [99]Bache D H, Johnson C, McGilligan J F, et al. A Conceptual View of Floc Structure in the Sweep Floc Domain [J]. Water Sci. Technol.,1997,36(4):49-56.
    [100]Jarvis, P., Jefferson, B., Gregory, J., Parsons, S.A.. A review of floc strength and breakage [J]. Water Res.,2005,39:3121-3137.
    [101]Gregory J. Monitoring Floc Formation and Breakage [C]. In Proceedings of the Nano and Micro Particles in Water and Wastewater Treatment Conference, International Water Association, Zurich,2003.
    [102]Boller M, Blaser S. Particles under Stress [J]. Water Sci. Technol.,1998,37(10): 9-29.
    [103]Yeung A K, Gibbs A, Pelton R P. Effect of Shear on the Strength of Polymer-Induced Flocs [J]. J. Colloid Interface Sci.,1997,196:113-115.
    [104]Lee C H, Liu J C. Sludge Dewaterability and Floc Structure in Dual Polymer Conditioning [J]. Adv. Environ. Res.,2001,5:129-136.
    [105]Gregory J., Dupont V.. Properties of flocs produced by water treatment coagualants [J]. Water Sci. Technol.,2001.43(8):203-208
    [106]Francois R. J.. Strength of aluminum hydroxide flocs [J]. Water Res.,1987, 21(9):1023-1030.
    [107]Wu C. C., Wu J. J., Huang R. Y.. Floc strength and dewatering efficiency of alum sludge [J]. Adv. Environ. Res.,2003,7(3):617-621.
    [108]Sharp E. L., Jarvis P., Parsons S. A., et al. The impact of Zeta potential on the physical properties of ferric-NOM flocs [J]. Environ. Sci. Technol.,2006,40(12): 3934-3940.
    [109]井敏莉,李敏,姚敏.分形理论在絮凝形态学中的应用与展望[J].中国水运,2008,8(9):145-147
    [110]金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J].环境科学学报,2001,21(增刊):23-29.
    [111]Wang Y. L., Du B. Y, Liu J., et al. Surface analysis of cryofixation-vacuum-freeze-dried polyaluminum chloride-humic acid(PAC1-HA) flocs [J]. J. Colloid Interf. Sci.,2007,316(2):457-466.
    [112]Li X. Y, Leung R. P. C.. Determination of the fractal dimension of microbial flocs from the change in their size distribution after breakage [J]. Environ. Sci. Technol.,2005,39(8):2731-2735.
    [113]Wu, R. M., Lee, D. J., Waite, T. D., et al. Multilevel structure of sludge flocs [J]. J. Colloid Interf. Sci.,2002,252:383-392.
    [114]Lin M. Y., Lindsay H. M., Weitz D. A., et al. Universality in colloid aggregation [J]. Nature,1989,339(6223):360-362.
    [115]Mu Y, Ren T. T., Yu H. Q.. Drag coefficient of porous and permeable microbial granules [J]. Environ. Sci. Technol.,2008,42(5):1718-1723.
    [116]Wei J. C., Gao B. Y., Yue Q. Y., et al. Comparison of coagulation behavior and floc structurecharacteristic of different polyferric-cationic polymer dualcoagulants in humic acid solution [J]. Water Res,2009,43,724-732.
    [117]付英,于水利,于衍真,等.聚硅酸铁混凝剂絮凝与破碎的定量研究[J].环 境科学,2008,29(1):92-98.
    [118]Yukselen M. A., Gregory J.. The reversibility of floc breakage [J]. Int. J. Miner. Process.,2004,73(2-4):251-259.
    [119]熊毅.天然有机物(NOM)与膜[J].西南给排水,2001,23(5),18-21.
    [120]罗欢,刘广立,刘杰等.不同超滤膜过滤天然有机物的膜污染特性研究[J].环境污染治理技术与设备,6(5),23-26.
    [121]Wei Y. Fouling by humic acid during ultrafiltration and microfiltration for water treatment:[Ph. D. Thesis]. USA:University of Delaware,2001.
    [122]Daniel M.W., Sarah G., Jasprit N. et al. Natural organic matter and DBP formation potential in Alaskan water supplies [J]. Water Res.,2003,37(4), 939-947.
    [123]Dojlido J., Edward Z. Ryszard S.Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw waterworks (Poland) [J]. Water Research,1999,33(14),3111-3118
    [124]Juda W., Mcrae W.A. Coherention ion-exehange gels and membranes [J]. J. Am. Chem. Soc.1950,72,1044.
    [125]Loeb S., Sourirajan, S. Sea water demineralization by means of an osmotiemembrane [J]. Adv. Chem. Ser.,1962,38,117-132.
    [126]Mulder M.,李琳译.膜技术基本原理(第二版)[M],北京:清华大学出版社,1999.
    [127]高以烜,叶凌碧.膜分离技术基础.北京:科学出版社,1989.
    [128]邵刚.膜法水处理技术.北京:化学工业出版社,1998.
    [129]葛元新,朱志良.MBR膜的污染及其清洗技术研究进展[J].清洗世界,2005,21(8),24-29.
    [130]Katsoufidou K., Yiantsios S.G., Karabelas A.J. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling [J]. J. Membrane Sci.,2005,266(1-2),40-50.
    [131]Mackel D., Staude E., Guiver M.D. Static protein adsorption,ultrafiltration behavior and cleanability of hydrophilized polysulfone membranes [J]. Journal of Membrane Science,1999,158(1-2),63-75.
    [132]Nystrom M., Ruohomaki K., Kaipia L. Humic acid as a fouling agent in filtration [J]. Desalination,1996,106(1-3),79-87.
    [133]Jacob J., Pradanos P., Calvo J.I. et al. Fouling kinetics and associated dynamics of structural modifications [J]. Colloids and Surfaces,1998,138(2-3),173-183.
    [134]Cho J., Amy G., Pellegrino J. Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltrationmembranes [J]. Wat Res.,1999,33(11),2517-2526.
    [135]莫罹,黄霞,吴金玲.混凝-微滤组合净水工艺中膜过滤特性及其影响因素[J].环境科学,2002,23(2):45-49.
    [136]郝爱玲,陈永玲,顾平.微污染水处理中混合液特性对膜污染的影响[J].水处理技术,2006,32(2),30-33.
    [137]蒋绍阶,郭庆彬,刘长兴.混凝沉淀/微滤一体化装置处理长江原水的试验研究[J].中国给水排水,2007,23(15),66-72.
    [138]Judd S.J., Hillis P. Optimisation of combined coagulation and microfiltration for water treatment [J]. Water Research,2001,35 (12),2895-2904.
    [139]中华人民共和国化学工业部,《水处理剂聚合氯化铝》[S],1995,GB15892-1995.
    [140]《水和废水监测分析方法》(第四版)[M].北京:中国环境科学出版社.
    [141]Spicer P.T., Pratsinis S.E., Raper J., Amol R., Bushell G., Meesters G. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks[J]. Powder Technology,1998,97,26-34.
    [142]张忠国,栾兆坤,赵颖,崔建华,陈朝阳,李燕中.聚合氯化铝(PACl)混凝絮体的破碎与恢复[J].环境科学,2007,28(2),346-351.
    [143]Yu W.Z., Li G.B., X Y.P., Y X. Breakage and re-growth of flocs formed by alum and PAC1 [J]. Powder Technol,2009,189,439-443.
    [144]Waite T.D., Cleaver J.K., Beattie J.K. Aggregation kinetics and fractal structure of g-alumina assemblages [J]. J. Colloi Interf. Sci.,2001,241,333-339.
    [145]Lin J.L., Huang C., Chin C.J.M. et al. Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms [J]. Water Res., 2008,42,4457-4466.
    [146]Rieker T.P., Hindermann-Bischoff M., Ehrburger-Dolle F. Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites [J]. Langmuir,2000,16,5588-5592.
    [147]Jarvis P., Jefferson B., Parsons S.A. Breakage, regrowth, and fractal natural organic matter flocs [J]. Environ. Sci. Tchnol.,2005,39(7),2307-2314.
    [148]王东升,汤鸿霄等IPF-PAC混凝动力学研究:形态组成的重要性[J].环境科学学报,2001,21(增),17-22.
    [149]Wang M., Muhammed M. Novel synthesis of Al13-cluster based alumina materials [J]. Nanostructures materials,1999,11(8),1219-1229.
    [150]Zhao H., Hu C., Liu H., Zhao X., Qu J. Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process [J]. Environ. Sci. Technol.,2008,42,5752-5758.
    [151]Lin J.L., Huang C., Chin C.J.M., Pan J.R. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PAC1 coagulation [J]. Water Res.,2009,43, 4285-4295.
    [152]Yan M., Wang D., Nia J., Qu J., Chow C.W.K., Liu H. Mechanism of natural organic matter removal by polyaluminum chloride:Effect of coagulant particle size and hydrolysis kinetics [J]. Water Res.,2008,42,3361-3370.
    [153]Dentel S.K. Application of the precipitation-charge neutralization model of coagulation [J]. Environ. Sci. Technol.,1988,22,825-832.
    [154]Dubbin W.E., Sposito G. Copper-glyphosate sorption to microcrystalline gibbsite in the presence of soluble Keggin Al13 polymer [J]. Environ. Sci. Technol.,2005,39,2509-2514.
    [155]Furrer G., Ludwig C., Schindler P.W. On the chemistry of the Keggin Al13 polymer.1. Acid-base properties [J]. J. Colloid Interface Sci.,1992,149,56-67.
    [156]Cao B.C., Gao B.Y., Yue Q.Y. et al. Coagulation effect and floc properties of polyferric silicate sulphate and polyferric sulphate in the Yellow River water treatment [J]. Sci. China Ser. B,2010,53(3),664-670.
    [157]Jiang Q., Logan B.E. Fractal dimensions determined from steady-state size distribution [J]. Environmental Science and Technology,1991,25 (12), 2031-2038.
    [158]王晓昌,丹保宪仁.絮凝体形态学合密度的探讨-(Ⅰ)从絮凝体分形构造谈起[J].环境科学学报,2000,20(3),257-262.
    [159]Yukselen M.A., Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs [J]. J Chem Technol Biot,2004,79,782-788.
    [160]Gregory D., Carlson K. Relationship of pH and floc formation kinetics to granular media filtration performance [J]. Environ Sci Technol.,2003,37(7), 1398-1403.
    [161]高宝玉,王燕,岳钦艳等.PAC与PDMDAAC复合絮凝剂中铝的形态分布[J].中国环境群学,2002,22(5),472-476.
    [162]Jiang J.Q., Graham N.J.D. Observations of the comparative hydrolysis/ precipitation behaviour of polyferric sulphate and ferric sulphate [J]. Water Res., 1998,32(3),930-935.
    [163]Gregory J., Nelson D.W. Monitoring of aggregates in flowing suspensions [J]. Colloids Surface,1986,18,175-188.
    [164]McCurdy K., Carlson K., Gregory D. Floc morphology and cyclic shearing recovery:comparison of alum and polyaluminum chloride coagulants [J]. Water Research,2004,38,486-494.
    [165]Ohto T., Zaitsu Y., Matsui Y., Tambo N. Water Sci. Technol.,1993,27,257-260.
    [166]Tambo N., Matsui Y, Kurotani K., Kubota M., Akiyama H., Ohto T., Zaisu Y, Itoh H. Control of coagulation process by dual wavelength particle analyzer [J]. Wat Sci Tech,1997,36,135-142.
    [167]Gregory J. Turbidity fluctuation in flowing suspensions [J]. J Colloid Interface Sci.,1985,105,357-371.
    [168]Yukselen M.A., Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs [J]. Journal of Chemical Technology and Biotechnology, 2004,79,782-788.
    [169]Selomulya C, Amal R., Bushell G., Waite T.D. Evidence of shear rate dependence on restructuring and breakup of latex aggregates [J]. J. Colloid Interf. Sci.,2001,236,67-77.
    [170]Liu H.J., Hu C.Z., Zhao H., Qu J.H. Coagulation of humic acid by PAC1 with high content of Al13:The role of aluminum speciation [J]. Separation and Purification Technology,2009,70,225-230.
    [171]Wang Y, Gao B.Y, Xu X.M., Xu W.Y, Xu, G.Y Characterization of floc size, strength and structure in various aluminum coagulants treatment [J]. J. Colloid Interface Sci.,2009,332,354-359.
    [172]Chu Y.B., Gao B.Y., Yue Q.Y., Wang Y. The effect of cycle shear and suifate on dynamic coagulation of alum coagulants [J]. Science in China Series B: Chemstry,2007,37,440-445. (In Chinese)
    [173]Bache D.H., Rasool E., Moffatt D., McGilligan F.J. On the strength and character of alumino-humic flocs [J]. Water Science & Technology,1999,40, 81-88.
    [174]Hiradate S., Yamaguchi N.U. Chemical species of Al reacting with soil humic acids [J]. Journal of Inorganic Biochemistry,2003,97,26-31.
    [175]Dubbin W.E., Sposito G. Copper-glyphosate sorption to microcrystalline gibbsite in the presence of soluble Keggin Al13 polymer [J]. Environ. Sci. Technol.,2005,39,2509-2514.
    [176]Logan B.E., Kilps J.R. Fractal dimensions of aggregates formed in different fluid mechanical environments [J]. Water Research,1995,29(2),443-453.
    [177]Bushell G., Amal R. Measurement of fractal aggregates of polydisperse particles using small angle light scattering [J]. J. Colloid and Interface Science,2000, 221(2),186-194.
    [178]Mandelbrot B.B. How long is the coast of B ritain, statistical self-similarity and fractal dimension [J]. Science,1967,156,636-638.
    [179]Li D., Ganczarczyk J. Fractal geometry of particle aggregates generated in water and wastewater treatment processes [J]. Environmental Science and Technology,1989,23 (11),1385-1389.
    [180]Sharp E.L., Jarvis P., Parsons S.A., Jefferson B. The impact of zeta potential on the physical properties of ferric-NOM flocs [J]. Environ Sci Technol.,2006, 40(12),3934-3940.
    [181]Yu W.Z., Gregory J., Campos L. Breakage and Regrowth of Al-Humic Flocs-Effect of Additional Coagulant Dosage [J]. Environ. Sci. Technol.,44, 6371-6376.
    [182]Yu W.Z., Gregory, J., Campos, L. The effect of additional coagulant on the re-growth of alum-kaolin flocs [J]. Sep. Purif. Technol.,2010,74,305-309.
    [183]Xu W.Y., Gao B.Y., Yue Q.Y., Wang Y. Effect of shear force and solution Ph on flocs breakage and re-growth formed by nano-Al13 polymer [J]. Water Res.,2010, 44(6),1893-1899.
    [184]Tang H.X., Luan Z.K. Features and mechanism for coagulation-flocculation processes of polyaluminum chloride [J]. J. Environ. Sci.,1995,7(2),204-211.
    [185]Buffle J., Parthasarathy N., Haerdi W. Importance of speciation methods in analytical control of water treatment processes with application to fluoride removal from wastewater[J]. Wat. Res.,1985,19,7-23.
    [186]董秉直,曹达文,范谨.初膜技术应用于净水处理的研究和现状[J].给水排水,1999,25(2),28-31.
    [187]Wang Y., Gao B.Y., Xu X.M., Xu W.Y., Xu G.Y. Characterization of floc size, strength and structure in various aluminum coagulants treatment [J]. J. Colloid Interf. Sci.,2009,332,354-359.
    [188]Zhao H., Hu C.Z., Liu H.J., Zhao X., Qu J.H. Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process [J]. Environ. Sci. Technol.,2008,42,5752-5758.
    [189]Serra T., Colomer J., Logan B.E. Efficiency of different shear devices on flocculation [J]. Water Res.,2008,42,1113-1121.
    [190]Lin J.L., Huang C.P., Pan J.R., Wang D.S. Effect of Al(Ⅲ) speciation on coagulation of highly turbid water [J]. Chemosphere,2008,72,189-196.
    [191]Hopkins D.C., Ducoste J.J. Characterizing flocculation under heterogeneous turbulence [J]. J. Colloid Interface Sci.,2003,264,184-194.
    [192]Selomuly C., Amal R., Bushell G., Waite T.D. Evidence of shear rate dependence on restructuring and breakup of latex aggregates [J]. J. Colloid Interface Sci.,2001,236,66-77.
    [193]Wang J., Guan J., Santiwong S.R., Waite T.D. Characterization of floc size and structure under different monomer and polymer coagulants on micro filtration membrane fouling [J]. J. of Membrane Sci.,2008,321,132-138.
    [194]Sun T., Liu L.L., Wan L.L., Zhang Y.P. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash [J]. Chem. Eng. J.,2010,163,48-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700