用户名: 密码: 验证码:
基于凸优化的雷达波形设计及阵列方向图综合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凸优化是一类包含最小二乘和线性规划问题在内的特殊数学优化,凸优化可以保证得到全局最优解,并且具有高效、可靠的数值求解方法使得凸优化在实际中获得了广泛的应用。本文将凸优化方法应用到雷达波形设计和阵列方向图综合中,主要研究了基于凸优化的低旁瓣脉压滤波器优化设计、任意相位编码信号及其脉压滤波器的联合优化、非线性调频信号的优化设计方法以及具有幅度加权动态约束的阵列方向图综合设计方法,同时研究了基于凸优化和遗传算法相结合的阵列方向图模值综合和低旁瓣稀布阵方向图综合优化方法。
     本论文的创新点如下:
     1.针对编码信号的高旁瓣问题提出一种基于二阶锥规划的低旁瓣滤波器设计方法。将最大增益处理损失约束下的旁瓣抑制滤波器设计转化为二阶锥规划问题,采用内点法进行高效求解。在给定最大增益处理损失及滤波器长度的条件下可以获得最优的旁瓣电平。和已有方法相比,所提方法可以同时兼顾旁瓣电平、增益处理损失和滤波器长度三方面的指标,具有设计灵活、精度高和收敛性好的优点。仿真和实测数据设计结果验证了方法的有效性。
     2.针对具有任意相位的多相编码信号提出一种编码信号与脉压滤波器联合优化的设计方法。该方法采用凸优化求解现有相位编码信号在给定最大增益处理损失约束下的最小峰值旁瓣抑制相关器,从而构造一种新的相位编码信号,并通过多次迭代进一步降低其距离旁瓣,获得了性能良好的信号波形及脉压滤波器系数。仿真结果表明,该方法在不增加脉压滤波器长度的情况下,以很小的增益处理损失为代价获得了接近理想的峰值旁瓣电平。
     3.在窗函数法的基础上提出一种改进的非线性调频信号设计方法。该方法采用凸优化求解窗函数法设计的非线性调频信号的最小峰值旁瓣抑制相关器,并基于此构造一种新的非线性调频信号,通过多次迭代可进一步降低其距离旁瓣。适当松弛信号波形幅度的恒模约束,改进的设计方法在给定的主瓣宽度条件下可以获得更低的距离旁瓣,而且适用于小时宽带宽积的非线性调频信号设计。仿真数据的设计结果验证了方法的有效性。
     4.提出一种遗传算法和凸优化相结合的方向图模值综合方法。将方向图主瓣的相位值作为遗传算法的优化变量,结合期望主瓣的模值构造适应度函数。利用凸优化理论求解该适应度函数可得相应个体适应度的最优值,有效提高了算法的搜索性能。相位的优化使得该方法综合结果与阵列参考点的选择无关,而且适用于任意阵。理论分析和仿真结果验证了方法的有效性。
     5.针对稀布阵列的阵元分布综合,提出一种基于整数编码遗传算法的优化设计方法。该方法采用整数编码的个体描述方式在保证阵元稀布率恒定的同时,减小了搜索的空间。并且在优化阵元分布的基础上采用凸优化方法进一步优化阵列权值,显著降低了阵列方向图的旁瓣。所提方法可以同时兼顾阵列孔径、阵元稀布率以及最小阵元间距约束三方面的要求。
     6.提出一种权值幅度动态约束的阵列方向图综合方法。将权值幅度动态约束下的方向图综合这一非凸问题转换为两次凸优化进行求解,使优化所得权值的幅度动态控制在一定的范围内。仿真结果表明,采用所提方法可以同时兼顾主瓣形状、旁瓣电平和加权幅度动态三方面的性能指标。
Convex optimization is a special class of mathematical optimization problems, which includes least-squares and linear programming problems. For a convex optimization problem, the global optimal solution can be guaranteed and it can be solved reliably and efficiently with a numerical method, which make the convex optimization widly used in practice. Based on this consideration, the convex optimization method is applied to the radar waveform design and the array pattern synthesis in the dissertation. Based on the convex optimization, the lower sidelobe pulse compression filter design, the optimal design combined arbitrary phase codes with pulse compression filters optimization, the optimal design for non-linear frequency modulation signal and the pattern synthesis method with the constraint of weight amplitude dynamic range are analysised mainly in the dissertation, and also the pattern synthesis methods with desired magnitude response and the thinned array synthesis method with lower sidelobe, based on the combination of convex optimization and genetic algorithm are studied in the dissertation. The primary contributions include in the dissertation can be summarized as follows:
     1. To the problem of the high-sidelobe with the match filtering of the coded-signals, a method of sidelobe suppression filter design based on second-order cone programming is proposed. The design of minimum sidelobe filter, considering the maximum loss in process gain, is converted to a Second-order Cone Programming problem, which can be solved efficiently by interior-point methods. The optimal tradeoff among the sidelobe level, the loss in process gain and the filter orders is provided in proposed method, which has many advantages over those available, such as flexible design, high accuracy and good convergence. The validity of method is confirmed by the result of the simulate data and the measured data.
     2. For the polyphase codes with arbitrary phase, an optimal design method combined with pulse compression filters is proposed. Under the constraint of the maximum gain loss, The minimum peak sidelobe suppression correlator for an existing phase codes is given by convex optimization, and based on which, a novel phase codes is presented. Its range sidelobe can be farther decreased by multi-iterative operations. The simulation results demonstrates that a nearly optimal peak sidelobe level is achieved by the presented method with less loss of process gain, without increasing the length of pulse compression filters.
     3. An improved method for Non-Linear Frequency Modulation (NLFM) signal design is proposed based on window functions method. The minimum peak sidelobe suppression correlator of NLFM signal, based on window functions, is solved by convex optimization, and based on which a new NFLM signal is presented. its range sidelobe can be farther decreased by multi-iterative operations. Given the limited mainlobe width, a lower range sidelobe can be obtained by the presented method with an appropriate relaxation on the constant constraint of amplitude, and also, the presented algorithm is suitable for the NLFM signal design with small time-frequency product. The validity of method is demonstrated by the simulation results.
     4. A pattern synthesis with desired magnitude response, based on the combination of genetic algorithm and convex optimization, is proposed. The phase in mainlobe is used as the optimal variables for genetic algorithm, and the fitness function is constructed with the desired magnitude of mainlobe. The optimal fitness values of the corresponding individual can be obtained by convex optimization, which greatly improves the algorithm search performance. The phase optimization with the proposed algorithm has no relation to the array reference point, and the algorithm is suitable for the arbitrary array synthesized. The validity of method is confirmed by the simulation result and theory analysis.
     5. For the elements position distribution of thinned array whose elements are thinned from the uniform grid, an optimal algorithm of Genetic Algorithm based on integer coded is proposed. The search space is reduced greatly because of the adoption of integer coding. The manner of individual description improves the optimization efficiency of GA, and the better optimized results compared with conventional ones is obtained. The proposed method can be used for the requirement of the array aperture, the elements thinned ratio and the minimum element space constraints, which has the advantages of flexible design and quick convergence.
     6. An improved pattern synthesis algorithm based on optimization theory is proposed. The non-convex problem of array pattern synthesis with a dynamic range constraint in amplitude is converted to two convex formulations, and the dynamic range of the optimal weight in amplitude is confined to a certain bound. The simulation results demonstrates that an optimal tradeoff among the mainlobe pattern, the sidelobe level and the dynamic range in weight amplitude can be obtained by the proposed mithod.
引文
[1] Wemer Jochen. Optimization: theory and applications Braunscbweig: Vieweg, 1984.
    [2] H. W. Kuhn, A. W. Tucker, Nonlinear programming. In: Neyman J, ed. Proceeding of the Second Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1951, pp.481-492.
    [3] M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice Hall, Englewood Cliffs, NJ, 1976.
    [4] G. P. McCormick. Nonlinear Programming: Theory, Algorithm, and Applications. John Wiley & Sons, New York, 1983.
    [5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorityms. John Wiely & Sons, New York, 2d edition, 1993.
    [6] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.
    [7] Christakis Charalambous.A Unified review of optimization[J]. IEEE Transactions on Microwave Theory and Techniques, vol.22, 3:289-300,1974.
    [8] Michael T. Heath著,张威,贺华,冷爱萍译.科学计算导论(第二版).清华大学出版社. 2005.
    [9]黄红选,韩继业,著.数学规划.清华大学出版社. 2006.
    [10] L Vandenberghe. and S. Boyd, Semidefinite Programming. SIAM Rev.,31:49-95, 1996
    [11] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone programming. Linear Algebra and Its Applications, 284:193-228, 1998.
    [12] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
    [13] N.K. Karmarkar, A new polynomial-time algorithm for linear programming Combinatorial. 4:373-395, 1984.
    [14] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming. Philadelphia, PA, 1994.
    [15] Y. Ye, Interior-Point Algorithm: Theory and Analysis. New York: John Wiley and Sons, 1997.
    [16] S. Boyd, L. Vandenberghe and M. Grant, Efficient convex optimization for engineering desing. in Proc. IFAC Symp. Robust Contr. Des., pp.14-23, Sept. 1994.
    [17] S.-P. Wu, S. Boyd and L. Vandenberghe, FIR filter design via semidefinite programming and spectral factorization. in Proc. IEEE Conf. Decision Contr., Kobe, Japan, pp.271-276, 1996.
    [18] H. Lebret and S. Boyd, Antenna array pattern synthesis via convex optimization. IEEE Trans. Signal Process., vol.45, 3:526-532,1997.
    [19] S.-P. Wu, S. Boyd and L. Vandenberghe, FIR filter design via spectral factorization and convex optimization. in Applied and Computational Control, Signals, and Circuits., vol.1,pp.215-245, Birkhauser, 1998.
    [20] R. Lorenz and S. Boyd, Robust minimum variance beamforming. IEEE Trans. Signal Process., vol.53, 5:1684-1696,2005.
    [21] A. Mutapcic, S.-J. Kim, and S. Boyd, Array signal processing with robust rejection constraints via second-order cone programming. Proceeding Asilomar Conference on Signals, Systems, and Computers.pp.2267-2270,Oct.-Nov. 2006
    [22] A. Mutapcic, S.-J. Kim and S. Boyd, Beamforming with uncertain weights. IEEE Signal Processing Letters,.vol.14, May 2007.
    [23] A. Mutapcic, S.-J. Kim, and S. Boyd, Robust Chebyshev FIR equalization. Proc. 50th IEEE Global Communications Conference. pp.3074-3079, Washington DC. Nov.2007
    [24] S.-J. Kim, A. Magnani, A. Mutapcic, S.Boyd, and Z.-Q. Luo, Robust beamforming via worst-case SINR maximization. IEEE Trans. Signal Process., vol.56, 4:1539-1547,2008.
    [25] W.-K. Ma, T.N. Davidson, K.M. Wong, Z.-Q. Luo, and P.-C. Ching, Quasi-maximum-likelihood multiuser detection using semi-definite relaxationwith application to synchronous CDMA. IEEE Trans. Signal Process., vol.50, 4:912-922,2002.
    [26] T.Davidson, Z. Luo, and J. Sturm, Linear maxtrix inequality formulation of spectral mask constraints with applications to FIR filter design. IEEE Trans. Signal Process., vol.50, 11:2702-2715,2002.
    [27] L. Li, Z.-Q. Luo, K. Wong, and E. Bosse, Robust filtering via semidefinite programming with applications to target tracking. SIAM Journal on Optimization, vol. 12, pp.740-755,2002.
    [28] S.Vorobyov, A.Gershman, and Z.-Q. Luo, Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Trans. Signal Process., vol.51, 4:313-324,2003.
    [29] J. Liu, A.B. Gershman, Z.-Q. Luo, K.M. Wong, Adaptive beamforming with sidelobe control: a second-order cone programming approach. IEEE Signal Process. Lett, vol.10, 11:331-334,2003.
    [30] Z.-Q. Luo, Applications of Convex Optimization in Signal Processing and Digital Communication, Mathematical Programming, Vol. 97, Series B, pp. 177-207, 2003.
    [31] Z.-Q.Luo, and W. Yu, An Introduction to Convex Optimization for Communications and Signal Processing," IEEE Journal on Selected Areas of Communication, Vol. 24, No. 8:1-13, 2006.
    [32] I.D. Schizas,, G.B. Giannakis, and Z.-Q. Luo, Distributed Estimation Using Re- duced Dimensionality Sensor Observations," IEEE Trans. Signal Process., Vol. 55, 8: 4284-4299, 2007.
    [33] E. Matskani, N.D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas, Convex Approximation Techniques for Joint Multiuser Downlink Beamforming and Admission Control, IEEE Transactions on Wireless Communication, Vol. 7, 7: 2682-2693, 2008.
    [34] A. De Maio, S. De Nicola, Y. Huang, Z.-Q. Luo, and S. Zhang, Design of Phase Codes for Radar Performance Optimization With a Similarity Constraint, IEEE Transactions on Signal Processing, vol.57,2:610-620.2009.
    [35] J. Li, Y. Xie, P. Stoica, X. Zheng, and J. Ward, Beampattern Synthesis Via a Matrix Approach for Signal Power Estimation, IEEE Trans. on Signal Process., Vol. 55, 12: 5643-5657, 2007.
    [36] P. Stoica, J. Li, and Y. Xie, On Probing Signal Design for MIMO Radar, IEEE Trans. on Signal Process., Vol. 55, . 8: 4151-4161, 2007.
    [37] J. Li, P. Stoica, and T. Yardibi, Covariance Beamforming, Covariance Matrix Tapers and Matrix Beamforming Are All Related, IET Electronics Letters, Vol. 44, No. 5, 2008.
    [38] P. Stoica, J. Li, and X. Zhu, Waveform Synthesis for Diversity-Based Transmit Beampattern Design, IEEE Trans. on Signal Process., Vol. 56, 6: 2593-2598, 2008.
    [39] J. Li, P. Stoica, and X. Zheng, Signal Synthesis and Receiver Design for MIMO Radar Imaging, IEEE Trans. on Signal Process., Vol. 56, 8: 3959-3968, .2008.
    [40] P. Stoica, J. Li, and M. Xue, Transmit Codes and Receive Filters for Pulse Compression Radar Systems, IEEE Signal Processing Magazine, Vol. 25, 6: 94–109, 2008.
    [41] J. Li and P. Stoica, eds, MIMO Radar Signal Processing, Hoboken, NJ: John Wiley & Sons, 2009.
    [42]鄢社锋,马远良.圆环形声基阵低频超增益性能研究.西北工业大学学报, 20(1):79-82, 2002.
    [43] Yan Shefeng, Ma Yuanliang, A unified framework for designing FIR filters with arbitrary magnitude and phase response, Digital Signal Processing (Elsevier), vol.14, 6:510-522, 2004.
    [44] Yan Shefeng, Ma Yuanliang. High-resolution broadband beamforming and detection methods with real data, Acoustical Science and Technology (Japan), vol.25, 1:73-76, 2004.
    [45] Yan Shefeng, Ma Yuanliang, Frequency invariant beamforming via jointly optimizing spatial and frequency responses, Progress in Natural Science, vol.15, 4:368-374, 2005.
    [46] Yan Shefeng, Ma Yuanliang, Sun Chao, Optimal beamforming for arbitrary arrays using second-order cone programming, Chinese Journal of Acoustics, vol.24, 1:1-9, 2005.
    [47] Yan Shefeng, Ma Yuanliang, Robust super gain beamforming for circular array via second-order cone programming. Applied Acoustics (Elsevier), vol.66, 9: 1018-1032, 2005.
    [48] Yan Shefeng, Ma Yuanliang, Frequency invariant beamforming via optimal array pattern synthesis and FIR filters design, Chinese Journal of Acoustics, vol.24, 3:202-211, 2005.
    [49]鄢社锋,马远良,孙超.任意几何形状和阵元指向性的传感器阵列优化波束形成方法.声学学报, 30(3): 264-270, 2005.
    [50]鄢社锋,马远良.基于二阶锥规划的任意传感器阵列时域恒定束宽波束形成.声学学报, 30(4): 309-316, 2005.
    [51]鄢社锋,马远良,侯朝焕,宽带波束域相干信号子空间高分辨方位估计.声学学报, 31(5): 418-424, 2006.
    [52]鄢社锋,马远良.二阶锥规划方法对于时空域滤波器的优化设计与验证.中国科学(E辑), 36(2): 153-171, 2006.
    [53]鄢社锋,侯朝焕,马晓川,马远良,基于凸优化的时域宽带旁瓣控制自适应波束形成,声学学报, 32(1): 5-9, 2007.
    [54]鄢社锋,马远良.传感器阵列波束优化设计及应用.科学出版社.2009.
    [55] J. Sturm, Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones,2001. Available from http://sedumi.ie.lehigh.edu.
    [56] K.-C. Toh, M. J. Todd, and R. H. Tutuncu, SDPT3: Matlab software for semidefinite-quadratic-linear programming, ver.4.0(beta). Available at www.math.nus.edu.sg/~mattohkc/sdpt3.html, 2006.
    [57] M. Grant, S. Boyd, and Y. Ye, CVX: Matlab software for disciplined convex programming, ver.1.2. Available at www.stanford.edu/~boyd/cvx/,2009.
    [58] J. L?fberg, YALMIP: A Toolbox for Modeling and Optimization in MATLAB, Available at http://control.ee.ethz.ch/~joloe/wiki/pmwiki.php.
    [59]陈国良,王煦法,庄镇泉,王东生.遗传算法及其应用.北京:人民邮电出版社. 1996. [60 ]张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社. 2000.
    [61]王小平,曹立明.遗传算法-理论、应用与软件实现.西安交通大学出版社, 2003.
    [62]玄光男,陈润伟.遗传算法与工程优化.清华大学出版社. 2004.
    [63] J. D. Bagley, The behavior of adaptive systems which employ genetic and correlation algorithms. Dissertation Abstracts International, 1968: 28(12). [64 ] J. H. Holland, Adaptation in Nature and Artificial Systems. The University of Michigan Press, 1975.
    [65]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用, 40(6):72-79, 2004.
    [66] S. Katar, A. kalos. D. A. West. A hybrid swarm optimizer for efficient parameter estimation[A]. Proceedings of the Congress on Evolutionary Computafion[C]. Portland, USA, 309-315, 2004.
    [67] W. J. Zhang, X. F. Xie. DEPSO:hybrid particle swarm with differential evolution operator[J]. IEEE Transaction on Evolutionary Computation, 7(1): 117-132, 2003.
    [68]梁化楼,戴贵亮.人工神经网络与遗传算法的结合:进展与展望.电子学报, 23(10): 194-200, 1995.
    [69]王凌,智能优化算法及应用.清华大学出版社. 2004.
    [70]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望.计算机学报, 25(12): 1281-1293, 2002.
    [71]焦李成,杜海峰.人工免疫系统进展与展望.电子学报,31(10): 1540-1548, 2003.
    [72]邵仕泉,基于BP神经网络的遗传算法在数字滤波器设计中的应用,电子科技大学硕士论文,2005.
    [73] Pham D.T., Jin G., Genetic algorithm using gradient-like reproduction operator, Electronics letters, August 31(18):1558-1559, 1995.
    [74]陶海红,基于遗传算法的雷达波形设计和波束形成算法研究.西安电子科技大学博士论文, 2004.
    [75]杨淑嫒,刘芳,焦李成.一种基于量子染色体的遗传算法.西安电子科技大学学报(自然科学版),31(1): 76-80, 2004.
    [76]李成,量子遗传算法的改进及其在通信信号处理中的应用.南京邮电大学硕士论文, 2008.
    [77]钟云山,最小二乘法结合遗传算法在平面波综合技术中的应用,西安电子科技大学硕士论文,2008.
    [78] D. O. North, Analysis of Factors which Determine Signal-to-noise Discrimination in Pulsed Carrier Systems, RCA Rept, PTR-6C, June 1943.
    [79] J. L. Lawson and G. E. Uhlenbeck, Threshold Signals, Radiation Lab. Series No. 24, McGraw-Hill, 1950.
    [80] P. M. Woodward and I. L. Devies, A Theory of Radar Information, Phil. Mag. Vol. 41: 1001-1017, 1950.
    [81] H. Urkowitz, Filter for Detection of Small Signals in Clutter, J. Appl. Phy. Vol. 24: 1024, 1953.
    [82] R. Manasse, The Use of Pulse Coding to Discriminate Against Clutter, AD260. 230, 1961.
    [83] P. M. Woodward, Probability and Information Theory with Application to Radar. MaGraw-Hill, 1953.
    [84] C. H. Wilcox. The Synthesis Problem for Radar Ambiguity Function. AD 239427, pp.14-25. 1960.
    [85] S.M. Sussman, Least-square Synthesis of Radar Ambiguity Functions. IRE Trans. Vol.IT-8,3:247-253. 1962.
    [86] J. D. Walf, G. M. Lee and C. E. Suyo, Radar Waveform Synthesis by Mean-square Optimization Techniques, IEEE Trans. 5(7):45-51. 1976.
    [87] E.L. Key, E.N. Fowle and R.D. Haggarty, A Method of Designing Signals of Large Time-bandwidth Production, IRE Int.Conv. Record 4, pp.146-155, 1961.
    [88] A.W. Rihaczek, Radar Waveform Selection-A Simplified Approach, IEEE Trans. AES, 7(9):146-151. 1971.
    [89]林茂庸,柯有安.雷达信号理论.合肥:国防工业出版社, 1984.
    [90] J. R. Guerci and P. Grieve, Optimum matched illumination-reception radars, U.S. Patent 5 121 125, 1992, and U.S. Patent 5 175 552, 1992.
    [91] M. R. Bell, Information theory and radar waveform design, IEEE Trans. Information Theory, vol. 39, pp. 1578–1597, 1993.
    [92] S. U. Pillai, H. S. Oh, D. C.Youla, and J. R Guerci.. Optimum transmit-receiver design in the presence of signal-dependent interference and channel Noise. IEEE Trans. on Information Theory, 2000, 46(2):577-584.
    [93] D. A. Garren, M. K. Osborn, A. C. Odom, J. S. Goldstein, S. U. Pillai, and J. R. Guerci. Enhanced target detection and identification via optimised radar transmission pulse shape. IEE Proc.Radar, Sonar Navig, 148(3):130-138. 2001.
    [94]陶海红,廖桂生. X波段单发多收体制下用于解距离模糊的时变二相码波形优化设计[J].宇航学报, 26(5):657-662,2005.
    [95] H. Deng. Synthesis of Binary Sequences with Good Autocorrelation and Cross-correlation Properties by Simulated Annealing[J]. IEEE Transactions on Aerospace and Electronic Systems, 32(1):98-107, 1996.
    [96]邓海,模拟退火算法及其在相位编码信号设计中的应用[J].电子学报, 24(1):83-87. 1996.
    [97] H. Deng. Polyphase Code Design for Orthogonal Netted Radar Systems[J]. IEEE Transactions on Signal Processing, 52(11):3126-3135, 2004.
    [98] H. Deng. Discrete Frequency-Coding Waveform Design for Orthogonal Netted Radar Systems[J]. IEEE Processing Letters, 11(2):179-182, 2004.
    [99]鲍坤超,陶海红,廖桂生.多发射体制下小卫星分布式雷达系统的波形设计[J],电子与信息学报,29(9):2117-2119, 2007.
    [100]纠博,宽带雷达波形优化设计方法.西安电子科技大学博士论文, 2009.
    [101] Bo Liu, Zishu He and Qian He, Optimization of Orthogonal Discrete Frequency-Coding Waveform Based on Modified Genetic Algorithm for MIMO Radar. International Conference on Communication, Circuits and Systems (ICCCAS), pp.966-970, 2007.
    [102] Bo Liu,Zishu He.Mitigation of Autocorrelation Sidelobe Peaks of Orthogonal Discrete Frequency Coding Waveform for MIMO Radar, IEEE on RadarConference, pp.1-6, 2008.
    [103] Bo Liu,Zishu He.Orthogonal Discrete Frequency-Coding Waveform Design for MIMO Radar. Journal of Electronics(China), 25(4):471-476. 2008.
    [104] M. I. Skolnik, G . Nemhauser, J. W. Sherman, Dynamic programming applied to unequally spaced arrays [J]. IEEE Trans. on Antenna and Propagation. 12(1) : 35-43, 1964 .
    [105] V. Murino , A. Trucco , C . S. Regazzoni , Synthesis of unequally spaced arrays by simulated annealing[J] . IEEE Trans Antennas Signal Processing, 44(1): 119 -123. 1996.
    [106]姚昆,杨万麟.最佳稀布直线阵列的分区动态规划法[J],电子学报, 22(12): 87-90, 1994.
    [107]胡星航,林德云.矩形平面阵列天线旁瓣电平优化的遗传算法[J],电子学报, 27 (12) :119-120,1999.
    [108]李东风,龚中麟.六变形平面天线阵优化稀疏布阵研究[J],电子学报, 30 (3) :376-380,2002.
    [109]付云起,袁乃昌,毛钧杰.基于遗传算法和模拟退火的不等间距稀布阵的设计[J] .电子与信息学报, 23(7):700-704, 2001.
    [110]陈客松,何子述,韩春林.非均匀线天线阵优化布阵研究[J].电子学报. 34(12) : 2263-2267, 2006.
    [111] R. L. Haupt Thinned arrays using genetic algorithms[J]. IEEE Trans. on Antenna and Propagation. 42(7):993-999, 1994.
    [112]王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报. 31(12A): 2135 -2138, 2003.
    [113]陈客松,何子述,韩春林.利用GA实现非对称稀疏线阵旁瓣电平的优化[J].电子与信息学报, 29(4):987-990, 2007.
    [114]赵光辉,陈伯孝.基于二次编码的MIMO雷达阵列稀布与天线综合[J].系统工程与电子技术. 30(6):1032-1036, 2008.
    [115]陈客松,何子述,唐海红.对称线阵的优化稀疏研究[J].电子与信息学报, 31(6):1490-1492, 2009.
    [116]陈客松,稀布天线阵列的优化布阵技术研究.电子科技大学博士论文, 2006.
    [117] C. L. Dolph, A Current distribution for broadside arrays which optimizes the relationship between beamwidth and sidelobe level. Proc. IRE, 34:335-348, 1946.
    [118] H. J. Riblet, A current distribution for broadside arrays which optimizes the relationship between beamwidth and sidelobe level. Proc. IRE, 35:335-348, 1947.
    [119] T. T. Taylor, Design of line source antennas for narrow beamwidth and low sidelobes. IRE Trans. Antennas Propagation, 3:16-28, 1955.
    [120] T. T. Taylor, Design of circular apertures for narrow beamwidth and low sidelobes. IRE Trans. Antennas Propagation, 8(1):17-22, 1960.
    [121] R. S. Elliott, Design of line source antennas for sum patterns with side lobes of individually arbitrary height. IEEE Trans. on Antenna and Propagation. 24(1): 76-83, 1976.
    [122] R. C. Hansen, Array pattern control and synthesis. Proc. IEEE, 80(1):141-151., 1992.
    [123]马远良,任意结构形状传感器阵方向图的最佳化.中国造船, 87(4):78-85, 1984.
    [124] C. A. Olen, R. T. Compton, A numerical pattern synthesis algorithm for arrays. IEEE Trans. on Antenna and Propagation. 38(10): 1666-1676, 1990.
    [125] P. Y. Zhou, M. A. Ingram, Pattern synthesis for arbitrary arrays using an adaptive array method. IEEE Trans. on Antenna and Propagation. 46(11): 1759-1760, 1998.
    [126] Q. H. Guo, G. S. Liao and Y. T. Wu, Pattern synthesis method for arbitrary based on LCMV criterion. Electronics Letters, 39(23):1628-1630, 2003.
    [127]张霞,陶海红,廖桂生.一种任意阵的方向图综合方法[J].电子与信息学报, 30(3):738-741, 2008.
    [128] Wu R, Bao z, Ma Y, Control of peak sidelobe level in adaptive arrays.IEEE Trans. on Antenna and Propagation. 44(10): 1341-1347, 1996.
    [129]张保嵩.宽带接收水声基阵优化设计研究.西北工业大学博士学位论文, 1999
    [130] L.Wu, A. Zielinski, Equivalent linear array approach to array pattern synthesis. IEEE J. Ocean. Eng,. 18(1):6-14, 1993.
    [131] L.Wu, A. Zielinski, An iterative method for array pattern synthesis. IEEE J. Ocean. Eng,. 18(3):280-286, 1993.
    [132] Zhan Shi, Zhenghe Feng. A New Array Pattern Synthesis Algorithm Using the Two-Step Least-Squares Method. IEEE Signal Processing Letters., Vol. 12, 3: 250-253, .2005.
    [133] C. Tseng and L. J. Griffiths, A Simple algorithm to achieve desired patterns for arbitrary arrays. IEEE Trans. on Signal Process., Vol. 40, 11: 2737-2746, 1992.
    [134] B. P. Ng, M. H. Er, and C.Kot. A flexible array synthesis method using quadratic programming. IEEE Trans. on Antenna and Propagation. 41(11): 1541-1550, 1993.
    [135] M. Er, Array pattern synthesis with a controlled mean-square sidelobe level. IEEE Trans. on Signal Process., Vol. 40, 4: 977-981, 1992.
    [136] Wang F, V. Balakrishnan, and Zhou Y. Optimal array pattern synthesis using semidefinite programming[J]. IEEE Trans. on Signal Processing, 51(5): 1172-1183. 2003.
    [137] Yan S F, Ma Y L, and Yang K D. Optimal array pattern synthesis with desired magnitude response[J]. Sonar Detection Systems I, 14(11): 510-522, 2004.
    [138] Randy L.Haupt, An Introduction to Genetic Algorithms for Electromagnetics. IEEE Antennas and Propagation Magazine, 37(2):7-15, 1995.
    [139] Randy L.Haupt, Phase-Only Adaptive Nulling with a Genetic Algorithms. IEEE Trans. on Antenna and Propagation. 45(6): 1009-1015, 1997.
    [140] Francisco J. Ares_Pena, et al. Genetic algorithm in the design and optimization of antenna array pattern[J]. IEEE Trans. on Antenna and Propagation, 47(3): 506-510, 1999.
    [141] Dhanesh G. Kurup, Mohamed Himdi, and Anders Rydberg, Synthesis of Uniform Amplitude Unequally Spaced Antenna Arrays Using the Differential Evolution Algorithm. IEEE Trans. on Antenna and Propagation, 51(3): 2210- 2217, 2003.
    [142] Fan Yu, Jin Ronghong, Wu Zhenyi, et al. Pattern synthesis of linear arrays using a hybrid optimization algorithm[J].ICSP’04 Proceedings.
    [143]范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报. 2004 , 32(12): 1997 - 2000.
    [144]范瑜,进化计算理论及其在阵列天线方向图综合中的应用,上海交通大学硕士论文,2005
    [145] Randy L.Haupt, Antenna Design With a Mixed Integer Genetic Algorithm IEEE Trans. on Antenna and Propagation. 55(3): 577-582, 2007.
    [146]张霞,陶海红,廖桂生.基于实数编码遗传算法的方向图模值综合方法[J].系统工程与电子技术, 30(6):1022-1026, 2008.
    [147] Rihaczek A W,Golden R M. Range Sidelobe Suppression for Barker Codes[J]. IEEE Transactions on Aerospace and Electronic Systems,1971,7(6):1087-1092.
    [148] Ackroyd M H,Ghani F. Optimum Mismatched Filters for Sidelobe Suppression[J]. IEEE Transactions on Aerospace and Electronic Systems,1973,9(2):214-218.
    [149] C. X. Hua and J. Oksman, A New Algorithm to Optimize Barker Code Sidelobe and Suppression Filter[J].IEEE Transactions on Aerospace and Electronic Systems AES-26,pp. 673-677, July 1990.
    [150] Adly T. Fam and Indranil Sarkar. Multiplicative Mismatched Filter for Optimum Sidelobe Suppression in Barker Codes[J]. Proceedings of the SPIE, Vol.6235, pp. 62351, May 2006
    [151]武剑辉,贺知明,向敬成.频域处理的二相编码信号旁瓣抑制技术研究[J].电子与信息学报,2002,24(11):1614-1619.
    [152]张瓅玶,彭应宁,王秀坛,王希勤.滑窗式线性调频及衍生多项码旁瓣抑制滤波器[J].清华大学学报(自然科学版),2001,41(1):20-23.
    [153] J. M. Baden and M. N. Cohen, Optimal Peak Sidelobe Filters for Biphase Pulse Compression[J]. IEEE International Radar Conference, pp.249-252, 7-10 May 1990.
    [154] J. M. Baden and M. N. Cohen, Optimal Sidelobe Suppression for Biphase Codes[J]. Proceedings of the National Telesystems Conference, pp.127-131, 26-27 March 1991.
    [155]陶广源,廖桂生,刘宏伟.多相码信号数字脉压滤波器设计[J].电波科学学报,2003,18(2):143-146.
    [156]位寅生,沈一鹰,刘永坦.一种基于最小二乘的高频雷达信号处理方法[J].系统工程与电子技术,2001,23(1):34-36.
    [157]杨斌,向敬成,刘晟.一种数字脉压旁瓣抑制滤波器设计方法[J].电子科学学刊,2000,22(1):124-129.
    [158]孙晓文,吴顺君.多目标时彩色电视信号的距离旁瓣抑制[J].西安电子科技大学学报(自然科学版),2006,33(2):178-181.
    [159]王涛,王飞雪.受符号调制的m序列旁瓣研究[J].国防科技大学学报,2002,24(3): 55-58.
    [160] Zoraster S.Minimum, Peak Range Sidelobe Filters for Binary Phase-coded Waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems,1980,16(1):112-115.
    [161] Hon Keung Kwan,Chi Kin Lee. A neural network approach to pulse radar detection[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):9 -21.
    [162] Rao K D,Sridhar G. Improving performance in pulse radar detection using neural networks [J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(3):1193-1198.
    [163] Fun-Bin Duh, Chia-Feng Juang, Chin-Teng Lin, A Neural Fuzzy Network Approach to Radar Pulse Compression[J], IEEE Geoscience and Remote Sensing Letters, Vol.1,No.1, January 2004
    [164]孔祥维,黄申,李国平.基于小波和神经网络的二相编码旁瓣抑制的研究[J].系统工程与电子技术,2001,23(6):1-3.
    [165]王飞雪,欧刚.恒增益处理损失的最佳编码旁瓣抑制滤波器[J].电子学报, 2003;31(9):1418-1421.
    [166] B.L. Lewis, F.F. Kretschmer,JR. A New Class of Polyphase Pulse compression Codes and Techniques[J]. IEEE Trans. on AES, 1981,17(3):364-372.
    [167] B.L. Lewis, F.F. Kretschmer,JR. Linear Frequency Modulation Derived Polyphase Pulse Compression Codes[J]. IEEE Trans. on AES, 1982,18(5): 637-641.
    [168] Tobias Felhauer. Design and Analysis of New P(n,k) Polyphase Pulse Compression Codes[J]. IEEE Trans. on AES, 1994, 30(3):865-874.
    [169] Gartz, Kevin. Generation of Uniform Amplitude Complex Code Sets with Low Correlation Sidelobes[J]. IEEE Transactions on Signal Processing,1992,40(2):343-351.
    [170] Nunn, Carroll. Constrained Optimization Applied to Pulse Compression Codes, and Filters [C]. // Proceedings of the IEEE 2005 International Radar Conference, Arlington:IEEE,2005:190-194.
    [171] Carroll Nunn,Frank F.Kretschmer. Performance of Pulse Compression Code and Filter Pairs Optimized For Loss and Intergrated Sidelobe Level[C].// Proceedings of IEEE 2007 International Radar Conference, Boston:IEEE,2007:110-115.
    [172]纠博,刘宏伟,李丽亚,吴顺君.一种基于互信息的波形优化设计方法[J].西安电子科技大学学报(自然科学版),2008,35(4):678-684.
    [173] Coxson, G. E., and Russo, J. Efficient exhaustive search for optimal peak sidelobe binary codes[C]. Proceedings of the IEEE 2004 International Radar Conference, Philadelphia:IEEE,2004:438-443
    [174] Carroll Nunn,Greg Coxson. Best-Known Autocorrelation Peak Sidelobe Levels for Binary Codes of Length 71 to 105[J]. IEEE Trans. on AES,2008,44(1):392-395.
    [175] J.A.Johnston and A.C.Fairhead. Waveform design and Doppler sensitivity analysis for nonlinear FM chirp pulses[J]. IEE Proceedings, Pt.F, 1986, 133 (2):163-175
    [176] T. Collins and P. Atkins, Nonlinear frequency modulation chirps for active sonar[J], IEE Proceedings, Part F, 1999, 146(6): 312-316
    [177] Pan Yi-chun, Peng Shi-rui, Yang Ke-feng, Dong Wen-feng. Optimization Design of NLFM Signal and Its Pulse Compression Simulation[A]. Radar Conference,2005[C]. IEEE International. 2005.383-386.
    [178]张良.一种NLFM脉压波形的优化设计方法[J].现代雷达, 1994,(5):28-34.
    [179]黄勇,彭应宁,张瓅玶,张颢,王希勤.基于调频函数和遗传算法的非线性调频信号产生方法[J].电子学报,1999,27(11):77-79
    [180]张瓅玶,彭应宁,王绣坛.一种基于非线性调频波形的双通道参数估计器[J].电子学报,2001,29(9):1210-1212
    [181]张群英,何佩琨,毛二可.一种改进的非线性调频信号波形设计方法[J].北京理工大学学报, 2000, 20(3):352-354.
    [182]鲍坤超,陶海红,廖桂生,基于多项式拟合的非线性调频调频波形设计[J].信号处理,2008,24(2):189-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700