用户名: 密码: 验证码:
防锈铝合金弱刚度复杂构件高速铣削工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防锈铝合金由于具有较强的反射可见光、热和电磁波的能力是制造雷达中复杂结构弱刚度功能件——波导组件的理想材料,但其高质量的切削加工技术研究较少。高速切削加工技术研究虽然近年来受到广泛重视,但在切削机理、刀具材料、切削参数优化以及切削加工数据库等方面还需要进一步研究,目前高速切削加工技术已经列入了2006-2020年国家中长期科学和技术发展规划。本文采用高速铣削加工技术从铣削力、表面质量、切削参数优化以及弱刚度构件变形控制等方面对防锈铝合金弱刚度复杂构件加工技术进行了系统研究,为此类材料的应用与推广提供了技术支持,具有广阔的应用前景和重要的实际意义。
     通过对铣削过程的分析建立了三维铣削分力的理论预测模型,并根据单齿铣削过程中剪切面的面积变化规律对铣削力进行了分类。对防锈铝合金AlMn1Cu进行了高速铣削加工试验,对采集的铣削力信号特征进行时域和频域分析,得到了铣削力信号的变化规律,并采用扫面电子显微镜对高速切削表面形貌进行观察与分析,获得了铣削表面形成机理和加工表面形貌的典型特征。
     采用单因素试验法、析因试验法以及均匀试验法对AlMn1Cu材料进行了高速铣削加工试验。通过对单因素试验结果分析得到了铣削力和表面粗糙度随切削参数的单因素变化规律,析因试验结果得到了影响高速铣削力和表面粗糙度的重要效应因素,结果表明背吃刀量的影响最显著,而均匀试验结果进一步说明了铣削力和表面粗糙度的变化趋势。从直观分析的结果得到了获得最小表面粗糙度的切削参数组合,并通过试验进行了验证。采用偏最小二乘回归法建立了基于切削参数的铣削力和表面粗糙度预测模型,提高了模型的预测精度。
     建立了基于切削参数的铣削力和表面粗糙度神经网络预测模型,在此模型的基础上建立了以最高加工效率为目标并以铣削力和表面粗糙度等技术要求为约束条件的切削参数优化数学模型,并提出了一种采用均匀试验设计的初始化种群技术以及无重复个体的稳态繁殖机制的模拟退火遗传混合优化算法,将该算法应用到切削参数优化计算中取得了较好效果。最终在上述技术的支持下建立了切削参数优化系统,并应用该系统提供了不同表面粗糙度技术要求下的最优切削参数组合。
     采用有限元技术和加工试验相结合的方法得到了不同切削路径下弱刚度典型结构(薄壁、超薄腹板和微型孔/槽)的加工变形规律,并从切削参数和刀具的优化选择、切削路径和夹具的优化设计以及加工前后工件的处理等方面提出了控制与减小弱刚度构件加工变形的总体策略。
     最后,应用上述研究成果进行了薄壁、雷达波导组件等弱刚度典型构件的高质量切削加工,质量检测结果表明工件的表面粗糙度、形位精度和尺寸精度均达到了技术要求,很好的解决了此类零件的加工问题,同时也为其它弱刚度构件的精密加工提供了参考。
The functional parts with anti-rust aluminum alloy are used in radar with the fine characteristic to reflect visible light, heat and electromagnetic waves. In recent years, the research of high-speed machining technology has been widely carried out. But the further research is needed in the the material removal mechanism, tool material, cutting parameters optimization and machining databases, etc. In this paper, by use of high-speed milling technology, the systematic study was carried out on the weak rigidity workpieces processing techniques form the milling force, surface roughness, cutting parameters optimization and machining deformation control. The results have provided technical support to the application of the material, and this research has a broad application value.
     The theoretical prediction model of three-dimensional milling forces, based on the milling process, was presented. According to the variation of area of shear plane during the single-tooth milling process, the transient milling force was classified. The high-speed milling experiments were carried out, and the workpieces materials is AlMn1Cu. According to the characteristics of cutting forces in the time domain and frequency domain, the change regularity of transient milling force was presented. The cutting mechanism and the typical characteristics of machined surface topography were presented by using scanning electron microscopy.
     The single-factor, factorial and uniformity test were employed to carry out the high-speed milling experiments for AlMn1Cu. The results of single-factor experiments for AlMn1Cu show the variation of milling force and surface roughness with a certain cutting parameter such as cutting speed, feed-per-tooth and depth of cut. According to the analysis of variance (ANOVA) of factorial experiments, the cutting parameters significantly influencing on the milling forces and the surface roughness were presented. The results show the depth-of-cut is the most statistical significant factor influencing on the milling forces and the surface roughness. The range analysis of factorial experiment indicates the cutting prarameters which the minimum surface roughness is achieved. The predictive mathematic models of milling forces and surface roughness based on the cutting parameters were established by using the partial least-squares regression (PLS), the prediction accuracy of forecasting model is enhanced.
     The artificial neural network approach is presented for establishing the predictive models of milling forces and surface roughness based on the cutting parameters. In order to achieve the maximum material removal rate, the optimization model of cutting parameters which the constraints are the technical requirements such as the milling forces and surface roughness is built. A genetic algorithm based on simulated annealing is employed to find the optimum cutting parameters leading to maximum material removal rate in the different range of the technical requirements.
     The finite-element method along with the milling force and toolpath was developed to analyze the machining deformation in peripheral milling of a typical weak rigidity structure such as thin-wall, ultra-thin web and micro-holes/slots. The method was proposed to reduce machining deformation of weak rigidity workpiece from the optimum cutting parameters, tool selection, toolpath arrangement and fixture design.
     At last, the maching technologies presented in this dissertation have been applied successfully in the practical productions of weak rigidity workpieces, and the testing results of the machined workpieces show that the design technical requirements are met in the machined surface roughness, error of shape and position and dimensional accuracy.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003
    [2]艾兴.高效加工技术及其应用研究[J].中国工程科学,2000,11(2):40-51
    [3]张伯霖,杨庆东,陈长年.高速切削技术及应用[M].北京:机械工业出版社,2002
    [4]王西彬,解丽静.超高速切削技术及其新进展[J],中国机械工程,2000,1-2(11):190-194
    [5]http://www.miit.gov.cn/n11293472/n11295142/n11299153/n12098016.files/n12098013. doc
    [6]太原市金属切削刀具协会.金属切削实用刀具技术[M].北京:机械工业出版社,2004
    [7]黄伯云.中国材料工程大典(第4卷).有色金属材料工程(上).北京:化学出版社.2006.1
    [8]Salomon C J. Process for machining metals of similar acting materials when being worked by cutting tools,German patent,Number 523594,1931
    [9]Longbottom J M,Lanham J D. A review of research related to Salomon's hypothesis on cutting speeds and temperatures [J]. International Journal of MachineTools& Manufacture,2006,46:1740-1747
    [10]陈日耀.金属切削原理[M].北京:机械工业出版社,1985.11
    [11]Komandrui R, Schroeder T, Hazra J, et al. On the catastrophic shear instability in high speed machining of an AISI 4340[J]. Journal of Engineering for Industry, Trans. ASME, 1982,104(2):121-131
    [12]Recht R F. A dynamic analysis of high speed machining[J]. Journal of Engineering for Industry, Trans. ASME,1985,107(3):309-315
    [13]Davies M A. On the dynamics of chip formation in machining hard metals[J]. Annals of the CIRP,1997,46(1):25-30
    [14]Komandrui R, Brown R H. On the mechanics of chip segmentation in machining[J]. Journal of Engineering for Industry, Trans. ASME,1981,103(1):33-51
    [15]刘东,徐宏海,罗学科.锯齿形切屑绝热剪切塑性变形[J].塑性工程学报,2009(4),16(2):203-208
    [16]Vyas A, Shaw M C. Mechanics of saw-tooth chip formation in metal cutting [J]. Journal of Manufacturing Science and Engineering.1999:163-172
    [17]Elbestawi M A. A model for chip formation during machining of hardened steel[J]. Annals of the CIRP,1996,45(1):71-76
    [18]Shaw M C. Chip formation in machining hardened steels[J]. Annals of the CIRP,1993, 42(1):29-32
    [19]Vyas A, Shaw M C. Mechanics of Saw-Tooth Chip Formation in Metal Cutting[J]. Journal of Manufacturing Science and Engineering,1999(5),121:163-171
    [20]Shaw M C. The mechanism of chip formation with hard turning steel[J]. Annals of the CIRP,1998,47(1):77-82
    [21]庞俊忠,王敏杰,钱敏,等.高速立铣P20淬硬钢的切屑形态和切削力的试验研究[J].中国机械工程,2008(1),19(2):170-173
    [22]蔡玉俊,段春争,王敏杰,等.高速切削30CrNi3MoV淬硬钢切屑形成机理研究[J].机械强度,2009,31(3):387-390
    [23]段春争,王敏杰.30CrNi3MoV钢锯齿形切屑中绝热剪切带的微结构特征.机械工程材料,2004(10),28(10):16-19
    [24]Dolinsek S, Ekinovic S, Kopac J. A contribution to the understanding of chip formation mechanism in high-speed cutting of hardened steel[J]. Journal of Materials Processing Technology,2004,157-158:485-490
    [25]Raja Kountanya, Ibrahim Al-Zkeri, Taylan Altan. Effect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steel[J]. Journal of Materials Processing Technology,2009,209: 5068-5076
    [26]Ekinovic S, Dolinsek S, Begovic E. Machinability of 90MnCrV8 steel during high-speed machining[J]. Journal of Materials Processing Technology,2005,162-163:603-608
    [27]王敏杰,段春争,刘洪波.正交切削切屑形成中绝热剪切行为的试验研究[J].中国机械工程.2004(9),15(18):1603-1606
    [28]Ning L, Veldhuis S C, Yamamoto K. Investigation of wear behavior and chip formation for cutting tools with nano-multilayered TiAlCrN/NbN PVD coating[J]. International Journal of Machine tools& Manufacture,2008,48:656-665
    [29]李亮.钛合金高速铣削机理及其工艺研究[D].南京航空航天大学博士论文,2002
    [30]Sun S, Brandt M, Dargusch M S. Characteristics of cutting forces and chip formation in machining of titanium alloys[J]. International Journal of Machine tools& Manufacture, 2009,49:561-568
    [31]曹自洋,何宁,李亮,等.高速切削钛合金Ti6A14V切屑的形成及其数值模拟[J].中国机械工程,2008(10),19(20):2450-2454
    [32]Barry J, Byrne G, Lennon D. Observations on chip formation and acoustic emission in machining Ti-6Al-4V alloy [J]. International Journal of Machine tools& Manufacture, 2001,41:1055-1070
    [33]Gente A, Hoffmeister H W. Chip formation in machining Ti6A14V at extremely high cutting speeds[J]. CIRP Annals-Manufacturing Technology,2001,50(1):49-52
    [34]鲁世红,何宁.正交切削高强度钢绝热剪切行为的实验研究[J].机械科学与技术,2009(2),28(2):241-245
    [35]Nurul Amin A K M, Ismail Ahmad F, Nor Khairusshima M K. Effectiveness of uncoated WC-Co and PCD inserts in end milling of titanium alloy-Ti6Al4V[J]. Journal of Materials Processing Technology,2007,192-193:147-158
    [36]杨勇,方强,柯映林,等.基于有限元模拟的钛合金锯齿状切屑形成机理[J].浙江大学学报(工学版),2008(6),42(6):1010-1014
    [37]阮景奎,宫爱红,周学良.钼铬合金铸铁高速切削加工的有限元模拟[J].中国机械工程,2009(6),20(11):1372-1375
    [38]成群林,柯映林,董辉跃.航空铝合金高速铣削加工的有限元模拟[J].浙江大学学报(工学版),2008(1),40(1):113-117
    [39]Domenico Umbrello. Finite element simulation of conventional and high speed machining of Ti6A14V alloy[J]. Journal of Materials Processing Technology,2008,196: 79-87
    [40]Christian Hortig, Bob Svendsen. Simulation of chip formation during high-speed cutting[J]. Journal of Materials Processing Technology,2007,186:66-76
    [41]陈建岭,李建峰,孙杰,等.钛合金高速切削切屑形成机理的有限元分析[J].组合机床与自动化,2007(1):25-28,31
    [42]阮景奎,柯映林,杨勇.高速铣削合金铸铁时锯齿状切屑形成的有限元模拟.工具技术,2006,40(4):40-43
    [43]赵军,孟辉,王素玉,等.高速切削锯齿状切屑的有限元模拟[J].工具技术,2005,39(1):29-31
    [44]Limido J, Espinosa C, Salaun M, et al. SPH method applied to high speed cutting modeling[J]. International Journal of Mechanical Sciences,2007,49:898-908
    [45]Ueda T, Hosokawa A, Oda K, et al. Temperature on flank face of cutting tool in high speed milling[J]. CIRP Annals-Manufacturing Technology,2001,50(1):37-40
    [46]Toh C K. Comparison of chip surface temperature between up and down milling orientations in high speed rough milling of hardened steel[J]. Journal of Materials Processing Technology,2005,167:110-118
    [47]Lezanski P, Shaw M C. Tool face temperature in high speed milling[J]. Transaction of ASEM,1995(5):132-135
    [48]陈明,袁人炜,薛秉源,等.铝合金高速铣削中切削温度动态变化规律的试验研究[J].工具技术,2000,34(5):7-9
    [49]Dewes R C, Ng E, Chua K S, et al. Temperature measurement when high speed maching hardened mould/die steel[J]. Journal of Materials Processing Technology,1999,92-93: 293-301
    [50]Chen Ming, Sun Fanghong, Wang Haili, et al. Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling[J]. Journal of Materials Processing Technology,2003,138:468-471
    [51]陈明,袁人炜,凡孝勇,等.三维有限元分析在高速铣削温度研究中的应用[J].机械工程学报,2002(7),38(7):76-79
    [52]李明艳,王素玉,冯明泉.高速切削温度场有限元动态仿真[J].煤矿机械,2006(10),27(10):59-61
    [53]吴红兵,柯映林.航空铝合金高速铣削加工的三维数值模拟[J].浙江大学学报(工学版),2008(2),42(2):234-238
    [54]孟辉,赵军,王素玉,等.高速切削温度场的有限元分析[J].工具技术,2005,39(4):21-23
    [55]Tugrul Ozel, Taylan Altan. Proecss simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high speed flat end milling[J]. International Journal of Machine tools& Manufacture,2000,40:713-738
    [56]何振威,全燕鸣,乐有树.基于有限元模拟的高速切削中切削热的研究[J].工具技术,2006,40(3):60-63
    [57]Eugene M. Mechanics of the metal cutting process II plasticity conditions in orthogonal cutting[J]. Journal of applied physics,1945(6),16:318-324
    [58]Vaino Piispanen. Theory of formation of metal chips[J]. Journal of applied physics, 1948(10),19:318-324
    [59]Recht R F. A dynamic analysis of high-speed machining[J]. ASME,1984:83-93
    [60]周泽华.金属切削理论[M].北京:机械工业出版社,1992.5
    [61]张幼桢.金属切削理论[M].北京:航空工业出版社,1988.6
    [62]Ernst H, Merchant M E. Chip formation[J], Friction and finish. Cincinnati:Cincinnati milling machine company,1941
    [63]Lee E H, Shaffer B W. The theory of plasticity applied to a problem of machining[J]. ASME, Journal of applied mechanics,1951,18(4):211-214
    [64]Shaw M C. Metal cutting principles [M]. Clarendon Press(Oxford),1984
    [65]Oxley P L B, Wesh M J M. An enplanation of the apparent Bridgman effect in merchant's orthogonal cutting results[J]. Trans, AMSE. Series B,1967,89
    [66]Shamoto E, Altintas Y. Prediction of shear angle in oblique cutting with maximum shear stress and minimum energy principles[J]. Journal of Materials Processing Technology, 1999,121:399-407
    [67]付秀丽,艾兴,刘战强,等.高速切削加工航空铝合金7050-T7451剪切角模型研究[J].中国机械工程,2007(1),18(2):220·224
    [68]康永刚,王仲奇,吴建军,等.立铣切削力分类研究及精确铣削力模型的建立[J].航空学报,2007(3),28(2):481-489
    [69]Lee Han-Ul, Cho Dong-Woo. Development of a reference cutting force model for rough milling federate scheduling using FEM analysis[J]. International Journal of Machine tools& Manufacture,2007,47:158-167
    [70]武凯,何宁,廖文和,等.基于薄壁件变形分析的铣削加工瞬态力学模型研究[J].应用科学学报.2005(11),23(6):631-634
    [71]Omar O E E K, El-Wardany T, Ng E, et al. An improved cutting force and surface topography prediction model in end milling[J]. International Journal of Machine tools& Manufacture,2007,47:1263-1275
    [72]Yun Won-Soo, Cho Dong-Woo. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling[J]. International Journal of Machine tools& Manufacture,2001,41:463-478
    [73]Yun Won-Soo, Ko Jeong Hoon, Lee Han Ul, et al. Development of a virtual machining system, part 3:cutting process simulation in transient cuts[J]. International Journal of Machine tools& Manufacture,2002,42:1617-1626
    [74]Bhattacharyya P, Sengupta D, Mukhopadhyay S. Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques[J]. Mechanical Systems and Signal Processing,2007,21:2665-2683
    [75]梁睿军,王宁生,姜澄宇.薄壁零件高速铣削动态铣削力[J].南京航空航天大学学报,2008(2),40(1):89-93
    [76]Budak E. Analytical models for high performance milling. Part I:Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine tools & Manufacture,2006,46:1478-1488
    [77]Yucesan G, Altintas Y. Prediction of ball end milling forces. Journal of Manufacturing Science and Engneering[J], Transactions of the ASME,1996(1),118:95-103
    [78]Kim Seon-Jae, Lee Han Ul, Cho Dong-Woo. Prediction of chatter in NC machining based on a dynamic cutting force model for ball end milling[J]. International Journal of
    Machine tools& Manufacture,2007,47:1827-1838
    [79]姚运萍,王宏运,闫家贇,等.复杂型面数控加工中的切削力预测[J].组合机床与自动化加工技术.2006(10):87-89
    [80]Wan M, Zhang W H, Qin G H, et al. Efficient calibration of instantaneous cutting force coefficients and run out parameters for general end mills[J]. International Journal of Machine tools& Manufacture,2007,47:1767-1776
    [81]Fontaine M, Moufki A, Devillz A, et al. Modeling of cutting forces in ball-end milling with tool-surface inclination Part Ⅰ:Predictive force model and experimental validation[J]. Journal of Materials Processing Technology,2007,189:73-84
    [82]Abou-El-Hossein K A, Kadirgama K, Hamdi M, et al. Prediction of cutting force in end-milling operation of modified AISI P20 tool steel[J]. Journal of Materials Processing Technology,2007,182:241-247
    [83]Mativenga P T, Hon K K B. An experimental study of cutting forces in high-speed end milling and implications for dynamic force modeling[J]. Journal of Manufacturing Science and Engneering, Transactions of the ASME,2005(5),127:251-261
    [84]龙震海,王西彬,王好臣.难加工材料高速切削过程中切削力的非线性特征规律析因研究[J].机械工程学报,2006(1),42(1):30-34
    [85]Li H Z, Zeng H, Chen X Q. An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts[J]. Journal of Materials Processing Technology,2006,180:296-304
    [86]王晓琴,艾兴,等.硬质合金刀具铣削Ti6Al4V时刀具磨损及切削力研究[J].制造技术与机床,2008(2):102-105
    [87]Pawade R S, Joshi Suhas S, Brahmankar P K, et al. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718[J]. Journal of Materials Processing Technology,2007,192-193:139-146
    [88]Aykut S, Golcu M, Semiz S, et al. Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural net work[J]. Journal of Materials Processing Technology,2007,190:199-203
    [89]刘战强,万熠,艾兴.高速铣削中切削力的研究[J].中国机械工程,2003(5),14(9):734-737
    [90]汪文津,王太勇,范胜波,等.车削过程切削力的计算机数值模拟[J].机械强度,2006,28(5):725-728
    [91]潘永智,艾兴,唐志涛,等.基于切削力预测模型的刀具几何参数和切削参数优化[J].中国机械工程,2008(2),19(4):428-431
    [92]王立涛,柯映林,黄志刚.航空铝合金7050-T7451铣削力模型的试验研究[J].中国机械工程,2003(10),14(19):1684-1686
    [93]王西彬,杨广勇.超高速干铣削灰铸铁的研究[J].兵工学报,1999,20(3):263-268
    [94]庞俊忠,王敏杰,等.高速铣削P20和45淬硬钢的切削力[J].中国机械工程,2007(11),18(21):2543-2546
    [95]张发平,孙厚芳.复杂形状工件的端铣切削力模型[J].机械设计与制造,2003(8):99-101
    [96]袁哲俊.金属切削实验技术[M].北京:机械工业出版社,1998
    [97]赵之眉.金属切削原理实验指导书[M].北京:机械工业出版社,1984
    [98]杨秋平,王卫平.不同切削力预测建模方法的比较研究[J].工具技术,2002(12),36(12):21-24
    [99]Benardos P G, Vosniakos G C. Predicting surface roughness in machining:a review[J]. International Journal of Machine tools& Manufacture,2003,43:833-844
    [100]王素玉.高速铣削加工表面质量的研究[D].山东大学博士论文,2006.4
    [101]Lu Chen. Study on prediction of surface quality in machining process[J]. Journal of Materials Processing Technology,2008,205:439-450
    [102]Martelotti M. Analysis of milling process[J]. ASME,1941,63:667-700
    [103]Tipnis V A, Buescher S C, Garrison R C. Mathematically modeled machining data for adaptive control of end milling operations[M]. Proc. NAMRC-iv,1976:279-286
    [104]Montgomery D, Altitas Y. mechanisms of cutting force and surface generation in dynamic milling[J]. Journal of engineering industry,1991,113:160-168
    [105]Mizugaki Y, Hao M. Geometric generating mechanism of machined surface by ball nosed end milling[J]. Annals of the CIRP,2001,50(1):69-72
    [106]段红,何永利,王仲民.模具钢高速切削表面粗糙的试验研究[J].工具技术,2005,39(11):28-30
    [107]庞俊忠,程秀梅.高速铣削45淬硬钢时表面粗糙度的试验研究[J].中北大学学报(自然科学版),2007,28(6):482-485
    [108]龙震海,王西彬,等.高速切削条件下难加工材料表面粗糙度影响因素析因研究[J].工具技术,2005,39(1):26-28
    [109]Nalbant M, Gokkaya H, Sur G. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning[J]. Materials& design,2007, 28:1379-1385
    [110]Korkut I, Donertas M A. The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling[J]. Materials & design,2007,28:308-312
    [111]Ersan Aslan, Necip Camuscu, Burak Birgoren. Design optimization of cutting parameters when turning hardened AISI 4140 steel (63HRC) with Al2O3+TiCN mixed ceramic tool[J]. Materials and design,2007,28:1618-1622
    [112]林峰.切削参数对不锈钢加工表面粗糙度的影响[J].工具技术,2007,41(7):78-79
    [113]查文炜,何宁.高速铣削淬硬钢表面粗糙度的试验研究[J].工具技术,2007,41(3):12-15
    [114]刘战强,万熠,艾兴.高速铣削过程中表面粗糙度变化规律的试验研究[J].现代制造工程,2002(3):8-9
    [115]王素玉,艾兴,赵军,等.高速铣削表面粗糙度建模与预报[J].制造技术与机床,2006(8):65-68
    [116]田美丽,李占杰,阎兵.基于RBF神经网络的难加工材料高速铣削粗糙度预测研究[J].工具技术,2008,42(1):35-37
    [117]Benardos P G, Vosniakos G S. Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments[J]. Robotics and computer integrated manufacturing,2002,18:343-354
    [118]Ezugwu E O, Fadare D A, Bonney J, et al. Modeling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network[J]. International Journal of Machine tools& Manufacture,2005, 47:1375-1385
    [119]Karayel Durmus. Prediction and control of surface roughness in CNC lathe using artificial neural network[J]. Journal of Materials Processing Technology,2008, doi:10.1016/j.jmatprotec.2008.07.023
    [120]El-Sonbaty I A, Khashaba U A, Selmy A I, et al. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach[J]. Journal of Materials Processing Technology,2008,200:271-278
    [121]Oktem Hasan, Erzurumlu Tuncay, Erzincanli Fehmi. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm[J]. Materials and design,2006,27:735-744
    [122]Dhokia Vimal G, Kumar Sanjeev, Vichare Parag, et al. An intelligent approach for the prediction of surface roughness in ball-end machining of polypropylene [J]. Robotics and computer integrated manufacturing,2008,24:835-842
    [123]Huang Bernie P, Chen Joseph C, Li Ye. Artificial-neural-networks-based surface roughness Pokayoke system for end milling operations[J]. Neurocomputing,2008, 71:544-549
    [124]许峰,郑敏利,姜彬,等.基于遗传算法的高速铣削参数优化系统[J].哈尔滨理工大学学报,2007(10),12(5):39-42
    [125]左敦稳,黎向锋,赵剑峰.现代加工技术[M].北京:北京航空航天大学出版社.2005
    [126]刘胤.弱刚度结构件的高速铣削及变形控制技术研究[D].南京理工大学硕士学位论文,2007
    [127]刘胤,胡小秋,杨芸,等.弱刚度结构件的加工变形控制技术研究[J].航天制造技术,2009(2):9-13
    [128]Wan M, Zhang W H, Qin G H, et al. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J]. International journal of machine tools& manufacture,2008,48:1366-1374
    [129]武凯,何宁,廖文和,等.薄壁腹板加工变形规律及其变形控制方案的研究[J].中国机械工程,2004(4),15(8):670-674
    [130]楼文明,吴建军,康永刚.薄壁工件铣削加工变形的预测[J].工具技术,2007,41(5):40-44
    [131]敖志强,吴建军,王仲奇,等.基于ABAQUS的典型薄壁件加工变形仿真与实验研究[J].机床与液压,2007(2),35(2):15-18
    [132]黄志刚,柯映林,王立涛.基于正交切削模拟的零件铣削加工变形预测研究[J].机械工程学报,2004(11),40(11):117-118
    [133]Elbestawi M A, Sagherian R, Budak. Dynamic modeling for the prediction of surface errors in the milling of thin-walled sections[J]. ASME,1991,25:215-228
    [134]Tsai Jer-Shyong, Liao Chung-Li. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpiece[J]. Journal of Materials Processing Technology,1999,94:235-246
    [135]唐东红,孙厚芳,焦黎.端铣加工工件变形仿真预测方法研究[J].北京理工大学学报,2008(8),28(8):678-681
    [136]Rai Jitender K., Xirouchakis Paul. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools and Manufacture,2008(5), 48(6):629-643
    [137]Tang Aijun, Liu Zhanqiang. Deformations of thin-walled plate due to static end milling force[J]. Journal of Materials Processing Technology,2008(9),206 345-351
    [138]Liu Gang. Study on deformation of titanium thin-walled part in milling process[J]. Journal of Materials Processing Technology,2009(3),209(6):2788-2793
    [139]Ratchew S, Liu S, Huang W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International journal of machine tools& manufacture,2004,44:1629-1641
    [140]He Ning, Wang Zhigang, Jiang Chengyu, et al. Finite element method analysis and control stratagem for machining deformation of thin-walled components [J]. Journal of Materials Processing Technology,2003(8),139:332-336
    [141]张发平,孙厚芳,袁光明,等.工-夹系统刚度计算及变形加工误差模型[J].北京理工大学学报,2004(12),24(12):1041-1044
    [142]秦国华,吴竹溪,张卫红.薄壁件的装夹变形机理分析与控制技术[J].机械工程学报,2007(4),43(4):211-223
    [143]王运巧,梅中义,范玉青.薄壁弧形件装夹布局有限元优化[J].机械工程学报,2005(6),41(6):214-217
    [144]郭魂,左敦稳,王树宏,等.拉伸装夹对航空框类零件加工变形影响的有限元分析[J].南京航空航天大学学报,2005(11),37(增刊):72-76
    [145]吴红兵,贾志欣,张学昌.航空框类结构件铣削变形的数值建模研究[J].中国机械工程,2009(6),20(11):1322-1325
    [146]孙杰,柯映林.残余应力对航空整体结构件加工变形的影响分析[J].机械工程学报,2005(2),41(2):118-122
    [147]毕运波,柯映林,董辉跃.航空铝合金薄壁件加工变形有限元仿真与分析[J].浙江大学学报,2008(3),42(3):397-402
    [148]张以都,张洪伟.航空整体结构件加工变形有限元数值仿真[J].北京航空航天大学学报,2009(2),35(2):187-192
    [149]刘东,陈五一.大型薄壁整体结构件加工变形仿真[J].系统仿真学报,2008(3),20(6):1589-1593
    [150]高翔,张连文,王勇.薄壁零件装夹方案设计与优化[J].组合技术与机床,2009(6):9-12
    [151]孙连栋.射流法控制薄壁件加工变形的理论研究[J].机电产品开发与创新,2006(4):172-174
    [152]肖璐,王凡,刘颖,等.用于薄壁件加工的磁流变夹具[J].新工艺新方法,2007(1):26-27
    [153]刘璇,王小北.基于相变材料的柔性夹具[J].机械设计与制造工程,2000(9),29(5):53-54
    [154李尚政,刘宏.弱刚度件加固装夹技术研究[J].组合机床与自动化加工技术, 2003(11):3-5
    [155]成群林.航空整体结构件切削加工过程的数值模拟与实验研究[D].浙江大学博士学位论文,2006
    [156]陈蔚芳,楼佩煌,陈华.薄壁件加工变形主动补偿方法[J].航空学报,2009(3),30(3):570-576
    [157]Ratchev S, Liu S, Becker A A. Error compensation strategy in milling flexible thin wall parts [J]. Journal of Materials Processing Technology,2005,162-163:673-681
    [158]Ratchev S, Liu S, Huang W, et al. An advanced FEA based force induced error compensation strategy in milling [J]. International journal of machine tools and manufacture,2006,46 (5):542-551
    [159]王增强,孟晓娴,任军学,等.复杂薄壁零件数控加工变形误差控制补偿技术研究[J].机床与液压,2006(4):61-63
    [160]郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法[J].航空学报,2001(9),22(5):424-428
    [161]赵威,何宁,武凯.航空薄壁件的刀具偏摆数控补偿加工技术[J].机械制造及自动化,2002(5):18-20
    [162]彼得·斯密德.数控编程手册[M].北京:化学工业出版社,2005.6
    [163]张润逵.雷达结构与工艺(上册)[M].北京:电子工业出版社,2007.4
    [164]张玉龙,赵中魁.实用轻金属材料手册[M].北京:化学工业出版社,2006.6
    [165]开诚,胡方仁.俄罗斯平板裂缝天线制造技术[C].航天出国考察技术报告,1996.111(2):103~108
    [166]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社.2006
    [167]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.1
    [168]胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,2003.8
    [169]刘鸿文.材料力学(上册)[M].北京:高等教育出版社,2001
    [170]汪振华,袁军堂,胡小秋,等.防锈铝合金LF21的高速铣削试验[J].中国机械工程,2009(7),20(14):1660-1664
    [171]Wang Z H, Yuan J T, Hu X Q, et al. Study on cutting forces in high-speed milling of LF21 Aluminum alloy and regression model of cutting forces[J]. Advanced Materials Research,2009,69-70:413-417
    [172]陆辛,费仁元,初红艳,等.高应变速率下铝铜合金弹塑性本构关系的实验研究[J].塑性工程学报,2001,8(4):44-46
    [173]王惠文.偏最小二乘回归法与应用[M].北京:国防工业出版社,1998.8
    [174]赵选民.试验设计方法[M].北京:科学出版社,2006.8
    [175]Wang Z H, Yuan J T, Hu X Q, et al. Surface Roughness Prediction and Cutting Parameters Optimization in High-Speed Milling ALMnlCu Using Regression and Genetic Algorithm[C].2009 International Conference on Measuring Technology and Mechatronics Automation,2009:334-337
    [176]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.1
    [177]Foresee F.D, Hagan M.T. Gauss-Newton approximation to Bayesian regularization[J]. Proceedings of the International Joint Conference on Neural Networks,1997: 1930-1935
    [178]王凌.智能优化算法及其应用[M].清华大学出版社,2001.10
    [179]王小平,曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002.1
    [180]汪振华,袁军堂,郑雷.弱刚度件加工变形分析与控制对策研究[J].制造技术与机床,2008.12:109-113
    [181]Frediric M. Ham, Ivica Kostanic.神经计算原理[M].北京:机械工业出版社,2007.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700