用户名: 密码: 验证码:
新型混合励磁同步电机特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合励磁是永磁励磁与电励磁两种励磁方式的有机结合。混合励磁同步电机(HESM)力求继承永磁同步电机的优点,同时使其具有气隙磁场调节能力,在航空航天、新能源发电与驱动等领域具有重要的潜在应用前景。探索合理的HESM结构型式是推动混合励磁电机技术发展和应用的重要环节。本文致力于新型HESM本体结构拓扑研究,在电机的磁路计算、三维有限元分析、结构优化、建模方法等方面开展深入的研究,并进行实验验证与分析。
     论述了混合励磁电机励磁方式的特点,并总结其共性的基本要求。针对两种典型结构永磁同步电机,提出转子磁分路径向磁钢HESM与切向磁钢HESM结构型式,详细阐述了两种电机的结构特点与运行原理,在分析电机内径/轴向磁路分布特点的基础上,论述其气隙磁场调节原理和工作特性。
     建立了转子磁分路HESM不同励磁状态下的等效磁路模型,完成等效磁路计算程序,计算得到电机内磁路状态和空载特性。推导出影响该新型电机磁分路作用的基本约束关系,系统研究了转子长径比、极对数、永磁体结构参数、主气隙/附加气隙长度以及转子导磁体延伸段截面积等关键结构参数对电机调磁特性的影响规律。研究了基于电枢反应计算确定电机励磁磁势的基本方法,得到电机不同性质负载下的调节特性曲线。
     在MAXWELL3D中建立新型转子磁分路HESM的三维有限元模型,通过全面的静磁场分析验证了电机具有良好的气隙磁场调节能力,得到双向励磁磁势作用下电机内部磁场分布的变化情况和规律,并给出导磁桥、转子导磁体等结构的优化方法和原则。针对转子导磁体间漏磁问题,提出了增设补偿磁钢的方法,研究结果表明补偿磁钢能够有效提升气隙磁密,且对磁场调节范围影响很小。建立了切向磁钢HESM三维瞬态场路耦合分析模型,完成了电机空载特性、外特性和短路特性的仿真分析,并进行了实验验证。研究了基于瞬态场分析计算电机同步电抗的方法,结合静磁场计算结果,根据电机电压方程,建立了切向磁钢HESM的MATLAB/SIMULINK数学模型,为该新型电机的闭环系统仿真分析、快速计算提供了重要的分析手段。
     提出新型并列结构HESM结构,通过三维有限元计算得到电机内磁场分布特点,并对比分析出铁心长度的设计原则。指出并列结构HESM中存在轴向漏磁现象的特殊问题,并通过三维静磁场分析揭示了双向励磁作用下轴向漏磁通的变化规律,为电机内永磁及电励磁部分之间的轴向距离选择提供了理论依据。
     提出同步发电机采用共阳极12相零式整流输出以构成无刷直流发电机的结构方案。系统地对比研究了6相双Y整流输出和12相零式整流输出结构下的发电机损耗、整流二极管电流应力和容错能力等特性,验证了12相零式整流输出无刷直流发电机在低压直流电源系统中的应用优势。并完成并列结构混合励磁无刷直流发电机的三维场路耦合分析和实验验证,表明该电机继承了永磁电机电压调整率较低的优点,且励磁电流能实现良好的辅助调节功能。指出并列结构HESM中转子磁极应轴向完全对齐,以避免相电势波形畸变影响输出电压质量。
Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. While maintaining the merits of permanent magnet synchronous machine (PMSM), hybrid excitation synchronous machine (HESM) also combines the regulation capacity of air gap magnetic field and has important potential application prospects in aviation and space, alternative energy power generation, motor drive and other fields. Study of reasonable HESM structure is an important part in promoting the development and application of HESM technology. New HESM structure and topology is discussed in this paper. In-depth study into magnetic circuit calculation, 3D finite element analysis, structure optimization, modeling methods are presented and verified by experiments and analysis.
     Excitation features of hybrid excitation machines are described and common requirements are summarized. Based on two typical structures of PMSM, magnet-shunting radial structure HESM and magnet-shunting tangential structure HESM are proposed. Detailed elaboration of structure characteristics and operational principles are given. Regulation principle and operational feature of the air gap magnetic field are analyzed according to the radial/axial distribution of magnetic field.
     Equivalent magnetic circuit models of magnet-shunting HESM under different excitation are constructed and equivalent magnetic circuit calculation program are completed to get the magnetic circuit state and no-load output characteristics of the machine. Basic constraint relation affecting the new type of machine is deduced and systematic research of influence law on magnet regulation features by key structure parameters, such as rotor length-diameter ratio, pole number, permanent magnet structure parameters, main air gap/additional air gap length, section area of rotor magnetizer extension, are carried out. Basic methods of determining excitation magnetic potential based on armature reaction calculation is studied and regulation characteristics curve under loads with different features.
     A 3D finite element model of the new magnet-shunting HESM is constructed with MAXWELL 3D. Through comprehensive analysis of static magnetic field, good air gap magnetic field regulation capacity is verified; variation characteristics and rules of internal magnetic field distribution under bi-directional excitation magnetic potential is deduced; optimization methods and principles of magnetic bridge, rotor magnetizer and some other structures are introduced. The method of adding compensation alnico is proposed to address flux linkage of rotor magnetizer. Research findings indicate that compensation alnico can effectively increase air gap flux density and has little influence on magnetic field regulation range. A 3D transient field circuit coupled analysis model of magnet-shunting tangential structure HESM is constructed. Simulation analysis and experiment verification of no-load output characteristics, external characteristics and short-circuit characteristics are carried out. Methods of calculating synchronous reactance based on transient field analysis are studied and MATLAB/SIMULINK model of tangential structure HESM are built with calculation results of static magnetic field and voltage equation, which provide important analysis means to simulation analysis and rapid calculation of closed-loop systems of this new type of machine.
     A novel coordinate structure HESM is proposed. Internal magnetic field distribution features are studied by 3D finite element calculation and design principles of iron core length are reached by comparison analysis. Axial flux leakage, a problem unique to coordinate structure HESM is pointed out and variation principle of axial flux linkage under bi-directional excitation is revealed by 3D static magnetic field analysis, providing theoretical references for determining the axial distance between permanent magnet and electric excitation.
     A BLDC generator structure is proposed consisted of a synchronous generator with common-anode 12-phase half-wave rectified output. Systematic comparison of features such as generator losses, rectifier diode current stresses and fault-torelent ability are carried out under 6-phase double-star rectified output and 12-phase zero-type rectified output structures, which demonstrate the superiority of 12-phase zero-type rectified output BLDC generator’s application in low voltage DC power system. 3D field-circuit coupled analysis and experiment verification of coordinate structure hybrid excitation BLDC machine are presented, which shows that the machine inherits permanent magnet machine advantages of low voltage regulation ratio and good complementary regulation capacity of excitation current. It also has been pointed out that with the coordinate structure HESM, rotor magnetic poles should be precisely even, so as to avoid phase electric potential distortion, which will undermine output voltage quality.
引文
[1]唐任远.现代永磁电机.北京:机械工业出版社,1997.
    [2]陈峻峰.永磁电机.北京:机械工业出版社,1983.
    [3]李钟明,刘卫国.稀土永磁电机.北京:国防工业出版社,1999.
    [4]王秀和等.永磁电机.北京:中国电力出版社,2007.
    [5] Frederick B. McCarty. Hybrid excited generator with flux control of consequent-pole rator: United States Patent:4656379. 1985.
    [6] Chaohui Zhao, Yangguang Yan. A review of development of hybrid excitation synchronous machine. IEEE ISIE 2005, Dubrovnik Croatia, 2005: 857-862.
    [7]赵朝会,秦海鸿,严仰光.混合励磁同步电机发展现状及应用前景.电机与控制学报,2006,10(2):113-117.
    [8]朱孝勇,程明,赵文祥等.混合励磁电机技术综述与发展展望.电工技术学报,2008,23(1):30-39.
    [9]赵朝会.并列结构混合励磁同步发电机的研究.[博士学位论文],南京:南京航空航天大学,2008.
    [10] Jin-Woo Ahn, Sung-Jun Park, Dong-Hee Lee. Hybrid excitation of SRM for reduction of vibration and acoustic noise. IEEE Transactions on Industrial Electronics, 2004, 51(2): 374-380.
    [11]程树康,郑萍,崔淑梅等.混合磁路多边耦合电机的基础研究.中国电机工程学报,2000,20(4):50-53.
    [12]张千帆,裴宇龙,程树康.轴径向气隙混合磁路多边耦合电机轴向励磁绕组的反电势及其位置传感器机理.中国电机工程学报,2005,25(22):136-140.
    [13]程树康,裴宇龙,张千帆.轴径向气隙混合磁路多边耦合电机非线性模型及性能参数的定量研究.中国电机工程学报,2005,25(16):121-125.
    [14] Nicolas Patin, Lionel Vido, Eric Monmasson. Control of a hybrid excitation synchronous generator for aircraft applications. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3772-3783.
    [15]戴卫力,高翔,陈志辉等.混合励磁双凸极发电机双向励磁调压器的研制.中国电机工程学报,2008,28(26):104-110.
    [16] Chau K T, Chan C C, Chuanhua Liu. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Transactions on Industry Applications, 2008,55(6):2246-2257.
    [17]杨成峰,林鹤云,刘细平.混合励磁同步电机调速系统的控制策略.电机与控制学报,2008,12(1):27-33.
    [18]卢琴芬,叶云岳,陈翾.混合励磁直线同步电机的磁场与推力.中国电机工程学报,2005,25(10):127-130.
    [19]黄明星,叶云岳,陈翾.混合励磁直线同步电机磁场的有限元分析.微电机,2005,38(4):21-25.
    [20]史黎明,谢吉.混合励磁直线同步电动机悬浮牵引控制器设计.微特电机,2008,36(7):39-41.
    [21] Chen Zhihui, Sun Yaping, Yan Yangguang. Static characteristics of a novel hybrid excitation doubly salient machine. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005:718-721.
    [22] Xiaoyong Zhu, Ming Cheng, Wenguang Li, Design and analysis of a novel stator hybrid excited doubly salient permanent magnet brushless motor. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005:401-406.
    [23] Xiaoyong Zhu, Ming Cheng, Wenxiang Zhao, et al. A transient cosimulation approach to performance analysis of hybrid excited doubly salient machine considering indirect field-circuit coupling. IEEE Transactions on Magnetics, 2007, 43(6):2558-2560.
    [24] Li Y, T.A.Lipo. A doubly salient permanent magnet motor capable of field weakening. Proceedings of IEEE Power Electronics Specialist Conference, 1995:565-571.
    [25] T.A.Lipo. Field weakening for doubly salient motor with stator permanent magnets. United States Patent, 5455473, 1995.
    [26]朱孝勇,程明,花为等.新型混合励磁双凸极永磁电机磁场调节特性分析及实验研究.中国电机工程学报,2008,28(3):90-95.
    [27] Hoang, E, Lecrivain M, Gabsi, M. A new structure of a switching flux synchronous polyphased machine with hybrid excitation. 2007 European Conference on Power Electronics and Applications, 2007:1-8.
    [28] Amara Y, Lucidarme J, Gabsi M. A new topology of hybrid synchronous machine. IEEE Transactions on Industry Applications, 2001, 37(5):1273-1281.
    [29] G. Henneberger, J. R. Hadji-Minaglou, and R. C. Ciorba. Design and test of permanent magnet synchronous motor with auxiliary excitation winding for electric vehicle application, Proc. European Power Electronics Chapter Symp., Lausanne, Switzerland, Oct. 1994:645–649.
    [30]干金云,江建中,汪信尧.一种新型的电动车辆用复合式永磁无刷直流电机.微特电机,2000,3:10-14.
    [31] Spooner E, Khatab S A W, Nicolaou N G. Hybrid excitation of AC and DC machine. Journal of University of Manchester Institute of Science and Technology.1989,3:48-52.
    [32] K.Nagayama. Study on new excitation schemes for brushless synchronous machines. Nat.Conf.IEE.Japan on Industrial Application,1994,863-869.
    [33] T.Mizuno. Basic principle and design of hybrid excitation synchronous machine. Nat.Conf.IEE. Japan on Industrial Application,1994,25-31.
    [34] K.Nagayama. Torque Characteristics of hybrid excitation synchronous motor. Nat.Conf.IEE. Japan on Industrial Application,1995,996-1002.
    [35] K.Nagayama. Generator characteristics of hybrid excitation brushless motor.IEE,Japan. Study on Semiconductor Power Conversion, Dec 1994,94-105.
    [36] Tapia Juan A, Leonardi Franco, Lipo T. A. Consequent pole permanent magnet machine with field weakening capability. Cambridge, USA: IEEE Internation Electric Machine and Drives Conference,2001. 126-131.
    [37]徐衍亮,唐任远.混合励磁同步电机的结构、原理及参数计算.微特电机,2000,28(01):16-18.
    [38]李优新.混合励磁无刷直流电机的结构及控制策略研究.微特电机,2003,(3):3-6.
    [39] Tapia,J.A, Aydin Metin, Huang Surong,et al. Sizing equation analysis for field controlled PM machines:A unified approach. IEEE International Electric Machines and DriVes Conference,2003,1111-1116.
    [40] Aydin M, Huang Surong, Lipo,T.A. A new axial fiux surface mounted permanent magnet machine capable of field control.IEEE IAS Annual Meeting, Pittsburgh,USA, 2002.1250-1257.
    [41]黄苏融,贡俊,谢国栋.可控磁场永磁盘式电机:中国,2003101094972,2003-12-17.
    [42] HSU J S.Direct control of airgap flux in permanent magnet machines. IEEE Transactions on Energy Conversion,2000,15(4):361-365.
    [43] LIANG FENG, JOHN M M. Permanent magnet eletric machine with flux control: United States,6373162,2002.
    [44] BROWN NL, HAYDOCK L. New brushless synchronous alternator. IEE Proc.of Electric Power Applications,2003,15(6):629-635.
    [45] Lipo TA, Aydin M, Huang S. Field controlled axia1 flux disc machine-dual stator single rotor concept:US,032026:0886;P05379US.2005-10-07.
    [46]张宏杰,郑宝才,吴延忠等.混合励磁永磁同步发电机原理及参数计算.沈阳工业大学学报,2000,22(5):393-395.
    [47] Zhang Hongjie, Li Qingfu, An Zhongliang, et al. Theory and design of hybrid excitation permanent magnet synchronous generators. Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001:898-900.
    [48]张宏杰,唐任远,励庆孚.混合励磁永磁同步发电机的原理与设计.电工电能新技术,2002,21(1):29-32.
    [49]金万兵,张东,安忠良等.混合励磁永磁同步发电机的分析与设计研究.沈阳工业大学学报,2004,26(1):26-29.
    [50] Wang Huijun, An Zhongliang, Tang Renyuan, et al. Design of a hybrid excitation permanent magnet synchronous with low voltage regulation. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005:480-483.
    [51]潘凤淡,张琪,黄苏融等.混合励磁盘式电机的有限元分析.微特电机,2005,1:13-15.
    [52] B.A.Балагуров,электрические,генераторыспостояннынимагнитами. 1988 ,электроатомиздат.
    [53]黄苏融,张琪,谢国栋等.旁路式混合励磁电机.中国,发明专利:200510112090.4, 2005.12.
    [54]张琪,应红亮,黄苏融等.旁路式混合励磁电机初探.电机与控制应用,2006,12:17-21.
    [55] Chan C C, K. T. Chau, J.Z. Jiang, et al. Novel Permanent Magnet Motor Drives for Electric Vehicles . IEEE Transactions on Industrial Electronics, 1996, 43(2):331-339.
    [56] C. C. Chan, R. Zhang, K. T. Chau, and J. Z. Jiang. A novel permanent magnet hybrid motor for electric vehicles, Proceedings of China International Conference on Electric Machines, Hangzhou, China, 1995:1-6.
    [57]王群京,李国丽,马飞等.具有永磁励磁的混合式爪极发电机空载磁场分析和电感计算.电工技术学报,2002,4(5):1-5.
    [58]王群京,陈军,姜卫东等.一种新型混合励磁爪极发电机的建模和计算.中国电机工程学报,2003,23(2):67-70.
    [59]王群京,倪有源,张学等.基于三维等效磁网络法计算混合励磁爪极发电机的负载特性.电工技术学报,2006,21(6):96-100.
    [60]杨成峰,林鹤云.非对称交错混合励磁爪极同步电机调磁性能三维有限元分析.东南大学学报,2007,37(4):614-617.
    [61]杨成峰,林鹤云,刘细平.新型非对称交错混合励磁同步电机电磁设计.中国电机工程学报,2008,28(24):82-87.
    [62] Charles D. Syverson. Hybrid alternator: United States Patent:5397975. 1995.
    [63] Charles D. Syverson, William P. Curtiss. Hybrid alternator with voltage regulator: United States Patent: 5502368. 1996.
    [64] Nobuyula Naoe, Tadashi Fukami. Trial production of a hybrid excitation type synchronous machine. Proceedings of International Electric Machines and Drives Conference, USA, 2001:545-547.
    [65]黄文新,陈海镇.混合励磁永磁发电机及其设计.微特电机,1996,8(5):9-12.
    [66] Dou Yiping,Chen Haizhen. A design research for hybrid excitation rare earth permanent magnet synchronous generator. Shenyang ,China: ICEMS’2001, 2001:856-859.
    [67]窦一平,陈海镇.组合励磁稀土永磁同步发电机和旋转整流器无刷交流发电机的比较.南京师范大学学报(工程技术版),2001,1(1):30-35.
    [68]窦一平,陈海镇.组合励磁稀土永磁同步发电机的空载特性计算模型.南京师范大学学报(工程技术版),2002,2(3):1-6.
    [69]窦一平,组合励磁稀土永磁同步发电机的设计研究. [博士学位论文],南京:南京航空航天大学,2002.
    [70] James S.Cloyd. State of the United States Air Force’s more electric aircraft initiative. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(4):17-22.
    [71]沈颂华主编.航空航天器供电系统,北京:北京航空航天大学出版社,2005.
    [72]严仰光,谢少军.民航飞机供电系统.北京:航空工业出版社,1998.
    [73] Malik E.Elbuluk, M.David Kankam. Potential starter/generator technologies for future aerospace applications, IEEE AES Systems Magazine, 1997, 12(5):24-31.
    [74] Ferreira C A,Jones S R,Heglund W S,et al. Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application. IEEE Transactions on Industry Applications, 1995, 31(3):553-561.
    [75] Radun A V, Ferreira C A, Richter E. Two-channel switched reluctance starter/generator results. IEEE Transactions on Industry Applications, 1998, 34(5):1026-1034 .
    [76]刘闯.开关磁阻电机起动/发电系统理论研究与工程实现. [博士学位论文],南京:南京航空航天大学,2000.
    [77]李声晋,卢刚,马瑞卿等.开关磁阻组合起动机/发电机设计及试验.中国电机工程学报,2000,20(2):10-14.
    [78]任海英,周波.双凸极起动/发电系统一体化设计与实现.中国电机工程学报,2006,26(24):153-158.
    [79] Alan I, Lipo T A. Starter/generator employing resonant-converter-fed induction machine partⅠ:Analysis. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1309-1318.
    [80]张兰红,胡育文等.异步电机起动/发电系统起动向发电的转换研究.航空学报,2005,26(3):567-573.
    [81]黄文新,张兰红等. 18kW异步电机高压直流起动发电系统设计与实现.中国电机工程学报,2007,27(12):52-58.
    [82] N. Patin, L. Vido, E. Monmasson, Control of a DC generator based on a hybrid excitation synchronous machine connected to a PWM rectifier. IEEE ISIE 2006, Montreal Quebec Canada, 2006:2330-233.
    [83]王承煦,张源.风力发电,北京:中国电力出版社,2003.
    [84] Tomonobu Senjyu, Ryosei Sakamoto, Naomitsu Urasaki, et.al.Output power leveling of wind turbine generator for all operating regions by pitch angle control, IEEE Transactions on Energy Conversion, 2006, 21(2):467-475.
    [85] Polinder, H., van der Pijl, F.F.A.,de Vilder, et.al. Comparison of direct-drive and geared generator concepts for wind turbines, IEEE Transactions on Energy Conversion, 2006, 21(3):725-733.
    [86] Tao Sun, Zhe Chen, Blaabjerg, F.Flicker. Study on variable speed wind turbines with doubly fed induction generators, IEEE Transactions on Energy Conversion, 2005, 20(4):896-905.
    [87]邓先明,姜建国,无刷双馈电机的工作原理及电磁设计.中国电机工程学报,2003,23(11):126-132.
    [88] Eduard Muljadi,C.P.Butterfield, and Yih-huie Wan. Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications. IEEE Transactions on Industry Applications,1999, 35(4):831-836.
    [89] Chunhua Liu, K.T.Chau, J.Z.Jiang, and Linni Jian. Design of a new outer rotor permanent magnet hybrid machine for wind power generation. IEEE Transactions on Magnetics,2008, 44(6):1494-1497.
    [90] K. T. Chau, Y. B. Li, J. Z. Jiang, et al. Design and control of a PM brushless hybrid generator for wind power application. IEEE Transactions on Magnetics, 2006, 42(10):3497-3499.
    [91]刘细平,林鹤云,杨成峰.新型双定子混合励磁风力发电机三维有限元分析及实验研究.中国电机工程学报,2008,28(20):142-146.
    [92] Nobuyuki Matsui, Progresses for a last decade and perspectives in applications specific electric motors and drives in Japan. Power Conversion Conference, Nagoya, 2007: 17-21.
    [93] Thomas Finken, Kay Hameyer. Study and geometry optimization of hybrid excited synchronous alternators for automotive applications. IEEE International Electric Machines and Drives Conference, 2007:124-128.
    [94] Thomas Finken, Kay Hameyer. Study of hybrid excited synchronous alternators for automotive applications using coupled FE and circuit simulations. IEEE Transactions on Magnetics, 2008,44(6):1598-1601.
    [95] Fodorean D, Miraoui A. Permanent magnets thermal operation limits in a hybrid excited synchronous machine used on wide speed applications. 11th International Conference on Optimization of Electrical and Electronic Equipment, 2008:21-26.
    [96] Y. Amara, L. Vido, M. Gabsi, et al. Hybrid excitation synchronous machines: energy efficient solutioln for vehicle propulsion, Vehicle Power and Propulsion Conference, 2006:1-6.
    [97] Afjei, E, Toliyat, H, Moradi, H. A novel hybrid brushless DC motor/generator for hybrid vehicles applications. PEDES’2006. Dec,2006:1-6.
    [98] A. M. EL-Refaie and T. M. Jahns, Optimal flux weakening in surface PM machines using fractional-slot concentrated windings. IEEE Transactions on Industry Applications, 2005, 41(3): 790-800.
    [99] El-Refaie A.M, Shah M.R., Ronghai Qu, Kern J.M. Effect of number of phases on losses in conducting sleeves of surface PM machine rotors equipped with fractional-slot concentrated windings. IEEE Transactions on Industry Applications, 2008, 44(5):1522-1532.
    [100] El-Refaie A.M.,Jahns T.M. Impact of winding layer number and magnet type on synchronous surface PM machines designed for wide constant-power speed range operation. IEEE Transactions on Energy Conversion, 2008, 23(1):53-60.
    [101]赵朝会,秦海鸿,严仰光.切向结构永磁同步电机的非导磁衬套研究.电工技术学报,2006,21(10):62-66.
    [102] Chunting Mi, Mariano Filippa,Weiguo Liu, et al. Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines. IEEE Transactions on Magnetics, 2004, 40(1): 50-58.
    [103] M. N. Uddin, T. S. Radwan, and M. A. Rahman, Performance of interior permanent magnet motor drive over wide speed range. IEEE Transactions on Energy Conversion, 2002, 17(1):79-84.
    [104] C. C. Hwang, Y. H. Cho. Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. IEEE Transactions on Magnetics, 2001, 37(4):3021-3025.
    [105] Jin Hur. Characteristic analysis of interior permanent-magnet synchronous motor in electrohydraulic power steering systems. IEEE Transactions on Industry electronics, 2008, 55(6):2216-2223.
    [106] Sung-Il Kim, Geun-Ho Lee, Jung-Pyo Hong, et al.Design process of interior PM synchronous motor for 42-v electric air-conditioner system in hybrid electric vehicle. IEEE Transactions on Magnetics, 2008, 44(6):1590-1593.
    [107]葛笑,张琪,黄苏融.磁极分割型混合励磁电机等效磁路法分析.电机与控制应用,2006,33(1):11-16.
    [108]杨成峰,林鹤云.新型非对称交错混合励磁同步电机等效磁路法分析.微电机,2008,41(4):1-5.
    [109] Kim J.K.,Joo S.W., Hahn S.C., Hong J.P. , et al. Static characteristics of linear BLDC motor using equivalent magnetic circuit and finite element method. IEEE Transactions on Magnetics, 2004, 40(2):742-745.
    [110]刘迪吉.航空电机学,北京:航空工业出版社,1992.
    [111]汤蕴璆.电机内的电磁场,北京:科学出版社,1998.
    [112]颜威利,杨庆新,汪友华等.电气工程电磁场数值分析,北京:机械工业出版社,2006.
    [113]刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析,北京:电子工业出版社,2005.
    [114] Li Xingyuan,Malik O P.Performance of a double-star synchronous generator with bridge rectified output.IEEE Transactions on Energy Conversion, 1994, 9(3):613-619.
    [115]李兴源,黄耀群,谢应璞等.带整流负载时双Y同步发电机特性的分析.中国电机工程学报,1988,8(2):33-45.
    [116]郑德腾,卢贤良.带整流负载6相双Y移30°绕组同步发电机换相过程理论分析与计算机仿真.电工技术学报,1995,10(3):15-22.
    [117]徐松,高景德,郑逢时.带整流负载同步发电机的数字仿真(II)—模式分类.电工技术学报,1992,7(2):1-6.
    [118]徐松,高景德,郑逢时.带整流负载同步发电机的数字仿真(III)—稳态波形和特性.电工技术学报,1992,7(3):1-4.
    [119] Ma Weiming,Hu An, Liu Dezhi,et al.Stability of a synchronous generator with diode-bridge rectifier and back-EMF load. IEEE Transactions on Energy Conversion,2000,15(4):458-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700