用户名: 密码: 验证码:
~(60)Co-γ射线对白腐真菌和黑曲霉的诱变效应以及对木质素降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白腐真菌(White rot fungi)和黑曲霉(Aspergillus Niger)为丝状真菌,白腐真菌属于担子菌门、多孔菌科、层孔菌属、木质拟层孔菌,分泌漆酶(Laccase)、锰过氧化物酶(Mn-peroxidase,Mnp)和木质素过氧化物酶(Lingin-peroxidase,Lip);黑曲霉属于半知菌门、丝孢菌目、丛梗菌科、黑曲霉属、黑曲霉,是羧甲基纤维素酶(exoglucanase,EC)和β-葡萄糖苷酶(β-glucosidase,βG)和木聚糖酶(xylanase.EC3.2.1.8)的高产菌株,这两个菌株对纤维素和木质素有独特的降解能力。本论文以这两菌株为研究对象,利用~(60)C_0—γ射线(~(60)C_0 gamma rays),在不同辐照时间、不同辐照剂量条件下对其孢子悬浮液辐射处理,通过测酶活力,与原菌株对照,选出酶活力提高幅度较大的诱变菌株,并对诱变菌株传代,研究酶活力的稳定性及不同碳源、氮源对菌丝干重和产酶量的影响。论文采用蔗渣固体发酵试验研究对照菌株和诱变菌株对甘蔗渣纤维素和木质素的降解效果,以及甘蔗渣的失重和粗蛋白含量变化情况,进一步考察诱变菌株的生长速度、产酶量较对照组是否有所提高。最后研究固体发酵的产酶条件,试验结果表明:
     (1) ~(60)C_0—γ射线对白腐真菌和黑曲霉辐射效果明显,在0.6kgy剂量下,白腐真菌致死率为94.6%,黑曲霉致死率为99.49%;1.2kgy剂量下,白腐真菌存活率为0.0045%,黑曲霉存活率为0.0026%;但对黑曲霉的筛选及酶活测定结果表明其正突变率为0。从筛选到的6株白腐真菌正突变菌中,漆酶活力提高幅度最大一株达到115.28%,锰过氧化物酶活力提高108.09%,
    
    张变英60co--丫射线对白腐真菌和黑曲霉的诱变效应以及对木质素降解的研究2
    经四次传代稳定性较好。
     (2)诱变菌株和原菌株对碳源及氮源的要求上不存在差异。
     (3)白腐真菌诱变菌株和原菌株发酵甘蔗渣,经30天培养后,原菌株
    NDF降解率为1 6.87%,K 1 ason木素降解率为26.63%;诱变株NDF降解率为
    28.01%,K!ason木素降解率40.75%;经20天培养后,原菌株NO「降解率为
    1 2.60%,K!ason木素降解率为2.99%;诱变株NDF降解率为1 0.89%,K 1 ason
    木素降解率10.69%o
     (4)固体发酵的最佳氮源为蛋白膝,其次为硫酸铁,最佳含水量为44%,
    氮源最佳浓度为3%。
White-rot fungi (5.132 coriolus versicolor fome) and Aspergillus Niger (3.316) are all filar fungus, white rot fungi (5.132) excretes laccase and Mn-peroxidase(Mnp); Aspergillus niger(3.316) excretes endoglucanase (EG), xylanase(EC) and B-glucosidase ( BG), Two species have high degradability to cellulose ,hemi-cellulose and lignin.The degradability of White-rot fungi (5.132) and Aspergillus Niger (3.316)were investigated to bagasse by solid-state fermentation for thirty days, the result shown :
    (1) The degradability of white-rot fungi to neutral detergent fibre (NDF) is 16.87% and to Klason lignin is 26.63%.
    (2) After Aspergillus Niger (3.316) degraded, neutral detergent fibre (NDF) and Klason lignin is higher than before.
    In this study , Sporule suspension of white-rot fungi (5.132) and Aspergillus Niger (3.316) are radiated with 60Co gamma rays under the different radiate dose and different radiate time. Enzyme vitalities of laccase and Mn-peroxidase, endoglucanase (EG) and B-glucosidase (BG)were mensurated. compared with original strains ,their Enzyme vitalities are higher than original strains. 60Co gamma rays have physiological and biochemical effect on fungus sporules which is radiated. Enzyme vitality enhancing attributed two effects or single effect, biochemical effect include gene mutation .By
    
    
    several multiply and repeated isolated, getting six high produced strains of white rot fungi, study shown, six isolated strains of white rot fungi have higher enzyme vitality and mycelial weightiness, and that enzyme vitality have good stabilization, mutation strains have no difference in the demand of carbon source and nitrogen source from original strains. The research of solid-state fermentation of bagasse indicated, six high produced strains of white-rot fungi have higher degradability to cellulose and lignin than original strains ,the difference is evident. The result shown :
    (1) The effect of 60Co gamma rays on white-rot fungi and Aspergillus Niger is evident. Under the 0.6kgy dose, white-rot fungi deadly rate is 94.6%, Aspergillus Niger deadly rate is 99.49%; under 1.2kgy dose, livability rate of white-rot fungi is 0.0045%, livability rate of Aspergillus Niger is 0.0026%.Result of isolation for positive mutation of Aspergillus Niger is zero.
    (2) white-rot fungi laccase vitality enhance 157.7%, Mnp vitality enhance 137.24%. mutiply four times, laccase and Mn-peroxidase vitality have good stabilization.
    (3) After solid state fermentation, original strains degradability to bagasse NDF is 16.87%, to Klason lignin is 26.63%, mutation strains degradability of NDF to bagasse is 28.01%, to Klason lignin is 40.75%.
引文
[1] 赵继鼎.中国真菌志—多孔菌科.科学出版社.1998.
    [2] 裘维蕃主编.菌物学大全.科学出版社.1998.
    [3] 黄年来主编.中国食用菌百科.农业出版社.
    [4] 皱义明编.植物纤维化学.中国轻工业出版社.1994.
    [5] 冀一伦,冀飞.农副产物的营养价值及加工饲用.科学出版社.1994.
    [6] 李正理,张新英编著.植物解剖学.高等教育出版社.1984.
    [7] 郑湘如,王希善译.植物解剖结构显微图谱.农业出版社.1983.
    [8] 陈芳远,胡能书编.中国激光遗传育种与激光生物学.湖南师范大学出版社.1992.
    [9] 向洋编著.激光生物学.湖南科学技术出版社.1995.
    [10] 中野准三.木质素的化学—基础与应用.北京轻工业出版社.1988.
    [11] E.R.rskov.&M.RyIe著.反刍动物营养学.中国农业科技出版社.1992.
    [12] T.W.Jeffries, S.Choi and T.K.Kirk. Nutritional. Regulation of lignin degradation by phanerochate chrysospodum. Appl. Environ Microbiol 1981 (42),296~296.
    [13] Sidphan Soponsathien; Some characteristics of ammonia fungi Ⅰ. In relation to their ligninolytic enzyme activities; J.Gen. Appl.Microbiol, 1998(44), 337~345.
    [14] Dusan Jalc, Peter Siroka, zuzana Ceresnakowa; Effect of six species of white rot basidiomycetes on the chemical composition and rumen degradability of wheat straw; J.Gen.Appl. Microbiol, 1997(43) 133~137.
    [15] 黄毅编著.食用菌生产理论与实践.厦门大学出版社.
    [16] 屈维均主编.制浆造纸实验.轻工业出版社.1990.
    [17] 反刍动物饲料降解率测定技术规程,农业部全国饲料工业办公室提供.
    [18] 杨胜主编.饲料分析与饲料质量检测技术.北京农业出版社.1993.
    [19] LAN D. REID, Solid -state fermentation for biological delignification,Enzyme Microb .Technol. 1989 ,Vol.(11). December.
    [20] G. Hans-Joachim. Jung.,Fernando R Valdez, Ronald D Hat field and Robert A blanchetle; Cell wall composition and degradability of forage stems following chemical and biological delignification. J. Sci.Food.Agric. (58) 347~355, 1992.
    [21] ANA. Gutierres, pada bocchini, Guidoc,Galletti and Angel T.Martines. Analysis of lignin-polysaccharide complexes fomed. Daring. Grass lignin degradation by culture of pleurotus species; Apply and environmental microbiology.June. 1996, 1928~1934.
    [22] 余晓斌,李小华,丁建琴.黑曲霉产纤维素酶的研究.生物技术.4(7):13-15,1997.
    
    
    [23] 李文革,彭玲,刘宣承.~(60)C_o—γ射线诱变柠檬酸产生菌黑曲霉C_o9—6的研究.激光生物学.3(3):509-512,1994.
    [24] 戴四发,贺淹才.黑曲霉产纤维素酶系各组分特性及酶解条件.华侨大学学报(自然科学版).22 (1):65~69,2001.
    [25] 中山大学生物系微生物教研室编.生化技术导论[M].北京:人民教育出版社.61-62,1979.
    [26] 赵小立,贺莜蓉,周红军.黑曲霉产纤维素酶的激光选育.中国激光.7(23):667-671,1996.
    [27] 郑佐兴,段明星,徐文联.高活性纤维素酶菌株的筛选及其产酶条件的研究.微生物学杂志.16 (1):35-38,1996.
    [28] K.Steuberg, M.Galbe and G.Zacchi. The influence of lactic acid formation on the stimultaueous saccharifacation and formautation of softw to ethanol-using saccharomyces cerevisiae and betaglucosidase and cellulose-mediated hydrolysis[J]. Enzyme.Microb.Technol. 26(1):71-79, 1990.
    [29] 章名春编.工业微生物诱变育种.科学出版社.1984.
    [30] [日]微生物研究法讨论会.微生物学实验法.科学出版社.1983.
    [31] 曲音波,高培基,王祖农.青霉的纤维素酶抗降解物阻遏突变株的选育.真菌学报4(3):238-243,1984.
    [32] A.K.Kiraisi, S. Eliapenda. Application of rumen microorganisms for enhanced anaerobic degradation of bagasse and maize bran. Biomass and Bioenergy. 1(8):45-50, 1995.
    [33] C.L.Aguiar. Biodegradation of the cellulose from sugarcane bagasse by fungal cellulose. Cienc. Tecnol.Aliment. 2(3):117-121, 2001.
    [34] ZOHAR KEREM AND YITZHAK HADAR. Effect of Manganese on Preferential Degradation of Lignin by Pleurotus Ostreatus during Solid-State Fermentation. Applied And Environmental Microbiology. 8(61):3057-3062, 1995.
    [35] 向洋.激光诱变及生物学作用机制研究.光电子激光.5(2):87-91,1994.
    [36] 毛宁,陈必链.激光在工业微生物育种中的应用研究.应用激光.17(1):27-29,1997.
    [37] 李庄,韦文楼,陈茂鑫.激光诱导生物体变异中的基本规律.激光生物学.4(4):745-747,1995.
    [38] 王晶,郭维生.激光提高酶活性机理探讨.中国激光.A24(8):765-768,1997.
    [39] 周金燕.真菌产锰过氧化物酶和漆酶的研究Ⅰ.微生物学报.35(5):387-391,1993.
    [40] 周金燕.真菌产锰过氧化物酶和漆酶的研究Ⅱ.微生物学报.21(3):151-155,1994.
    [41] 王佳玲.白腐菌漆酶的研究进展.微生物学通报.25(4):233-236,1998.
    [42] 陈立祥,章怀云.木质素生物降解及其应用研究进展.中南林学院学报.23(1):79-85,2003.
    [43] 吴坤,张世敏,朱显峰.木质素生物降解研究进展.河南农业大学学报.34(4):349-354,2000.
    [44] 秦小琼.红栓菌胞外漆酶的诱导、纯化及部分特性的研究.微生物学报.36(5):360-366,1996.
    
    
    [45] 凡自若.几种担子菌胞外漆酶的研究.真菌学报.10(1):61-70,1995.
    [46] 卢德勋,谢崇文.现代反刍动物营养研究方法.农业科学出版社.1990.
    [47] 李慧蓉.白复真菌的研究进展.环境科学进展 4(6):69-77,1996.
    [48] 刘小玲.白腐真菌降解甘蔗渣的研究.广西大学硕士学位论文.1999.5.
    [49] T.Scheel, M.Hofer, S.Ludwig and U.Holker. Differential expression of manganese peroxidase and 1 laccase in white-rot fungi in the presence of manganese or aromatic compound. Appl Microbiol Biotechnol. (2000)54:686-691.
    [50] J.A.Feild, F.Boelsma, H.Baten and W.H.Rulkens. Oxidation of anthracene in water/sovent mixtures by the white-rot fungus.Bjerkandera SP strain BOS555. Appl Microbiol Biotechnol. (1995)44:234-240.
    [51] B.E.Andersson, T.Henrysson.. Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Appl Microbiol Biotechnol. (1996)46:647-652.
    [52] I.Schneega, B.M.Hofrichter and K.Scheibner. purification of the main manganese peroxidase is oenzyme Mnp2 from the white-rot fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol. (1997)48:602-605.
    [53] M.C.Marco, Gielkens, Jaap visser and LeoH.de Graaff. Arabinoxylan degradation by fungi: characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet. (1997)31:22-29.
    [54] A.Ghosh, B.C.Bhattacharyya. Biomethanation of white rotted and brown rotted rice straw. Bioprocess Engineering. (1999)20:297-302.
    [55] K.Rose, M.Liebergecell and A.Steinbiichel. Molecular analysis of the Aureobasidium pullulans ura3 gene encoding orotidine-5-phosphate decarboxylase and isolation of mutants defective in this gene. Appl Microbiol Biotechnol. (2000)53:296-300.
    [56] E.Schuster, N.Dunn-coleman and J.C.Frisrad. P.W.M.Var Dijck on the safety of Aspergillus niger-a review. Appl Microbiol Biotechnol. (2002)59:426-435.
    [57] F.Lenouvel, L.Fraissinet-Tachet. P.J.I.Vandle vondervoort, mol Gene Genomics. (2000)266:40-47.
    [58] Chandralata, Raghukumar, Gauri Rivonkar. Decolorization of molasses spent wash by the white-rot fungus flavodon flavus isolated from a marine habitat. Appl Microbiol Biotechnol. (2001)55:510-514.
    [59] M.V.S.Merty, T.S.Chandra. Fermentability of hemicellulose extracted from municipal waste and commercial xylans by clostridium sp. Appl Microbiol Biotechnol. (1997)47:212-217.
    [60] L.Sene, A.Converti, M.Zill and M.G.A.Felipe. Metabolic study of the adaptation of the yeast
    
    candida guilliermondii to sugarcane bagasse hydrolysate. Appl Microbiol Biotechnol. (2001)57:738-743.
    [61] 厝玄之,封国林.激光辐照微生物的研究概况.激光生物学报.8(2):157-160,1999.
    [62] 石永峰.甘蔗渣作为反刍动物饲料存在的问题及解决途径.粮食与饲料工业.6(4):34-35,1995.
    [63] 虞建梅.蔗渣的生化利用 甘蔗糖业 1993(4):46-50.
    [64] 何燕玲.甘蔗渣的综合利用.福建糖业.1993(1):39-45.
    [65] 程文光.蔗渣副产品在畜牧生产中的应用.四川畜牧兽医.1998(1):49-52.
    [66] 聂柱山.利用生物技术提高纤维素饲料营养价值的研究.中国畜牧杂志.1990(4):10-15.
    [67] 杨国全.农作物秸杆壳渣纤维饲料的研究.粮食与饲料工业.1993(3):23-26.
    [68] 王双飞.膨化/生物法预处理对纤维素酶酶解蔗渣的研究.纤维科学与技术.1(6):29-35,1998.
    [69] 海豚.甘蔗渣的利用.现代畜禽养殖(台湾).1(22):40-42,1994.
    [70] 杨斌.分解蔗渣的研究口.华中农业大学学报.4(16):317-319,1997.
    [71] 杨斌.分解蔗渣的研究口.华中农业大学学报.5(16):361-366,1997.
    [72] 毛华明,邓卫东,冯仰廉.化学处理提高甘蔗渣营养价值的研究.动物营养学报.12(2):61-64,2000.
    [72] 冯清平,徐向军.微生物诱变效应的数学分析.甘肃科学学报.7(3):128-130,1995.
    [73] 冯清平.微波对微生物诱变的生物效应研究.甘肃科学学报.6(4):34-40,1994.
    [74] 杨丽源,李绍兰,陈有为.激光诱变微生物的遗传和刺激机理及育种研究.激光杂志.17(5):259-263,1996.
    [75] 张秀华.电离辐射生物学效应及其在农业上的应用.安徽农业科学.23(2):187-188,1995.
    [76] 李兴诗.生物物理学.北京:科学技术出版社.1993:216-272.
    [77] 密士军,郝再彬.航天诱变育种研究新进展.黑龙江农业科学.2002(4):31-33.
    [78] 陈远贻,杨荣仲.60CO—γ射线不同剂量辐射甘蔗种芽试验初报.甘蔗.3(4):18-22,1996.
    [79] 魏赛金,付学琴.60CO—γ射线对南昌霉素产生菌的诱变选育.江西农业大学学报.24(2):186-190,2002.
    [80] 诸葛建,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社.1994.
    [81] 贾盘兴,蔡金科.微生物遗传学实验技术[M].北京:科学出版社.1992.
    [82] 胡风庆,简宏晨.玉米秸杆型多效酶制剂产生菌的选育.辽宁大学学报.28(3):270-273,2001.
    [83] P.Sanoie et.al;Enzymatic hydyolysis of forage and straw pretreated with ammoma; Ccanadian agricultural engineering. 40(3):207-212,1998.
    [83] LAN D. REID. Solid-state fermentation for biological delignification .Enzyme microb technol.11(10),1989.
    [84] S.B.Pointing. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol.
    
    (2001)57:20-33.
    [85] 郑建仙.蔗渣膳食纤维化学结构的研究(□).食品与发酵工业23(2):14-17,1997.
    [86] 郑建仙.蔗渣膳食纤维化学结构的研究(□).食品与发酵工业23(2):1-6,1997.
    [87] 郑建仙.蔗渣膳食纤维化学结构的研究(□).食品与发酵工业.23(4):8-12,1997.
    [88] 博.戈尔.热带饲料.联合国粮食及农业组织.
    [89] 刑来君,李明春.普通真菌学.高等教育出版社.1999.
    [90] 潘锋,史小丽,杨树林.多菌种混合发酵稻草生产蛋白饲料的研究.粮食与饲料工业.2001(8):25-26.
    [91] 冯仰廉,张子仪.低质粗饲料的营养价值及合理利用.中国畜牧杂志.37(6):3-5,2001.
    [92] Durand A.,Blachere H. Solid state fermentation. Station de genie microbiologique,INRA 17,rue SULLY 21034.DIJON.
    [93] Jack Ziffer. Wheat bran culture process for fungal amylase and penicillin production.The technion,Haifa 32 000,Israel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700