用户名: 密码: 验证码:
基于FDTD的环行器和天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信技术的迅速发展和应用推动着通信设备向小型化、宽频带、多频段发展。结环行器和天线是通信系统中的重要器件,它们性能的高低直接决定着整个通信系统能否正常而高效的工作,大功率微波系统的应用使得高功率宽带环行器受到人们的重视,因此,研究小型、多频天线和高功率宽带环形器具有一定的理论意义和实用价值。
     近年来,通信系统向着大容量、多功能和智能化发展,微带天线的双频特性和宽带设计引起了人们很大的兴趣。蜂窝电话和无线局域网(WLAN)为双频宽带天线提供了广阔的应用平台。研究具有双频特性并适用于WLAN的小型化微带天线,具有重要意义。
     计算电磁学结合了计算机技术、数值计算学和电磁学等相关学科的知识。时域有限差分法(FDTD)由于其强大的功能,成为电磁场数值模拟的最重要方法之一。在对FDTD算法的研究上,如何在小计算存储量下达到所需的吸收性能成为各种吸收边界条件研究的目标。FDTD通过时域近远场变换算法来计算天线远场辐射特性,但数据存储量大,计算速度较慢。如何减少其计算存储量也是研究的热点。
     本论文采用FDTD对波导环行器和双频微带天线进行了研究,取得了一定的研究成果,主要有:
     首先,提出了采用偏心铁氧体的宽带E面T结波导环行器的设计方法,减少了环形器设计时需要调节的参数个数。利用FDTD对其进行优化和计算,并进行了实际制作与测试。测试结果与计算结果相吻合,表明了设计方法的正确性与计算结果的准确性。
     其次,提出了在FDTD中使用的MurUPML混合吸收边界,并将其应用于偏心铁氧体环行器的分析中。计算结果表明,与单一吸收边界相比,该混合吸收边界能够在保持精度不变的前提下,减少计算所需时间。
     第三,采用新型有机磁性材料为基片,提出了一种适合于WLAN的小型化双频天线结构。利用降维时域有限差分法(R-FDTD)研究了不同宽度的槽对天线谐振频率以及馈电位置对天线性能的影响。对天线的测试结果表明,该天线具有良好的性能,能够满足WEAN的要求。
     第四,提出了R-FDTD中基于时域抽样法的近远场变换算法,以进一步减小计算存储量。与采用普通R-FDTD算法相比,该算法在计算天线远场方向图时能够明显降低计算存储量,减少计算时间。
With the rapid development of communication technology, the devices for modern communications are required to be compact and wideband. Junction circulators and antennas are important equipments in communication system, which decide whether the communication system can achieve high performance. With the use of high power microwave system, people pay more attention to those circulators which can offer high power-handling capability.
     Communication system is developing toward larger capacity, multi-functions and intelligence; there have been increasing interests in dual frequency and wideband operation of microstrip antennas in recent years. The quick development of cellular telephone and wireless local area network (WLAN) provides broad platform for wideband dual-frequency antenna. It is very meaningful to design compact dual-band WLAN microstrip antenna.
     Computational electromagnetics is the combination of several subjects including computer technology, computational mathematics and electromagnetics. The finite-difference time-domain (FDTD) method is one of the most important methods in computational electromagnetics for its powerful capability. The goal of absorbing boundary conditions in FDTD is to achieve absorption performance with less computer storage. The radiation field characteristics of antenna can be computed by using near-field to far-field transformation in FDTD with huge amount of memory occupation and low speed. How to reduce storage demands is a research hotspot in FDTD.
     In the researches on waveguide junction circulator and dual-frequency antenna, many results are obtained by this dissertation. The results are as follows:
     Firstly, a novel broadband E-plane T-junction waveguide circulator with off-center ferrite discs is developed. This method can reduce the number of design parameters. FDTD method is applied to optimize parameters in the circulator. Fabrication and testing of the circulator are carried out. The correctness of the proposed method and calculation results are proved by testing results.
     Secondly, a mixed absorbing boundary condition based on Mur-UPML is proposed and applied in the analysis of circulator with off-center ferrite discs. The calculation result shows that the mixed absorbing boundary conditions can reduce the time for calculation significantly without reducing accuracy.
     Thirdly, a compact and dual-band micro-strip antenna for WLAN application is researched with organic magnetic materials. The influences of the slots on the antenna resonant frequency and the feed position on the antenna performance are studied by using reduced finite-difference time-domain(R-FDTD) method. The testing results show that the dualband antenna has good performance and can operate well in WLAN frequencies.
     The dissertation proposes a method to reduce storage demands in the near-field to far-field transformation in R-FDTD by reducing the data in near-field. Calculation results show that the method can improve the calculation efficiency with satisfied accuracy comparing with common R-FDTD method.
引文
[1]高本庆.时域有限差分法.北京:国防工业出版社,1995.
    [2]王常清,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社,1994.
    [3]吕英华.计算电磁学的数值方法.北京:清华大学出版社,2006.
    [4]王乘中.计算电磁学.北京:科学出版社,2002.
    [5]Yee K S.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media.IEEE Transactions on Antennas Propagation,1966,14(3):302-307.
    [6]Ling Li,Werner D H,Bossard J A,Mayer T S.A model-based parameter estimation technique for wide-band interpolation of periodic moment method impedance matrices with application to genetic algorithm optimization of frequency selective surfaces.IEEE Transactions on Antennas and Propagation,2006,54(3):908-924.
    [7]陈鹏.非对称共面波导色散特性及应用的研究(博士学位论文).大连:大连海事大学,2006.
    [8]Fujisaki K,Hirayama R,Kawachi T,Satou S,Kaidou C,Yabumoto M,Kubota T.Motor Core Iron Loss Analysis Evaluating Shrink Fitting and Stamping by Finite-Element Method.IEEE Transactions on Magnetics,2007,43(5):1950-1954.
    [9]Deibel J A,Escarra M,Berndsen N,Kanglin Wang,Mittleman D M.Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies.Proceedings of the IEEE,2007,95(8):1624-1640.
    [10]Peng Liu,Ya-Qiu Jin.The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface.IEEE Transactions on Geoscience and Remote Sensing,2004,42(5):950-956.
    [11]Lou Z,Jin J M.A New Explicit Time-Domain Finite-Element Method Based on Element-Level Decomposition.IEEE Transactions on Antennas and Propagation,2006,54(10):2990-2999.
    [12]Min Dai,Keyhani A,Sebastian T.Fault analysis of a PMbrushless DC Motor using finite element method.IEEE Transactions on Energy Conversion.2005,20(1):1-6.
    [13]C W Tee,C C Tan,S F Yu.Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method. IEEE Photonics Technology Letters, 2003, 15(9):1231-1233.
    
    [14]Yuen Ming Chan F, Kin Seng Chiang. Transfer-matrix method for the analysis of two parallel dissimilar non-uniform long-period fiber gratings. Journal of Lightwave Technology, 2006, 24(2):1008-1018.
    
    [15]Wei Shao, Bing Zhong Wang, Zhong Jun Yu. Space-domain finite-difference and time-domain moment method for electromagnetic simulation. IEEE Transactions on Electromagnetic Compatibility, 2006, 48(1):10-18.
    
    [16]Pascaud R, GillardR, Loison, R, Wiart J. Dual-grid finite-difference time-domain scheme for the fast simulation of surrounded antennas. IET Microwaves, Antennas & Propagation, 2007, 1(3):700-706.
    
    [17]Kasuga T, Inoue H. Novel FDTD simulation method using multiple-analysis-space for electromagnetic far field. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(2): 274-280.
    
    [18]Ma W, Rayner M R, Parini C G. Discrete Green's function formulation of the FDTD method and its application in antenna modeling. IEEE Transactions on Antennas and Propagation, 2005, 53(1):339-346.
    
    [19]Gonzalez O, Pereda J A, Herrera A, Vegas A. An extension of the lumped-network FDTD method to linear two-port lumped circuits. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(7):3045-3051.
    
    [20]Xiao Fei, Tang Xiaohong, Zhang Xianjing. The construction of low-dispersive FDTD on hexagon. IEEE Transactions on Antennas and Propagation, 2005, 53(11):3697-3703.
    
    [21]Shumin Wang, Teixeira F L. Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems. IEEE Transactions on Antennas and Propagation, 2003, 51(8):1818-1828.
    
    [22]Taylor C D, Lam D H, Shumpert T H. EM pulse scattering in time varying inhomogeneous media. IEEE Transactions on Antennas and Propagation, 1969, 17(5): 585-589.
    
    [23]B. Engquist, A Majda. Absorbing boundary condition for the numerical simulation of waves, Mathematics of Computation, 1977, 31(139):629-651.
    
    [24]Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Transactions on Electromagnetic Compatibility, 1981, 23(4):377-382.
    
    [25]Liao Z P, Wong H L, Yang B P, et al. A transmitting boundary for transient wave analysis. Science in China, 1984, 27(10) :1063-1076.
    
    [26]P. Yang, K. N. Liu. An efficient algorithm for truncating spatial domain in modeling light scattering by finite-difference technique. Journal of Computational Physice, 1998, 140(2): 346-369.
    
    [27] J. Fang, Investigation on the stability of absorbing boundary conditions for the time-domain finite-difference method. IEEE Antennas and Propagation Society International Symposium, Chicago, 1992, 1:548-551.
    
    [28]K. K. Mei, J. Fang, Superabsorption - a method to improve absorbing boundary conditions, IEEE Trans .on Microwave theory and techniques, 1997, 45(8):1162-1170.
    
    [29]Mur G. Total-field absorbing boundary conditions for the time-domain electromagnetic field equations. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(2): 100-102.
    
    [30]Lee S H, Choi H S, Park I H. Introducing the Virtual Air-Gap Scheme to the Kelvin Force Densities With External and Total Field. IEEE Transactions on Magnetics, 2007, 43(4):1457-1460.
    
    [31]Simpson J J, Taflove A. Two-dimensional FDTD model of antipodal ELF propagation and Schumann resonance of the Earth. Antennas and Wireless Propagation Letters, 2002, 1(1):53-56.
    
    [32]D. J. Riley, C. D. Turner. Hybrid Thin-slot Algorithm for the Analysis of Narrow Apertures in Finite-Difference Time-Domain Calculations. IEEE Transactions on Antennas and Propagation, 1991, 38(12): 1934—1950.
    
    [33]R. Holland. Finite-Difference Solution of Maxwell's Equations in Generalized Nonorthogonal Coordinates. IEEE Trans. Nuclear Science Vol. 1983, 30(6):4589—4591.
    
    [34]N. K. Madsen, R. W. Ziolkowski. Numerical Solution of Maxwell's Equations in the Time Domain Using Irregular Nonorthogonalgrids. Wave Motion, 1988, 10:583-596.
    
    [35]R. Luebbers, F. P. Hunsberger, K. S. Kunz and etc. A Frequency Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials. IEEE Trans-. Elelctromagn. Compat, 1990, 32(3): 222-227.
    
    [36]R. J. Lubbers, F. Hunsberger. FDTD for Nth-Order Dispersive Media. IEEE Trans. Antennas and Propagat, 1992, 40(11):1297-1301.
    
    [37]Sui W, Christensen D A, Durney C H. Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements. IEEE Transactions on Microwave Theory and Techniques, 1992, 40(4):724-730.
    
    [38]Chen J, Jianguo Wang. A Three-Dimensional Semi-Implicit FDTD Scheme for Calculation of Shielding Effectiveness of Enclosure with Thin Slots. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2):354-360.
    
    [39]Hue Y K, Teixeira F L, Martin L E S, Bittar M. Modeling of EM logging tools in arbitrary 3-D borehole geometries using PML-FDTD. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 78-81.
    
    [40]Tinniswood A D, Furse C M, Gandhi 0 P. Computations of SAR distributions for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code. IEEE Transactions on Antennas and Propagation, 1998, 46(6):829-833
    
    [41]Shibayama J, Muraki M, Takahashi R, Yamauchi J, Nakano H. Performance evaluation of several implicit FDTD methods for optical waveguide analyses. Journal of Lightwave Technology, 2006, 24(6):2465-2472.
    
    [42]Kokkinos T, Sarris C D, Eleftheriades G V. Periodic FDTD analysis of leaky-wave structures and applications to the analysis of negative-refractive-index leaky-wave antennas. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(4):1619 -1630.
    
    [43]Dib N, Katehi L P B. Characterization of three-dimensional open dielectric structures using the finite-difference time-domain method. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(4):513-518.
    
    [44]Rodriguez G, Miyazaki Y, Goto N. Matrix-based FDTD parallel algorithm for big areas and its applications to high-speed wireless communications. IEEE Transactions on Antennas and Propagation, 2006, 54(3):785-796.
    
    [45]Ray A, Kondayya G, Menon S V G. Developing a finite difference time domain parallel code for nuclear electromagnetic field Simulation. IEEE Transactions on Antennas and Propagation, 2006, 54(4):1192-1199.
    
    [46]Tinniswood A D, Furse C M, Gandhi O P. Computations of SAR distributions for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code.IEEE Transactions on Antennas and Propagation,1998,46(6):829-833.
    [47]Xu L,Yuan N.FDTD Formulations for Scattering from 3-D Anisotropic Magnetized Plasma Objects.Antennas and Wireless Propagation Letters,2006,5(1):335-338.
    [48]Ming Yan,Shao K R,Hu X W,Youguang Guo,Jianguo Zhu,Lavers J D.Z-transform-based FDTD analysis of perfectly conducting cylinder covered with unmagnetized Plasma.IEEE Transactions on Magnetics,2007,43(6):2968-2970.
    [49]Yung E K N,Chen R S,Wang Y,Wu K.FDTD analysis of EM wave circulated by a magnetised ferrite body of arbitrary shape.IEE Proceedings Microwaves,Antennas and Propagation,1998,145(6):433-440.
    [50]Koos C,Fujii M,Poulton C G,Steingrueber R,Leuthold J,Freude W.FDTD-Modelling of Dispersive Nonlinear Ring Resonators:Accuracy Studies and Experiments.IEEE Journal of Quantum Electronics,2006,42(12):1215-1223.
    [51]Qing Huo Liu.Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain(PSTD) algorithm.IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):917-926.
    [52]马弘炯.瞬态电磁脉冲的时域伪谱方法研究、改进及应用(博士学位论文).成都:电子科技大学,2004.
    [53]李康,孔凡敏,郭毅峰,王俊泉,梅良模.MRTD和高阶FDTD算法的数值色散特性的分析.系统仿真学报,2005,17(9):2089-2091+2095.
    [54]余声明.环行器/隔离器在微波通信中的地位于作用.电子元器件应用,2003,5(11):1-4.
    [55]张登国.波导环行器概论.北京:科学出版社,1998.
    [56]Adam J D,Davis L E,Dionne G F,Schloemann E F,Stitzer S N.Ferrite devices and materials.IEEE Transactions on Microwave Theory and Techniques,2002,50(3):721-737.
    [57]蒋仁培,魏克珠.微波铁氧体理论于技术.北京:科学出版社,1984.
    [58]窦文斌,孙忠良.毫米波铁氧体器件理论与技术.北京:国防工业出版社,1996.
    [59]魏克珠,李士根,蒋仁培.微波铁氧体新器件.北京:国防工业出版社,1995.
    [60]Yung E K N,Chen R S,Wu K,Wang D X.Analysis and development of millimeter-wave waveguide-junction circulator with a ferrite sphere(Part 1).IEEE Transactions on Microwave Theory and Techniques, 1998, 46(11):1721-1734.
    
    [61]Ye Z B, Chen R S, Li S S. Analysis of the microstrip Circulator with a Magnetized Ferrite Sphere in Millimeter Wave through FDTD Method with LS-SVM and PSO, IEEE Antennas and Propagation Society International Symposium 2006, 2006:3469-3472.
    
    [62]Caplin M, D' Orazio W, Helszajn. First circulation condition of E-plane circulator using single-prism resonator. IEEE Microwave and Guided Wave Letters, 1999, 9(3) :99-101.
    
    [63]Hunter R I, Robertson D A, Goy P, Smith G M. Design of High-Performance Millimeter Wave and Sub-Millimeter Wave Quasi-Optical Isolators and Circulators. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(5):890-898.
    
    [64]Yoon S D, Jiangwei Wang, Nian Sun, Vittoria C, Harris V G. Ferrite-Coupled Line Circulator Simulations for Application at X-Band Frequency. IEEE Transactions on Magnetics, 2007, 43(6):2639-2641.
    
    [65]Guennou A, Delia B, Queffelec P, Gelin P, Mattei J L. Influence of the Magnetic Field Nonuniformity on an X-Band Microstrip Y-Junction Circulator Bandwidth: Theory/Experiment Comparison. IEEE Transactions on Magnetics, 2007, 43(6):2642-2644.
    
    [66]Koshiba M, Suzuki M. Finite-Element Analysis of H-Plane Waveguide Junction with Arbitrarily Shaped Ferrite Post. IEEE Transactions on Microwave Theory and Techniques, 1986, 34(1): 103-109.
    
    [67]Davies J B. An Analysis of the m-Port Symmetrical H-Plane Waveguide Junction with Central Ferrite Post. IEEE Transactions on Microwave Theory and Techniques, 1962, 10(6): 596-604.
    
    [68]El-Shandwily M E, Kamal A A, Abdallah E A F. General Field Theory Treatment of H-Plane Waveguide Junction Circulators. IEEE Transactions on Microwave Theory and Techniques, 1973, 21(6):392-403.
    
    [69]W B Don. Exact Electromagnetic Field Theory for Broadband H-Plane Waveguide Junction circulators. Sciencein China (SeriesA), 1989, 32(9):1115-1127.
    
    [70]Khilla A M, Wolff I. Field Theory Treatment of H-Plane Waveguide Junction with Triangular Ferrite Post. IEEE Transactions on Microwave Theory and Techniques, 1978, 26(4): 279-287.
    
    [71]OkamotoN. Computer-aided design of H-plane waveguide junction with full-height ferrite with arbitrary shape.IEEE Transactions on Microwave Theory and Techniques,1979,27(4):315-321.
    [72]Ei-Shandwily M E,Kamal A A,Abdallah E A F.General Field Theory Treatment of E-Plane Waveguide Junction Circulators-Part Ⅰ:Full-Height ferrite configuration.IEEE Transactions on Microwave Theory and Techniques,1977,25(9):784-793.
    [73]El-Shandwily M E,Kamal A A,Abdallah E A F.General Field Theory Treatment of E-Plane Waveguide Junction Circulators--Part Ⅱ:Two-Disk Ferrite Configuration.IEEE Transactions on Microwave Theory and Techniques,1977,25(9):794-803.
    [74]柳平,杨铨让.毫米波E面波导铁氧体环行器.汕头大学学报(自然科学版).2001,16(1):8-12.
    [75]Helszajn J,Tsounis V,Papaioannou N.Mode chart and susceptance slope parameter of an E-plane circulator using coupled prism resonators.IEE Proceedings Microwaves,Antennas and Propagation,1999,146(1):23-28.
    [76]胡淑欣.不规则铁氧体的波导结环行器分析:(硕士学位论文).南京:东南大学,2003.
    [77]黄贵荣,高辉,刘功发,尚雷,王金祥.高频环行器打火原因的分析.高能物理与核物理,2005,29(12):1200-1204.
    [78]周雁翎,王小陆,钱林,胡善祥.对称加载铁氧体波导差相移式高功率环行器的设计.微波学报,2004,20(1):53-57.
    [79]Zhang DG,Yung EKN.8mm T-junction waveguide circulator with a ferrite sphere.Electronic Letters,1995,31(25):2185-2187.
    [80]Piotrowski WS,Bane JE.Low loss broadband EHF circulator.IEEE Transactions on Microwave Theory and Techniques,1976,24(ii):863-866.
    [81]Helszajn J.Design of Waveguide Circulators with Chebyshev Characteristics Using Partial-Height Ferrite Resonators.IEEE Transactions on Microwave Theory and Techniques,1984,32(8):908-917.
    [82]Saou-Wen Su,Jui-Hung Chou,Kin-Lu Wong.Internal Ultra-wideband Monopole Antenna for Wireless USB Dongle Applications.IEEE Transactions on Antennas and Propagation,2007,55(4):1180-1183.
    [83]Zhi Ning Chen,See T SP,Terence S P See.Small Printed Ultra-wideband Antenna with Reduced Ground Plane Effect.IEEE Transactions on Antennas and Propagation,200?,55(2):383-388
    [84]Vardaxoglou J C, Gousetis G, Feresidis A P. Miniaturisation schemes for metallo-dielectric electromagnetic band-gap structures. IET Microwaves, Antennas & Propagation, 2007, 1(1):234-239.
    
    [85]Buell K, Mosallaei H, Sarabandi K. A substrate for small patch antennas providing tunable miniaturization factors. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 135-146.
    
    [86]Hunziker L E, Ihli C, Steingrube D S. Miniaturization and Power Scaling of Fundamental Mode Optically Pumped Semiconductor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3):610 - 618.
    
    [87]Volakis J L, Mumcu G, Sertel K, Chen C C, Lee M. Kramer B. Antenna Miniaturization Using Magnetic-Photonic and Degenerate Band-Edge Crystals. IEEE Antennas and Propagation Magazine, 2006, 48(5):12-28.
    
    [88]T Chan, Y H wang. A dual-band microstrip array antenna, IEEE International Symposium on Antennas and Propagation Digest, 1995, 4:2132-2135.
    
    [89]C K Wu, K L Wong. Broadband microstrip antenna with directly coupled and gap-coupled parasitic patches. Microwave and Optic Technology Letters. 1999, 22(5): 348-349.
    
    [90]Chen ZN, Chia M YW. Design of broadband probe-fed plate antenna with stub. IEEE Transactions on Antennas and Propagation, 2001, 148(4):221-226.
    
    [91]T. Huynh, K F Lee. Single-layer single-patch wideband micro-strip antenna. Electronics. Letters, 1995, 31(16):1310-1311.
    
    [92]Mak C L, Luk K M, Lee K F, Chow Y L. Experimental study of a microstrip patch antenna with an L-shaped probe. IEEE Transactions on Antennas and Propagation, 2000, 48(5): 777-783.
    
    [93]C L Mark, K F Lee, KM Luk. Broadband patch antenna with a T-shaped probe. Microwave Antennas and Propagation, 2000, 147(2):73-76.
    
    [94]C Puente, JRomeu, A. Cardama. The Koch monopole: a small fractal antenna, IEEE Transactions on Antennas and Propagation, 2000, 48(11):1773 — 1781.
    
    [95]J S Chen, K L Wong. A single-layer dual-frequency rectangular microstrip patch antenna using a single probe feed, Microwave and Optical Technology Letters, 1996, 2(2): 38-84.
    [96]J S Dahele,K F Lee,D P Wong.Dual frequency stacked annular-ring micro-strip antenna.IEEE Transactions on Antennas and Propagation,1987,35(11):1281-1285.
    [97]RongLin Li,DeJean G,Laskar J,Tentzeris M M.Investigation of circularly polarized loop antennas with a parasitic element for bandwidth enhancement.IEEE Transactions on Antennas and Propagation,2005,53(12):3930-3939.
    [98]Ramesh Garg,Prakash Bhartia,Inder Bahl.Microstrip Antenna Design Handbook.London:Artech house,2001.
    [99]W F Richards,W E Daidson,S A Long.Dual-band reactively loaded microstrip antenna.IEEE Transactions on Antennas and Propagation,1985,33(2):556-560.
    [100]S E Davidson,S A Long,W F Richards.Dual band microstrip antenna with monolithic reactive loading,Electronics Letters,1985,21(21):936-937.
    [101]B F Wang,Y T Lo.Microstrip atennna for dual-frequency operation.IEEE Transactions on Antennas and Propagation,1984,32(9):938-943.
    [102]Sim D U,Choi J I.A Compact Wideband Modified Planar Inverted $F$ Antenna(PIFA)for 2.4/5-GHz WLAN Applications.Antennas and Wireless Propagation Letters,2006,5(1):391-394.
    [103]Young Pyo Hong,Jung-Min Kim,Soon Chul Jeong.S-band dual-path dual-polarized antenna system for satellite digital audio radio service(SDARS) application.IEEE Transactions on Microwave Theory and Techniques,2006,54(4):1569-1575.
    [104]S Maci,G Biffi Gentili,G Avitable.Single-layer dual-frequency patch antenna.Electronics.Letters,1993,29(16):1441-1443.
    [105]Tae-Hyun Kim,Dong Chul Park.Compact dual-band antenna with double L-slits for WLAN operations.Antennas and Wireless Propagation Letters,2005,4:249-252.
    [106]Suma M N,Raj R K,Joseph M,Bybi P C,Mohanan P.A compact dual band planar branched monopole antenna for DCS/2.4-GHz WLAN applications.IEEE Microwave and Wireless Components Letters,2006,16(5):275-277.
    [107]Jia Yi Sze,Hsu C I G,Sheng Chin Hsu.Design of a Compact Dual-Band Annular-Ring Slot Antenna.Antennas and Wireless Propagation Letters.2007,6:423-428.
    [108]Hwang S H,Moon J I,Kwak W I,Park S O.Printed compact dual band antenna for 2.4 and 5 GHz ISM band applications.Electronics Letters,2004,40(25):1568-1569.
    [109]蔡明娟,尹家贤,刘克诚.一种结构新型的双频双极化共口径微带天线.电波科学学报, 2006,2l(1):121-125.
    [110]迟高明,黎滨洪,戚冬生.用于无线局域网的双频印刷天线.上海交通大学学报.2006,40(1):94-97.
    [111]Sze J Y,Hsu C I G,Jiao J J.CPW-fed circular slot antenna with slit back-patch for 2.4/5 GHz dual-band operation.Electronics Letters,2006,42(10):563-564.
    [112]Karnfelt C,Hallbjorner P,Zirath H,Alping A.High gain active microstrip antenna for 60-GHz WLAN/WPAN applications.IEEE Transactions on Microwave Theory and Techniques,2006,54(6):2593-2603.
    [113]Bialkowski K S,Zagriatski S.A dual band 2.4/5.2 GHz antenna including a radial line slot array and a patch.IEEE Antennas and Propagation Society International Symposium,2004,3:3095-3098.
    [114]Ho M H,Chen G L.Reconfigured slot-ring antenna for 2.4/5.2 GHz dual-band WLAN operations,Microwaves,Antennas and Propagation,2007,1(3):712-717.
    [115]Chou L C,Wong K L.Uni-Planar Dual-Band Monopole Antenna for 2.4/5 GHz WLAN Operation in the Laptop Computer.IEEE Transactions on Antennas and Propagation,2007,55(12):3739-3741.
    [116]Sim D U,Choi J I.A Compact Wideband Modified Planar Inverted $F$ Antenna(PIFA)for 2.4/5-GHz WLAN Applications.Antennas and Wireless Propagation Letters,2006,5(1):391-394.
    [117]Zhijun Zhang,Iskander M F,Langer J C,Mathews J.Dual-band WLAN dipole antenna using an internal matching circuit.IEEE Transactions on Antennas and Propagation,2005,53(5):1813-1818.
    [118]Wu J.W,Hsiao H M,Lu J H,Chang S H.Dual broadband design of rectangular slot antenna for 2.4 and 5 GHz wireless communication,Electronics Letters,2004,40(23):1461-1463.
    [119]Chia Ching Lin,Chih Ming Su,Fu Ren Hsiao,Kin-Lu Wong.Printed folded dipole array antenna with directional radiation for 2.4/5 GHz WLAN operation.Electronics Letters,2003,39(24):1698-1699.
    [120]林展如,干久志,林云,倪训铭.有机磁性材料的磁损耗与微波电子器件的开发.微波学报.2000,16(1):78-84.
    [121]林云,朱世富,林展如.高分子磁体/TiO2复合缩波材料的电磁性能.复合材料学报, 2004,2l(2):45-49.
    [122]林云,干久志,林展如,等.高分子磁性基板微带天线设计及应用.现代雷达.2006,28(8):66-69.
    [123]林展如,等.新型有机磁性材料及其在微波领域的应用.微波学报,1999,15(4):329-333.
    [124]Shun-Shi Zhong,Yi Hui Jiang,Jun-Chang Chen.A dual-freQuency triangular patch antenna on magnetic substrate.IEEE Antennas and Propagation Society International Symposium,2004,1:20-25.
    [125]顾伟,张需溥,钟顺时.以有机磁性材料为基片的小型化宽频带矩形微带天线.上海大学学报(自然科学版),2002,8(1):25-27.
    [126]钟顺时,江轶慧,陈俊昌.磁性基片双频三角形微带贴片天线.微波学报,2004,20(2):51-54.
    [127]王恩成,房少军,陈鹏,范木杰.采用偏心铁氧体的8mm E面T结波导环行器,系统仿真学报,2007,19(14):3344-3345-3353.
    [128]Wang Encheng,Fang Shaojun.Dual-band patch antenna on magnetic substrate for WLAN communication.Microwave and optical technology letters,2007,49(6):1445-1447.
    [129]Ye Z B,Chen R S,Li S S.Analysis of the Microstrip Circulator with a Magnetized Ferrite Sphere in Millimeter Wave through FDTD Method with LS-SVM and PSO.IEEE Antennas and Propagation Society International Symposium,2006,3469-3472.
    [130]Kwan Ho Lee,Chi Chih Chen,Teixeira,F L,Lee R.Modeling and investigation of a geometrically complex UWBGPR antenna using FDTD.IEEE Transactions on Antennas and Propagation,2004,52(8):1983-1991.
    [131]Michael Wong,Abdel Razik Sebak,Tayeb A Denidni.Analysis of a Dual-Band Dual Slot Omnidirectional Stripline Antenna.IEEE Transactions on Antennas and Propagation,2007,6:199-202.
    [132]Berenger J P.A perfectly matched layer for the absorption of electromagnetic waves.Journal of computational physics,1994,114:185-200.
    [133]Berenger J P.Perfectly matched layer for the FDTD solution of wave-structure interaction problems.IEEE Transactions on Antennas and Propagation,1996,44(1):110-I17.
    [134]Gedney S D.An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices.IEEE Transactions on Antennas and Propagation,1996,44(12):1630-1639.
    [135]Gedney S D.An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media.Electromagnetics,1996,6(3):399-415.
    [136]E C Wang,S J Fang,M J Fan,P Chen.FDTD analysis of a novel 8mm E-plane T-junction waveguide circulator.Journal of Electromagnetic Waves and Applications,2007,21(14):1951-1958.
    [137]Kondylis G D,Flaviis F D,Pottie G J,et al.A memory efficient formulation of the finite-difference time-domain method for the solution of Maxwell equations.IEEE Transactions on Microwave Theory and Techniques,2001,49(7):1310-1320.
    [138]莫锦军.隐身目标低频宽带电磁散射特性研究(博士学位论文).长沙:国防科技大学,2004.
    [139]周永刚,徐金平.减缩时域有限差分法在电磁干扰预测中的应用.东南大学学报(自然科学版),2003,33(4):392-395.
    [140]耿瑄,徐金平.R-FDTD与亚网格相结合技术及其应用.东南大学学报(自然科学版),2004,34(02):161-165.
    [141]莫锦军,刘少斌,袁乃昌,张光甫.一种节省内存的降维时域有限差分法及其在散射计算中的应用.微波学报,2004,20(01):45-49.
    [142]Luebbers,R J,Kunz K S,Schneider M,Hunsberger F.A finite-difference time-domain near zone to far zone transformation[electromagnetic scattering].IEEE Transactions on Antennas and Propagation,1991,39(4):429-433.
    [143]Luebbers R,Ryan D,Beggs J.A two-dimensional time-domain near-zone to far-zone transformation.IEEE Transactions on Antennas and Propagation,1992,40(7):848-851.
    [144]S Wang,B Zhou,W Yu.Application of data-compressing technique to far field pattern prediction in FDTD simulation,Microwave and Optical Technology Letters,(2004),42:437-441.
    [145]G Carat,R Gillard,J Citerne,J Wiart.A discrete wavelet transform(DWT)-based far-fleld computation using FDTD Microwave and Optical Technology betters,2000,25:241-243.
    [146]蒋长宏,张云华.一种提高FDTD近远场变换计算效率的方法.微计算机信息,2007,12:207-208+218.
    [147]Zhou Baixin,Wang Sicong,Yu Wenhua.An Efficient Approach to Predict Far Field Pattern in FDTD Simulation.IEEE Antennas and Wireless Propagation Letters,2004,3(1):148-151.
    [148]丁君,于明,郭陈江,许家栋.基于FDTD的天线远场快速算法.系统仿真学报,2007,19(14):3193-3195,3205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700