用户名: 密码: 验证码:
聚变堆第一壁保护涂层的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚变堆第一壁保护涂层的研究一直是国际上备受关注的课题。尽管国际上对低Z材料开展了大量的工作,取得了不少进展,但低Z材料的抗化学溅射性能较差的问题仍然没能很好克服,其原因之一是相关的机理仍然不清楚。以SiC作为低Z涂层的研究主要集中在抗中子辐照方面和对H.D.T等渗透率的测量方面,而关于SiC抗H~+辐照机理的系统研究至今尚未见文献报道。高Z材料因其高熔点和低溅射率近年来受到越来越多的关注,但是难熔材料的脆性等问题仍然是这类材料应用的一大障碍。国外W和Mo的研究主要集中在等离子体溅射引起的刻蚀,及W合金的机械性能等的研究,但国内尚未见有单位进行这方面的研究。
     本工作选择C-SiC涂层作为低Z涂层研究对象,并对其抗H~+辐照机理进行了重点研究,而用W涂层作为高Z涂层的研究对象,W涂层对基体的韧性的影响进行了重点研究。
     在低Z的C-SiC涂层方面进行了以下研究工作:
     1.涂层工艺的研究:采用离子束混合、电子束熔融两种方法在不锈钢基体上进行了不同组分C-SiC涂层制备工艺的研究;
     2.涂层的结构研究:采用SEM形貌观察研究涂层形貌特征,用XRD,TEM和Raman分析技术对各种C-SiC涂层进行了相结构的表征;
     3.涂层的抗氢性能及其机理的研究:利用SIMS分析测试了各种C-SiC涂层抗H~+辐照性能,探索合适组份的C-SiC涂层;利用XPS和IR分析进行了涂层的抗氢机理的研究。
     在高Z的W涂层方面进行了以下研究工作:
     1.涂层工艺的研究:采用离子束混合沉积技术进行了W涂层制备工艺的研究。
    
     二.涂层的微结构研究:采用SEM进行涂层表面形貌观察,利用XRD,Raman
    ’0 XPS分析技术对 W涂层进行相结构表征c
     3.涂层的韧性及抗氢性能的研究:利用Charpy示波冲击试验研究了W涂
    层的韧性,并研究了涂层对基体的影响。利用SIMS分析测试了W涂层的抗
    H”辐照性能。
     多年来的研究取得了以下几点创新成果:
     1.对聚变堆第一壁保护的低Z材料CS汇涂层抗氢辐照机理研究,我们采
     用XPS和IR分析技术就H对C-SIC涂层组成元素的化学键态影响这
     一方面着手进行,这是一项国内外首创的尝试。
     2 通过XPS和 IR分析,首次发现了与氢相关的一些结构配置,如 St(,
     St(H3,StK,CK,CHZ,CH3,正是这些结构形成了C习 抗氢辐照
     的重要机制。
     3.首次对 C七汇涂层采用离子注入N+工艺,使 C七汇涂层抗氢辐照性能
     有所改善。
     4.根据N离子注入C-SIC涂层抗氢性能的机理研究结果,首次提出了相关
     机理假设:N取代了8 中部分C而游离出活性C,并向表面富集,而
     成为C-H键合的新来源;此外,N离子与H形成N-H键,增加了与H
     键合的方式,从而达到双重阻氢的作用。
     5.采用离子束混合工艺制备聚变堆第一壁保护的高Z材料W涂层,这是
     一项国内外首创的高Z材料涂层的新制备工艺。
     6.首次对W涂层试样进行了Ch呷y示波冲击试验,发现了具有W涂层的
     不锈钢韧脆转变温度在66℃一87℃的范围中;断口形貌显示高于-70
     oC 时的断裂为塑性断裂c结果表明奥氏体不锈钢基体上用离子束混合
     形成的W涂层不会降低基体的韧性,这为这种技术用于第一壁保护的
     W涂覆提供了科学依据。
It has been paid attention to do research in the coatings to be used for fusion first wall in the world. The problem of chemical erosion for low Z coatings as facing materials has not been effectively solved up to now, even though a lot of work has been done and there has been made a great achievement in this field. Study of SiC coatings as low Z material was focused on the neutron irradiation resistance and measurements of permeability of H, D, T etc, the systematic study of mechanism in resistant H^ irradiation has rarely been reported yet. More attentions are paid to high Z materials because of their high melting point and low sputter rate, but such materials remain the problems of brittleness to which is harmful for their application. Research in W and Mo is focused on their erosion rate due to plasma etching and mechanical properties of W alloys in the developed countries while it seems that these work has not been done in our country.
    C-SiC coatings as low Z materials were selected to especially study the mechanism of H+ irradiation resistance, and W and Mo coatings as high Z materials were selected to study their ductility and tT irradiation resistance in our work.
    The main fields of our research work in C-SiC coatings as low Z materials are listed as below:
    
    
    1. Study in the preparation technologies of coatings: C-SiC coatings with lifferent SiC content on stainless steel substrate prepared by the techniques
    of ion beam mixing and electron beam melting;
    2. Study in the structures of coatings: micro-morphology of C-SiC coatings analyzed by SEM and phases checked with XRD, TEM and Raman analyses:
    3. Study in hydrogen resistance and its mechanism: hydrogen resistance for C-SiC coatings measured by SIMS and its mechanism analyzed by XPS and IR.
    The main fields of our research work of W coatings as high Z materials are listed as below:
    1. Study in preparation technique of W coatings: prepared by ion beam mixing:
    2. Study in micro-structure of W coatings: micro-morphology of W coatings analyzed by SEM and phases checked with XRD, Raman and XPS analyses:
    3. Study in ductility and H irradiation resistance: ductility checked with Charpy instrumented impact tests and H irradiation resistance analyzed by SIMS.
    The main Conclusions with innovation significance are as follows: 1. Stud}' in mechanism of H irradiation resistance for C-SiC coatings has been firstly proceeded with IR and XPS analyses according to the effect of hydrogen on the chemical bonding states of the elements in the coatings.
    . Evidences of the configurations related to Hydrogen such as Si-CH2, Si-CH3, Si-H, C-H, C-H2, and C-H3 characterized by IR and XPS are firstlv discovered to connect to H irradiation resistance.
    
    3. It is found that N* ion implantation can improve the property of H irradiation resistance of C-SiC coatings which has not been done by other people yet.
    4. Based on the result in the improvement of H irradiation resistance of C-SiC coatings due to nitrogen ion implantation, the suggestion on its mechanism has been firstly made that N replaces C in SiC and active C from SiC moves to the surface as a new source, which reacts with H to form hydrocarbon bonds like C-H. Again, N reacts with H to form N-H bond by N* ion implantation, which increases the bonding with H. Obviously, such a double function for inhibit hydrogen permeation is due to N ion implantation.
    5. W coatings were prepared on stainless steel by ion beam mixing technique, which has not been carried out by other people.
    6. Charpy instrumented impact tests were first used for W coating specimens to check their ductility. It has been found that the ductile-brittle transition temperature for W coated specimens is in the range from about -66 癈 to about -87 癈, the SEM morphology on cross-section of the fracture of W coated specimens made at higher than -70癈 shows dimple ductile fracture. The results indicate that W coated specimens have a better ductility.
引文
[1] 万发荣著,金属材料的辐射损伤,科学出版社,1993
    [2] Muhlratzer A, Zeilinger H And Esser H G, Nuct. Technol, 1984, 66:570-577
    [3] Cdusey R.A. Wampler W.R., Rettelle J.R. Kaae J.L., J. Nucl. Mater., 1993, 203:196-205
    [4] Erents S K, Braganza C M, McCracken G M, Mathane formation during the interaction of energetic protons and deuterons with carbon. J. Nucl. Mater., 1976, (63): 399
    [5] Braganza C M, Erents S K, McCracken G M, Interactions of 5-30keV deuterons with a carbon surface, J. Nucl. Mater., 1978, (75):220
    [6] S.K. Erents, Deuterium Trapping in Low-Z Coating, J. Nucl., Mater, 111-112(1982) :590-597
    [7] Hngnet M, Booth J. A, Celentano G, et. al., Limiters and First Wall On JET, In: Evans J, eds, Proceedings of 11th Symposum on Fusion Engineering, 11th Symposium on Fusion Engineering, Austin, 1985, New York: IEEE, 1985, Vo12, 1238
    [8] Deschamps P, Dietz J, Yvars M. Fabraication and Characterization of Graphite 5890PT Limiters Used in TFR and JET Tokamaks, 13th Symposium on Fusion Technology, Varese. 1984, Oxford: Pergamon Press, 1984, Vol. 2, 1243s
    [9] Tsao, Yoshizawa, Kohji Kamada, Residual Stress in Coated Low-Z Films of TiC and TiN, J. Nucl. Mater., 1984, 122&123:1329-1314
    [10] Abe T, Murakami Y, Obara K, Etal., Development of TiC Coated Wall Materials for JT-60, J. Nucl. Mater., 1985, 133&134:754-759
    [11] 朱毓坤,王明旭,王志文,邓冬生,石墨第一壁化学腐蚀的温度特性,真空与低温,2(3):138-143,1996
    [12] T. Tanabe, K. Niwase, K. Nakamura, J. Nucl. Mater, 168(1998)191
    [13] S. Nishio et. al, Fusion eng. Des. 15(1991)121
    [14] J. Roth, J. Nucl. Mater. Sputtering of Limiter and Divertor aterials, 176&177(1990) 132-141
    
    
    [15] T. Tanabe, H. Hhachino and M. Takeo, J. Nucl. Mater.,176-177(1990)666
    [16] Y. Hirooka M. Bourham, J.N. Brooks, et. al., Evaluation of tungsten as a plasma-facing material for steady state magnetic fusion devices, J. Nucl. Mater., 196-198 (1992) :149-158.
    [17] R.A.Anderl, D.F. Holland and G.R. Longhurst, J. Nucl. Mater., 176-177(1990) : 683
    [18] T. Tanabe, et. al, Fusion Eng. Design, 28(1995)13
    [19] I. Smid, M. Akiba, G. Vielder, L. Plochl, Development of tungsten armor and bonding to copper for plasma-interactive components, J. Nucl., Mater., 258-263(1998): 160-172
    [20] M. Saidoh and R. Yamada, Nuc1. Instr. and Meth. B39(1989)599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700