用户名: 密码: 验证码:
电力系统附加阻尼控制器的优化配置与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网规模的不断扩大,低频振荡问题已成为电力系统稳定问题的一个重要方面。尤其是区域电网的互联,导致系统的阻尼变得薄弱,低频振荡的风险加大,严重影响了区域间的功率交换和系统的稳定性。阻尼控制是解决低频振荡问题的一种有效方法。目前,电力系统主要采用电力系统稳定器(Power System Stabilizer, PSS)和柔性交流输电系统(Flexible AC Transmission Systems, FACTS)的附加阻尼控制器来抑制低频振荡。因此,如何从控制策略和控制方法上提高控制器的阻尼水平,减少控制器的交互影响,无论在理论方面还是实践方面都具有重要的研究意义。
     本文研究了附加阻尼控制器的配置问题,在此基础上对电力系统传统附加阻尼控制器进行协调优化设计,最后分别对新型附加励磁控制器和FACTS附加阻尼控制器的设计方法及控制策略进行了深入的研究。
     控制器之间的不良交互影响会降低控制器的控制效果,因此,从工程角度,附加阻尼控制器的数目应适量,合理选择附加阻尼控制器的安装位置也就成为大区域电网阻尼控制器协调的重要内容。本文利用奇异值分解(Singular Value Decomposition, SVD)的方法结合模型的辨识,解决了阻尼控制器的配置问题。该评价指标不需要系统状态矩阵的QR分解和传递函数留数的计算,通过求解系统输入-输出的传递函数矩阵的最大奇异值及其奇异向量来识别每台发电机对振荡模态的贡献程度,找出附加励磁阻尼控制器的最佳配置点,从而简化了计算过程和运算量,为附加阻尼控制器的协调奠定了基础。算例验证了该方法能快速和有效地配置附加阻尼控制器。
     为了使传统PSS有效地发挥阻尼作用,本文对多机电力系统PSS协调问题进行了研究。首先将粒子群优化(Particle Swarm Optimization, PSO)算法作为一个变异因子嵌入到细菌觅食优化(Bacterial Forging Optimization, BFO)算法,综合了PSO算法的全局搜索能力强和BFO算法局部搜索能力强的优点,提出了BFO-PSO混合算法。在此基础上,提出了基于PSO-BFO混合算法的电力系统PSS协调优化的新方法,该方法将阻尼控制器参数设计问题归结为带有不等式约束的目标优化问题,通过非线性变换将有约束问题转化为无约束问题,然后采用PSO-BFO混合优化算法求解优化问题设计阻尼控制器参数。为了增强系统的鲁棒性,该方法在目标函数中考虑了多种运行方式。最后通过算例验证了该方法的合理性,有效地抑制了低频振荡。
     为了使设计的控制系统具有很好的鲁棒性,大范围保证电力系统运行的稳定性,提出了最小熵H∞鲁棒附加励磁控制器的设计方法。首先,将PS/T灵敏度设计方法引入控制器设计,解决了基于Riccati方程法在设计过程中的零极点对消问题。针对加权函数的选取,提出了一种基于BFO-PSO混合算法的最小熵H∞鲁棒附加励磁阻尼控制器设计方法,把多个不同的设计目标转换为不等式约束,将加权函数的选取表示为一个多目标优化问题。为了减小系统的复杂性,增加控制器的实用性,利用Hankel范数最优降阶方法分别对原系统和控制器进行了两次降阶处理,使得控制器阶次相对较低。最后通过算例验证了控制器的有效性。
     针对区域间的功率振荡,为了有效提高区域间的振荡模态阻尼,本文对FACTS的附加阻尼控制器设计问题进行了研究。首先分析了SVC电压控制和阻尼控制的相互作用,在此基础上建立了SVC附加阻尼控制器设计模型,提出了分数阶附加阻尼控制器设计方案。针对分数阶控制器参数设计问题,引入BFO-PSO算法进行参数求解,提出了阻尼系统模态振荡和稳定节点电压的协调控制目标函数,将控制器设计转化为一个多目标的优化问题。最后,通过仿真验证了分数阶附加阻尼控制器的有效性。
With the growing expansion of power grid, low frequency oscillation problem has become an important aspect of power system stability. The damping of power system has become more and more weak with the regional power sytems interconnections. So the increasing risk of low frequency oscillation brings a serious problem of restricting the inter-regional power exchange and stability of power system. Damoing control is an effective way to solve the problem of low frequency oscillation. At present, Power System Stabilizer (PSS) and Flexible AC Transmission Systems (FACTS) auxiliary damping controller are widely used to suppress low frequency oscillation. Therefore, how to improve the damping level of controller and reduce the controller’s interaction are very important and significant from the control strategies and methods, not only for theorerical research but for practical applications.
     First the allocation method of auxiliary damping controller is studied in this paper. Then the conventional auxiliary damping controllers of power system are coordinated and parameters optimizing design. Finally, the new PSS and FACTS auxiliary damping controller are detailed in two aspects of the design methods and control strategied.
     The auxiliary damping controller should be adequate from engineering perspective, because adverse interaction will reduce the control performace of controller. Reasonable choice to install auxiliary damping controller will become an important aspect of controller coordination in major regional power system. A new configuration method of auxiliary damping controller based on singular value decomposition (SVD) and model identify is proposed. This method solves the problem of the damping controller allocation. Since both QR decomposition of system state matrix and the calculation of residues on transfer function are not needed, this method can reduce the computational burden. With the solution to the largest singular value and singular vector of system transfer function matrix, the method can identify each generator’s contribution to oscillation modes, and then find the optimum allocation of supplementary damping excitation controller. This method laid the foundation for the coordination of the auxiliary damping controllers. Test results show that the method of SVD can find the effective allocation of damping fastly.
     In this dissertation, the coordination problem of traditional PSS is studied in order to make full use of damping effective in multi-machine power system. First of all, the Particle Swarm Optimization (PSO) algorithm as a variation factor is embedded in Bacterial Forging Optimization (BFO) algorithm, and BFO-PSO hybrid algorithm is proposed, which has the benefits of the strong global search capability of PSO and the good local search ability of BFO. On this basis the new method of coordination of power system damping controller is proposed. The method makes parameter design of damping controller boil down to the goal optimization problem. Through the nonlinear transform the constraint problem transformed unconstrained problem, and then use PSO-BFO hybrid optimization algorithm to design parameter of damping controllers. In order to enhance the system robustness, the method considers varies operation conditions in the objective function. Finally, by calculation analysis the method is verified to be reasonable, and effectively inhibited the low-frequency oscillations.
     In order to make the control system having good robustness, and ensure the stability of power systems in large-scale operation, the minimum entropy H∞additional excitation controller is proposed. For avoiding the zero-pole cancellation between controller and target by solving the Riccati equation, PS/T sensitivity design method is introduced. For the selection of weighing function, a minimum entropy additional excitation robust damping controller is proposed which transforms different design goals into inequality constraints, and makes the selection of weighing function change as a multi-objective optimization problem. In order to reduce the complexity of the system and increase the practicality of the controller, the optimal Hankel norm reduced-order method is used to deal with the original system and the controller, making a relatively low order controller.
     In order to regional modal oscillation damping, the auxiliary damping controller design method is studies. First of all, the interaction of voltage control and damping control for SVC is analyzed. On this basis additional damping controller model for SVC is founded, and the fraction rank additional damping controller is proposed. BFO-PSO algorithm is introduced to solving the parameter design of the fractional order controller. And the coordination control objective function is proposed, which can damp system modal oscillations and keeping node voltage stability. So the thesis turns the design of controller into a multi-objective optimization. Finally, by calculation analysis the fraction rank additional damping controller is verified to be effective.
引文
1 Prabha Kundur. Power System Stability and Control. McGraw-Hill Companies, Inc. 1994: 22~27
    2 Graham Rogers. Power System Oscillations. Kluwer Academic Publishers. 2000: 101~118
    3 Vittal V, Bhatia N, Fouad A A. Analysis of the Inter-area Mode Phenomenon in Power Systems Following Large Disturbances. IEEE Transactions on Power System. 1993, 8(2): 738~745
    4赵书强,常鲜戎,潘云江,贺仁睦.多机系统低频振荡模式阻尼分配规律分析.电网技术. 1999, 23(7): 26~27
    5徐东杰,贺仁睦,胡国强,许涛.正规形方法在互联电网低频振荡分析中的应用.中国电机工程学报. 2004, 24(3): 18~23
    6 Michael J. Basler, Richard C. Schaefer. Understanding Power System Stability. IEEE Transactions on Industry Applications. 2008, 44(2): 463~474
    7 J S K Leung, D J Hill, G H Zhang. Coordinated Stability Control. IET Gener. Transm. Distrib. 2009, 3(1): 38~48
    8 Graham J W Dudgeon, William E Leithead, Adam Dysko, et al. The Effective Role of AVR and PSS in Power Systems: Frequency Response Analysis. IEEE Transactions on Power Systems. 2007, 22(4): 1986~1996
    9 Prabha Kundur, John Paserba, Venkat Ajjarapu, et al. Definition and Classification of Power System Stability. IEEE Transactions on Power Systems. 2004, 19(2): 1387~1393
    10 Demello F P, Concordia C. Concepts of Synchronous Machine Stability as Affected by Excitation. IEEE Transactions on Power Apparatus and System. 1969, 88(4): 316~329
    11廖清芬,刘涤尘,党杰,等.励磁系统模型和参数对低频振荡特征值的灵敏度分析.电力自动化设备. 2009, 29(3): 69~72
    12鞠平,马大强.电力负荷的动静特性对低频振荡阻尼的影响分析.浙江大学学报(自然科学版). 1989, 23(5): 750~760
    13 I A Hiskens, J V Milanovie. Load Modeling in Study of Power System Damping. IEEE Transactions on Power System. 1995, 10(4): 1781~1789
    14 Wen-Shiow Kao. The Effect of Load Models on Unstable Low-Frequency Oscillation Damping in Tai-power System Experience w/w0 Power System Stabilizers. IEEE Transactions on Power System. 2001, 16(3): 463~472
    15孙衢,徐光虎,陈陈.负荷模型动态特性不确定性对低频振荡的影响.电力系统自动化. 2003, 27(10): 11~14
    16邢洁,陈陈.不确定负荷下小干扰稳定的区间分析方法.电力系统自动化. 2009, 33(4): 6~10
    17余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报. 2005, 25(11): 6~11
    18李红军,陆超.互联系统机电振荡的频率与阻尼特性.清华大学学报(自然科学版). 2008, 48(7): 1089~1092
    19汤涌.电力系统强迫功率振荡的基础理论.电网技术. 2006, 30(10): 29~33
    20 Dohson I, Zhang Jianfeng, Greene S, et al. Is Strong Model Resonance a Precursor to Power System Oscillation? IEEE Transactions on Circuit and Systems. 2001, 48(3): 340~349
    21 Kakimoto N, Nakanishi A, Tomyamai K. Instability of Inter-area Oscillation Mode by Auto-parametric Resonance. IEEE Transactions on Power Systems. 2004, 19(4): 1961~1970
    22韩志勇,贺仁睦,马进,等.电力系统强迫功率振荡扰动源的对比分析.电力系统自动化. 2009, 33(3): 16~19
    23徐衍会,贺仁睦,韩志勇.电力系统共振机理低频振荡扰动源分析.中国电机工程学报. 2007, 27(17): 83~87
    24韩志勇,贺仁睦,徐衍会.汽轮机压力脉动引发电力系统低频振荡的共振机理分析.中国电机工程学报. 2008, 28(1): 47~51
    25 Z Ao, T S Sidhu, R J Fleming. Stability Investigation of a Longitudinal Power System and Its Stabilization by a Coordinated Application of Power System Stabilizers. IEEE Transaction on Energy Conversion. 2004, 9(3): 466~474
    26廖浩辉,唐云肖.单机无穷大系统中的非线性振荡.清华大学学报(自然科学版). 2001, 41(4): 1~4
    27邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究.中国电机工程学报. 1997, 17(6): 391~394
    28 V Ajjarapu, B Lee. Bifurcation Theory and Its Application to Nonlinear Dynamical Phenomena in an Electrical Power System. IEEE Transactions on Power Systems. 1992, 7(1): 424~431
    29 K Kim, H Schattler, V Venkatasubramanian, et al. Methods for Calculating Oscillation in Large Power System. IEEE Transactions on Power Systems. 1997, 12(4): 1639~1648
    30 Masayuki Watanabe, Yasunori Mitani, Kiichiro Tsuji. A Numerical Method toEvaluate Power System Global Stability Determined by Cycle. IEEE Transactions on Power Systems. 2004, 19(4): 1925~1934
    31邓集祥,赵丽丽.主导低频振荡模式2阶非线性相关作用的研究.中国电机工程学报. 2005, 25(7): 75~80
    32 H D Chiang, C W Liu, P Varaiya, et al. Chaos in a Simple Power System. IEEE Transactions on Power Systems. 1993, 8(4): 1407~1417
    33张卫东,张伟年.电力系统混沌振荡的参数分析.电网技术. 2000, 24(12): 17~20
    34贾宏杰,余贻鑫,王成山.考虑励磁顶值与PSS的混沌和分叉现象.电力系统自动化. 2001, 25(1): 11~14
    35 I Rouco, I J Perez-Arriga. Muti-area Analysis of Small Stability in Large Electric Power System by SMA. IEEE Transactions on Power Systems. 1993, 8(3): 1257~1265
    36 R T Byerly, R J Bennon, D E Sherman. Eigenvalue Analysis of Synchronizing Power Flow Oscillations in Large Electric Power Systems. IEEE Transactions on Power Apparatus and Systems. 1982, 101(1): 235~246
    37 P Kundur, G J Rogers, D Y Wong, et al. A Comprehensive Computer Program for Small Signal Stability Analysis of Power Systems IEEE Transactions on Power Systems. 1990, 5(4):1076~1083
    38 P W Sauer, C Rajagopalan, M A Pai. An Explanation and Generalization of the AESOPS and PEALS Algorithms. IEEE Transactions on Power Systems. 1991, 6(1): 293~299
    39张旭,沈沉,梅生伟,等.基于自激法的小干扰稳定特征值的分布式算法.电力系统自动化. 2007, 31(13): 12~16
    40 N Uchida, T Nagao. A New Eigen-analysis Method of Stead-state Stability Studies for Large Power System: S Matrix Method. IEEE Transactions on Power Systems. 1988, 3(2): 706~714
    41 Wang L, Semlyen A. Application of Sparse Eigenvalue Techniques to the Small Stability Analysis of Large Power Systems. IEEE Transactions on Power Systems. 1990, 5(2): 635~642
    42励刚,苏寅生,陈陈.面向对象的多谱变换隐式重启动Arnoldi算法.电力系统自动化. 2001, 25(4): 24~27
    43 B Lee, H Song, S H Kwon, et al. Calculation of Rightmost Systems Using the Block(BACM) Eigenvalues in Power Arnoldi Chebyshev method. IEE Proceeding-Generation, Transmission and Distribution. 2003, 150(1): 23~27
    44张峰,徐光虎,陈陈.用隐式重启动Arnoldi法计算电力系统小干扰稳定.电力系统及其自动化学报. 2005, 17(4): 59~65
    45王冠,芙蓉薇,朱振华,等.利用重启动精化Arnoldi方法计算动态电压稳定性分析中的关键特征值.电工技术学报. 2007, 22(10): 150~155
    46 N Martins, P E M Quintao. Computing Dominant Poles of Power System Multivariable Transfer Functions. IEEE Transactions on Power Systems. 2003, 18(1): 152~159
    47 Zhengchun Du, Wei Liu, Wanliang Fang. Calculation of Rightmost Eigenvalues in Power Systems Using the Jacobi-Davidson Method. IEEE Transactions on Power Systems. 2006, 21(1): 234~239
    48刘取.电力系统稳定性及发电机励磁控制.中国电力出版社. 2007: 136~151
    49 P Pourbeik, M J Gibbard. Damping and Synchronizing Torque Coefficients Induced on Generators by Facts Stabilizers in Multi-machine Power Systems. IEEE Transactions on Power Systems. 1996, 11(4): 1920~1930
    50 F J Swift, H F Wang. The Connection between Modal Analysis and Electric Torque Analysis in Studying the Oscillation Stability of Multi-machine Power Systems. Electrical Power and Energy Systems. 1997, 19(5): 321~330
    51王青,闵勇,张毅威.多机电力系统电磁转矩分析方法.清华大学学报(自然科学版). 2008, 48(1): 9~12
    52赵书强,常鲜戎,潘云江,等,多机系统低频振荡模式阻尼分配规律分析.电网技术. 1999, 23(7): 26~27
    53赵书强,常鲜戎,贺仁睦. PSS控制过程中的借阻尼现象与负阻尼效应.中国电机工程学报. 2004, 24(5): 7~11
    54 Zbigniew L, Tadeusz L, Jacek R. Advanced Spectrum Estimation Methods for Signal Analysis in Power Electronics. IEEE Transactions on Industrial Electronics. 2003, 50(3): 514~519
    55 A Hasanovic, A Feliachi, N B Bhatt, et al. Practical Robust PSS Design Through Identification of Low-order Transfer Functions. IEEE Transactions on Power Systems. 2004, 19(3): 1492~1500
    56芦晶晶,郭剑,田芳,等.基于Prony方法的电力系统振荡模式分析及PSS参数设计.电网技术. 2004, 28(15): 34~34
    57 Ghasemi H, Canizares C, Moshref A. Oscillatory Stability Limit Prediction Using Stochastic Subspace Identification. IEEE Transactions on Power Systems. 2006, 21(2): 736~745
    58鞠平,谢欢,孟远景,等.基于广域测量信息在线辨识低频振荡.中国电机工程学报. 2005, 25(22):56~60
    59 Tadeusz Lobos, Zbigniew Leonowicz, Jacek Rezmer, et al. High-Resolution Spectrum-Estimation Methods for Signal Analysis in Power Systems. IEEE Transactions on Instrumentation and Measurement. 2006, 55(1): 219~225
    60肖晋宇,谢小荣,韩英铎,等.利用有限时间扰动后的响应辨识电力系统的主导特征值.中国电机工程学报. 2005, 25(12): 1~5
    61徐东杰,贺仁睦,高海龙.基于迭代Prony算法的传递函数辨识.中国电机工程学报. 2004, 24(6): 40~43
    62 Xiaorong Xie, Yaozhong Xin, Jinyu Xiao, et al. WAMS Applications in Chinese Power Systems. IEEE Power and Energy Magazine. 2006, 4(1): 54~63
    63 Xie X, Xiao J, Lu C, et al. Wide-area Stability Control for Damping Inter-area Oscillations of Interconnected Power Systems. IEE Proceedings of Generation, Transmission and Distribution. 2006, 153(5): 507~514
    64 O Shea P. The Use of Sliding Spectral Windows for Parameter Estimation in Power System Disturbance Monitoring. IEEE Transactions on Power Systems. 2000, 15(4): 1261~1267
    65 Jun-Zhe Yang, Chih-Wen Liu. A Precise Calculation of Power Frequency. IEEE Transactions on Power Delivery. 2001, 16(3): 361~366
    66 Jun-Zhe Yang, Chih-Wen Liu, Wen-Giang Wu. A Hybrid Method for the Estimation of Power System Low-Frequency Oscillation Parameters. IEEE Transactions on Power Systems. 2007, 22(4): 2115~2123
    67 Rengang Yang, Hui Xue. A Novel Algorithm for Accurate Frequency Measurement Using Transformed Consecutive of DFT. IEEE Transactions on Power Systems. 2008, 23(3): 1057~1062
    68张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析.电力系统自动化. 2004, 28(16): 32~35
    69薛禹胜,潘学萍, Zhang Guorui,等.计及时变系统完整非线性的振荡模式分析.电力系统自动化. 2008, 32(18): 1~7
    70郝思鹏,薛禹胜,唐茂林,等.通过轨迹特征根分析时变振荡特性.电力系统自动化, 2009, 33(6): 1~5
    71 A R Messina, V Vittal. Nonlinear, Non-Stationary Analysis of Inter-area Oscillations via Hillbert Spectral Analysis. IEEE Transactions on Power Systems. 2006, 21(3): 1234~1241
    72李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析.中国电机工程学报. 2006, 26(14): 24~30
    73李天云,谢家安,张方彦,等. HHT在电力系统低频振荡模态参数提取中的应用.中国电机工程学报. 2007, 27(28): 79~83
    74徐政.交直流电力系统动态行为分析.机械工业出版社. 2004: 134~155
    75 Songzhe Zhu, Vittal V, Kliemann W. Analyzing Dynamic Performance of Power Systems over Parameter Space Using Normal Forms of Vector Fields-part I: Identification of Vulnerable Regions. IEEE Transactions on Power Systems. 2001, 16(4): 711~718
    76 Songzhe Zhu, Vittal V, Kliemann W. Analyzing Dynamic Performance of Power Systems over Parameter Space Using Normal Forms of Vector Fields-part II: Comparison of the System Structure. IEEE Transactions on Power Systems. 2001, 16(3): 451~455
    77 J J Sanchez-Gasca, V Vittal, M J Gibbard, et al. Inclusion of Higher Order Terms for Small-Signal(Modal) Analysis: Committee Report-Task Force on Assessing the Need to Include Higher Order Terms for Small-Signal(Modal) Analysis. IEEE Transactions on Power Systems. 2005, 20(4): 1886~1904
    78 S Liu, A R Messina, V Vittla. A Normal Form Analysis Approach to Siting Power System Stabilizers (PSSs) and Assessing Power System Nonlinear Behavior. IEEE Transactions on Power Systems. 2006, 21(4): 1755~1762
    79李颖辉,张保会.正规形理论在电力系统稳定性研究中的应用(二):电力系统上主导不稳定平衡点上局部流形的计算.电力自动化设备. 2003, 23(7): 1~4
    80徐东杰,贺仁睦,胡国强,等.正规形方法在互联电网低频振荡分析中的应用.中国电机工程学报. 2004, 24(3): 60~64
    81张靖,文劲宇,程时杰,等.基于向量场正规形的电力系统稳定模式相关性理论分析.中国电机工程学报. 2006, 26(11): 82~86
    82杨秀,徐光虎.基于正规形理论的多馈入交直流输电系统非线性模式分析.电力自动化设备. 2007, 27(8): 6~10
    83邓集祥,许自然,纪晶.基于正规形理论的电力系统2阶模态谐振的研究.中国电机工程学报. 2006, 26(24): 5~11
    84邓集祥,叶静,郎斌斌,等.计及二阶非线性特性的PSS配置.电力系统自动化. 2008, 32(12): 27~31
    85 D R Ostojic. Stabilization of Multimodal Electromechanical Oscillations by Coordinated Application of Powers System Stabilizers. IEEE Transactions on Power Systems. 1991, 6(4): 1439~1445
    86 X Q Yang, A Feliachi. Stabilization of Inter-Area Oscillation Modes through Excitation Systems. IEEE Transactions on Power Systems. 1994, 9(1): 494~502
    87袁野,程林,孙元章.采用广域测量信号的2级PSS控制策略.电力系统自动化. 2006, 30(24): 11~16
    88郝正航,李少波,周杰娜,等.多机电力系统PSS参数优化新方法.控制理论与应用. 2008, 25(2): 199~204
    89 Antonio L B do Bomfim, Glauco N Taranto, Djalma M Falcao. Simultaneous Tuning of Power System Damping Controllers Using Genetic Algorithms. IEEE Transactions on Power System. 2000, 15(1): 163~169
    90 P Zhang, A H Coonick. Coordinated Synthesis of PSS Parameters in Multi-Machine Power Systems Using the Method of Inequalities Applied to Genetic Algorithms. IEEE Transactions on Power Systems. 2000, 15(2): 811~816
    91 Y. L. Abdel-Magid, M. A. Abido. Optimal Multi-objective Design of Robust Power System Stabilizers Using Genetic Algorithms. IEEE Transactions on Power Systems, 2003, 18(3):1125~1132
    92孙衢,王永玉,陈陈.基于计算智能的多个阻尼控制器协调设计.电力系统自动化. 2003, 27(16): 6~9
    93江全元.基于极大极小值原理的电力系统稳定器的设计.浙江大学学报(工学版). 2005, 39(12): 1979~1983
    94闫健杰,赵书强,崔小磊.基于改进遗传算法的多机系统PSS参数协调优化.华北电力大学学报. 2006, 33(2): 16~20
    95杨晓静,赵书强,马燕峰.采用广域测量信号的PSS参数优化设计.电力系统自动化设备. 2006, 26(3): 47~50
    96 Gi-Hyun Hwang, Dong-Wan Kim, Jae-Hyun Lee, et al. Design of Fuzzy Power Stabilizer Using Adaptive Evolutionary Algorithm. Engineering Applications of Artificial Intelligence. 2008, 21(1): 86~96
    97牛振勇,杜正春,方万良,等.基于进化策略的多机系统PSS参数优化.中国电机工程学报. 2004, 24(2): 22~27
    98高磊,蒋平,顾伟.基于多目标优化的电力系统阻尼控制及Hopf分岔控制.电力系统自动化设备. 2008, 28(8): 65~68
    99 Y L Abdel-Magid, M A Abido, A H Mantawy. Robust Tuning of Power System Stabilizers in Multi-machine Power Systems. IEEE Transactions on Power Systems. 2000, 15(2): 735~738
    100 M A Abido, Y L Abdel-Magid. Robust Design of Multi-machine Power System Stabilizers Using Tabu Search Algorithm. IEE Proceedings Generation, Transmission and Distribution. 2000, 147(6): 387~394
    101 M A Abido. Optimal Design of Power System Stabilizers Using Particle Swarm Optimization. IEEE Transactions on Energy Conversion. 2002, 17(3):406~416
    102 A M El-Zonkoly. Optimal Tuning of Power Systems Stabilizers and AVR Gains Using Particle Swarm Optimization. Expert Systems with Application. 2006, 31(3): 551~557
    103 A M El-Zonkoly, A A Khalil, N M Ahmied. Optimal Tuning of Lead-Lag and Fuzzy Logic Power System Stabilizers Using Particle Swarm Optimization. Expert Systems with Application. 2009, 36(2): 2097~2106
    104赵辉,刘鲁源,张更新.基于微粒群优化算法的最优电力系统稳定器设计.电网技术. 2006, 30(3): 32~35
    105荣雅君,贾艳,刘琳,等.基于粒子群优化算法的电力系统稳定器设计.继电器. 2008, 36(4): 23~26
    106郭成,李群湛,王德林.基于Prony和改进PSO算法的多机PSS参数优化.电力自动化设备. 2009, 29(3): 16~21
    107周保荣,房大中,孙景强.基于轨迹灵敏度分析的电力系统稳定器参数优化设计.电网技术. 2004, 28(19): 20~23
    108 S Q Yuan, D Z Fang. Robust PSS Parameters Design Using a Trajectory Sensitivity Approach. IEEE Transactions on Power Systems. 2009, 24(2): 1011~1018
    109 Liu Yanfei, Passino K M. Biomimicry of Social Foraging Behavior for Distributed Optimization: Models, Principles, and Emergent Behaviors. Journal of Optimization Theory and Applications. 2002, 115(3): 603~628
    110 Quijano N, Andrews B W, Passino K M. Foraging Theory for Multi-zone Temperature Control. IEEE Computational Intelligence Magazine. 2006, 1(4):18~27
    111 Andrews B W, Passino K M, Waite T A. Foraging Theory for Autonomous Vehicle Decision Making System Design. Journal of Intelligent and Robotic Systems. 2007, 49(1): 39~65
    112 S Mishra, M Tripathy, J Nanda. Multi-Machine Power System Stabilizer Design by Rule Based Bacteria Foraging. Electric Power System Research. 2007, 77(12): 1595~1607
    113胡晓波,杨利民,陈中,等.基于人工鱼群算法的PSS参数优化.电力自动化设备. 2009, 29(2): 47~50
    114钟志勇,谢志棠,王克文.电力系统稳定器的最优鲁棒设计.电力系统自动化. 1999, 23(8): 11~15
    115 Hardiansyah, Seizo Furuya, Juichi Irisawa. A Robust H∞Power System Stabilizer Design Using Reduced-Order Models. Electrical Power and EnergySystems. 2006, 28(1): 21~28
    116 Hardiansyah, Seizo Furuya, Juichi Irisawa. LMI-based Robust H2 Control Design with Regional Pole Constraints for Damping Power System Oscillations. European Transactions on Electrical Power. 2005, 15(1): 13~29
    117 P Shrikant Rao, I Sen. Robust Pole Placement Stabilizer Design Using Linear Matrix Inequalities. IEEE Transactions on Power Systems. 2000, 15(1): 313~319
    118 H Xin, D Gan, T S Chung, et al. A Method for Evaluating the Performance of PSS with Saturated Input. Electric Power Systems Research. 2007, 77(3): 1284~1291
    119 C J Zhu, M Khammash, V Vittal, et al. Robust Power System Stabilizer Design Using H∞Loop Shaping Approach. IEEE Transactions on Power Systems. 2003, 18(2): 810~818
    120 R A Ramos, L F C Alberto, N G Bretas. A New Methodology for the Coordinated Design of Robust Decentralized Power System Damping Controllers. IEEE Transactions on Power Systems. 2004, 19(1): 444~451
    121 R A Ramos, A C P Martins, N G Bretas. An Improved Methodology for the Design of Power System Damping Controllers. IEEE Transactions on Power Systems. 2005, 20(4): 1938~1945
    122管霖,程时杰,陈德树.神经网络电力系统稳定器之研究.电力系统自动化. 1995, 19(12): 16~19
    123 Miguel Ramirez-Gonzalez, O P Malik. Power System Stabilizer Design Using an Online Adaptive Neurofuzzy Controller with Adaptive Input Link Weights. IEEE Transactions on Energy Conversion. 2008, 23(3): 914~920
    124赵建民,管霖,程时杰.基于神经网络的电力系统控制器的在线自学习研究.电力系统自动化. 1998, 22(7): 35~39
    125谭振宇,程时杰,魏璇,等.基于神经网络的自适应电力系统稳定器.电力系统自动化. 2000, 24(15): 1~6
    126莫娜,田建设.双模糊电力系统稳定器实现.电力自动化设备. 2007, 27(4): 60~63
    127梁有伟,胡志坚,陈允平.基于神经网络逆系统的电力系统稳定器的研究,电工技术学报. 2004, 19(5): 61~65
    128 D K Chaturvedi. O P Malik. Neurofuzzy Power System Stabilizer. IEEE Transactions on Energy Conversion. 2008, 23(3): 887~894
    129叶其革,王晨皓,吴捷.基于自组织模糊神经网络电力系统稳定器的设计.控制理论与应用. 1999, 16(5): 687~690
    130刘瑞叶,王海超,马志波.一种神经网络变结构电力系统稳定器的设计.继电器. 2002, 30(8): 33~35
    131赵辉,刘鲁源,王红君,等.基于滑模控制的模糊电力系统稳定器.电网技术. 2004, 28(12): 9~11
    132 S. Lee, C C Liu. An Output Feedback Static Var Controller for the Damping of Generator Oscillations. Electric Power Systems Research. 1994, 29(1): 9~16
    133 Xuechen Yu, Mustafa Khammash, Vijay Vittal. Robust Design of a Damping Controller for Static Var Compensators in Power Systems. IEEE Transactions on Power Systems. 2001, 16(3): 456~462
    134 Alberto Mota Simoes, Diego Chaves Savelli, Paulo Cesar Pellanda, et al. Robust Design of a TCSC Oscillation Damping Controller in a Weak 500-kV Interconnection Considering Multiple Power Flow Scenarios and External Disturbances. IEEE Transactions on Power Systems. 2009, 24(1): 226~236
    135陈柔伊,张尧,钟庆,等.分散H∞控制器在电力系统阻尼控制中的应用.华南理工大学学报(自然科学版). 2009, 37(2): 118~126
    136 K A Ellithy, S M Al-Alwai. Tuning of SVC Damping Controller Over a Wide Range of Load Models Using an Artificial Neural Network. Electric Power Systems Research. 1996, 38(2): 97~104
    137 J Lu, M H Nehrir, D A Pierre. A Fuzzy Logic-based Adaptive Damping Controller for Static VAR Compensator. Electric Power System Research. 2004, 68(2): 113~118
    138陆超,谢小荣,童陆园,等.使用直接神经动态规划方法的SVC附加阻尼控制.中国电机工程学报. 2004, 24(12): 8~12
    139徐光虎,孙衢,陈陈. HVDC模糊协调阻尼控制器设计.电力系统自动化. 2004, 28(12): 18~23
    140马燕峰,赵书强,魏清.基于遗传算法的交直流电力系统稳定器和附加控制器的协调.电力自动化设备. 2004, 24(5): 75~79
    141房大中,牛伟,周保荣.多机系统中电力系统稳定器与可控串联补偿器阻尼控制器的协调设计.天津大学学报. 2006, 39(8): 895~900
    142靳晓凌,赵建国,王海凤.基于免疫网络理论的TCSC与PSS协调控制.天津大学学报. 2007, 40(9): 1035~1040
    143 Yong Chang, Zheng Xu. A Novel SVC Supplementary Controller Based on Wide Area Signals. Electric Power Systems Research. 2007, 77(12): 1569~1574
    144李虹,刘启胜.多机电力系统中PSS配置点的合理选择.电网技术. 2004, 28(24): 25~28
    145 Milanovic J V, Duque A C S. Identification of Electromechanical Modes and Placement of PSSs Using Relative Gain Array. IEEE Transactions on Power Systems. 2004, 19(1): 410~417
    146 M H Haque. Best Location of SVC to Improve First Swing Stability Limit of a Power System. Electric Power Systems Research. 2007, 77(2): 1402~1409
    147 Ali Karimpour, R.Asgharian, O.P.Malik. Relative Gain Array and Singular Value Decomposition in the Determination of PSS Location. European Transactions on Electrical Power. 2005, 15(2): 397~412
    148 A.Karimpour, O. P. Malik, R. Asgharian. Singular Value Decomposition as a Measure for Control Structure Design in Power Systems. Electric Power Components and Systems. 2004, 32(3): 295~307
    149 Arijit Biswas, Sambarta Dasgupta, Swagatam Das, et al. A Synergy of Differential Evolution and Bacterial Foraging Algorithm for Global Optimization. Neural Network World. 2007 ,17(6): 607~626
    150 P. A. Iglesias, D. Mustafa. State-Space Solution of the Discrete-Time Minimum Entropy Control Problem Via Separation. IEEE Transactions on. Automatic Control, 1993, 38(3): 1525~1527.
    151 Wang guang-xiong, Wang xin-sheng. H∞Two-block Design of Servo Systems. Journal of Harbin Institute of Technology (New Series). 2002, 9(2): 142~144
    152 Enacheanu.O, Riu. D, Retiere. N, Enciu. P. Identification of Fractional Order Models for Electrical Networks. The 32nd Annual Conference on IEEE Industrial Electronics, 2006: 5392~5396
    153 Isabel S. Jesus and J. A. Tenreiro Machado. Development of Fractional Order Capacitors Based on Electrolyte Processes. Nonlinear Dynamics, 2008, 52(3): 189~199
    154 Westerlund S, Wkstam L. Capacitor Theory. IEEE Transactions on Dielectrics and Electrical Insulation. 1994, 1(5): 826~839
    155薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计.控制理论与应用. 2007, 24(5): 771~776
    156曹军义,曹秉刚.分数阶控制器离散方法的评估策略研究.西安交通大学学报. 2007, 41(7): 842~843
    157 Chen Y Q, MOORE K L. Discretization Schemes for Fractional-order Differentiators and Integrators. IEEE Transactions on Circuit and Systems. 2002, 49(3): 363~367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700