用户名: 密码: 验证码:
RoF系统中60GHz传输技术及光域微波信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RoF技术结合了光纤传输技术与无线接入技术的优势,将在未来宽带无线接入网络中具有重要的应用。本论文主要对60GHz RoF系统中信号的传输与接入技术和基于RoF技术框架的光域微波信号处理技术两方面内容进行了相关研究。
     在60GHz RoF系统中信号的传输与接入技术方面,论文首先对60GHz RoF系统的低成本全双工传输技术进行了研究,提出一种基于光本振载波随路传输的低成本全双工系统方案并搭建了全双工60GHz RoF实验系统对其进行验证。实验中实现了622Mb/s的RoF信号通过20km光纤链路与50cm无线信道的无误码双向传输。之后论文顺应当前研究趋势,对60GHz RoF技术与有线接入技术的融合架构进行了研究并提出一种结合RoF与WDM-PON技术优势的有线无线混合宽带接入方案。随后搭建了可以同时传输基带信号和62.5GHz RoF信号的混合接入实验系统对该方案进行验证,实验中实现了数据率均为1.25Gb/s的有线与无线业务通过40km光纤链路的无误码混合接入。论文还研究了直接在光域调制产生并传输60GHz毫米波段矢量信号的方法,并提出了一种基于光矢量信号远端下变频的毫米波段矢量信号光学调制方案。在验证实验中,分别用两种方式调制产生了622Msymbols/s的64GHz波段8QAM和4QAM矢量信号并实现了其通过50km光纤链路和5m无线信道的无误码传输。
     在基于RoF技术框架的光域微波信号处理技术方面,论文主要对应用范围较为广泛的光域微波信号放大与滤波技术进行了相关研究。文中首先提出了一种利用EDFA宽带高增益的优点在光域实现微波信号宽带放大的技术方案,对其建立了详细的理论模型并给出了实验验证。实验中实现了微波信号从10MHz到10GHz带宽范围内约为17dB的平坦增益。在光域微波信号滤波方面,论文重点研究了非相干MPF中系统参数与频率响应之间的内在关系,提出一种基于基本滤波单元重组的非相干MPF设计理论并给出了详细的设计流程。随后通过具体的设计实例给出了实验验证,实验中获得的MPF响应特性与理论设计结果非常吻合。
     综上所述,本论文主要对RoF系统中60GHz信号的传输和接入技术以及光域微波信号处理技术进行了相关的理论和实验研究,取得的成果将在宽带数据接入网络、高频雷达系统和卫星通讯系统等领域中具有一定的应用价值。
The RoF technology which integrates the advantages of both the optical fibertransmission technology and the wireless access technology will play an important rolein future broadband wireless access networks. Several important transmission andaccess technologies in60GHz RoF systems as well as some microwave signal photonicprocessing technologies base on the RoF schemes are studied in this paper.
     In the transmission and access technology part, the low-cost full-duplextransmission method for60GHz RoF systems is first studied and a novel low-costfull-duplex transmission scheme based on optical LO carrier remote distribution for60GHz RoF systems is proposed and experimentally verified. In the experiment,full-duplex RoF signals at the bit rate of622Mb/s are successfully transmitted through20km SMF link and50cm wireless channel at the error-free state. Then according topresent researching trends, the integration architecture of60GHz RoF and wired accesstechnologies is studied subsequently, and a broadband access scheme which integratesthe advantages of both the RoF and the WDM-PON technologies and merges wired andwireless services is proposed and experimentally verified. In the experiment, the RoFand baseband signals both at the bit rate of1.25b/s are successfully distributed through40km SMF link at the error-free state. The photonic generation and transmissionmethods of60GHz-band vector signals are also studied in this part and a novel photonicgeneration scheme based on optical vector signal down-conversion is proposed and andexperimentally verified. In the experiment, the64GHz-band8QAM and4QAM vectorsignals both at the data rate of622M symbols/s which are generated with two differentmodulation methods respectively are successfully distributed through50km SMF linkand5m wireless channel at the error-free state.
     In the RoF based microwave photonic processing part, the microwave photonicamplification and filtering technologies which will be widely used are mainly discussed.A microwave photonic amplification scheme which takes advantage of the broadbandgain of EDFA is first studied, and a detail model of the amplification principle is givenwhich is then experimentally verified. Stable broadband gain of about17dB for themicrowave signals from10MHz to10GHz is obtained in the experiment. As to the microwave photonic filtering, the intrinsic relationship between the system parametersand the frequency response of the incoherent MPF is studied and a novel designingmethod for incoherent MPF based on basic filtering cell recombination is proposed. Theproposed method is then experimentally verified with a practical designing example,and the frequency response of the MPF measured in the experiment accords with thetheoretically designing result well.
     In a word, several important transmission and access technologies in60GHz RoFsystems as well as some RoF based microwave signal photonic processing technologiesare theoretically and experimentally studied in this paper. The correspondingachievements will have some value in related fields such broadband access networks,high frequency radar systems and satellite communication systems.
引文
[1]江晓林,杨明极.通信原理.哈尔滨工业大学出版社,2010.
    [2]昌庆江. Radio over Fiber宽带无线接入网络的关键技术研究.上海交通大学博士学位论文,2009.
    [3]董金明,邓晖.微波技术.机械工业出版社,2010.
    [4] Yu J, Zhou X, Huang M, et al.17-Tb/s PolMux-RZ-8PSK transmission over662km ofultra-low loss fiber using C-band EDFA amplification and digital coherent detection.European conference on optical communication (ECOC),2008.
    [5] Charlet G, Renaudier J, Mardoyan H, et al. Transmission of16.4-bit/s capacity over2,550km using PDM QPSK modulation format and coherent receiver. Optical FiberCommunication Conference (OFC),2007.
    [6]李建强.基于铌酸锂调制器的微波光子信号处理技术与毫米波频段ROF系统设计.北京邮电大学博士学位论文,2009.
    [7] Kaminow I, Li T, Willner A E. Optical Fiber Telecommunications, San Diego: AcadamicPress,2008..
    [8] Deng N, Chan C K, Chen L K, et al. A WDM passive optical network with centralizedlight sources and multicast overlay. IEEE Photonics Technology Letters,2008,20(2):114-116.
    [9] Al-Raweshidy H, Komaki S. Radio Over Fiber Technologies for Mobile CommunicationsNetworks. Boston, MA: Artech House,2002.
    [10] Cox C H, Analog Optical Links. Cambridge, U.K.: Cambridge Univ. Press,2004.
    [11] Michael S, Andrey K, Jacob G. Radio Over Fiber for Picocellular Network Architectures.Journal of Lightwave Technology,2007,25(11):3301-3320.
    [12] Wu J S, Wu J Sh, Tsao H W. A radio-over-fiber network for microcellular systemapplication. IEEE Transactions on Vehicular Technology,1998,47(1):84-94.
    [13] Wake, D, Webster M, Wimpenny G, et al. Radio over fiber for mobile communications.International Topical Meeting on Microwave Photonics (MWP),2004.
    [14] Ong L C, Yee M L, Luo B. Transmission of ultra wideband signals throughradio-over-fiber systems. Lasers and Electro-Optics Society (LEOS),2006.
    [15] Wah M Y, Yee C, Yee M L. Wireless ultra wideband communications using radio overfiber. IEEE Conference on Ultra Wideband Systems and Technologies,2003.
    [16]王笑京.智能交通系统研发历程与动态述评.城市交通,2008,6(1):6-12.
    [17] Sugiura A, Dermawan C. In traffic jam IVC-RVC system for ITS using Bluetooth. IEEETransactions on Intelligent Transportation Systems,2005,6(3):302-313.
    [18] Kim H B, Emmelmann M, Rathke B, et al. A radio over fiber network architecture forroad vehicle communication systems. Vehicular Technology Conference (VTC),2005.
    [19] KIYOHITO T. Applications of wireless communication technologies for intelligenttransport systems. Wireless Personal Communications,2001,17:343–353.
    [20] Kojima F, Fujise M, Okita H, et al. ROF-RVC based mobile CATV system. Personal,Indoor and Mobile Radio Communications,2003,3:2804-2808.
    [21] Lee J J, Loo R Y, Livingston S, et al. Photonic wideband array antennas. IEEETransactions on Antennas and Propagation,1995,43(9):966-982.
    [22] Fu Z H, Zhou C, Chen R T. Waveguide-hologram-based wavelength-multiplexed pseudoanalog true-time-delay module for wideband phased-array antennas. Applied Optics,1999,38(14):3053-3059.
    [23] Liu Yunqi, Yang Jianliang, Yao Jianping. Continuous true-time-delay beamforming forphased array antenna using a tunable chirped fiber grating delay line. IEEE PhotonicsTechnology Letters,2002,14(8):1172-1174.
    [24] O'Reilly J, Lane P. Remote delivery of video services using mm-waves and optics. Journalof Lightwave Technology,1994,12(2):369-375.
    [25] HSU R C J, AYAZI A, HOUSHMAND B, et al. All-dielectric photonic-assisted radiofront-end technology. Nature Photonics,2007,1:535-538.
    [26] Ayazi A, Hsu R C. J, Houshmand B, et al. All-dielectric photonic-assisted wirelessreceiver. Optics Express,2008,16(3):1742-1747.
    [27] Nguyen L V T, Hunter D B. A photonic technique for microwave frequency measurement.IEEE Photonics Technology Letters,2006,18(10):1188-1190.
    [28] Drummond M V, Monteiro P, Nogueira R N. Photonic RF instantaneous frequencymeasurement system by means of a polarizatio-ndomain interferometer. Optics Express,2009,17(7):5433-5438.
    [29] Attygalle M, Hunter D B. Improved photonic technique for broadband radio-frequencymeasurement. IEEE Photonics Technology Letters,2009,21(4):206-208.
    [30] http://www.ntia.doc.gov/about.html
    [31] www.ist-isis.org
    [32] www.ist-iphobac.org
    [33]张建.微波/毫米波光纤系统中关键技术的研究.清华大学硕士学位论文,2007.
    [34] Ng'oma A, Sauer M, Annunziata F, et al.14Gbps60GHz RoF link employing a simplesystem architecture and OFDM modulation. International Topical Meeting on MicrowavePhotonics,2009.
    [35] Ng'oma A, Sauer M, George J, et al. Bit-rate doubling in multi-Gbps widebandASK-modulated60GHz RoF links using linear feed-forward equalisation and directconversion transceivers. European Conference on Optical Communication,2008.
    [36] Huchard M, Weiss M, Pizzinat A, et al. Ultra-Broadband Wireless Home Network Basedon60-GHz WPAN Cells Interconnected via RoF. Journal of Lightwave Technology,2008,26(15):2364-2372.
    [37] Zhang Cheng, Duan Jun, Hong Cheng, et al. Single-sideband modulation of OFDMsignals based on an injection-locked DFB laser in60-GHz RoF systems. Photonics inSwitching,2010.
    [38] Tadokoro M, Taniguchi T, Sakurai N. Optically-controlled beam forming technique for60GHz-ROF system using dispersion of optical fiber and DFWM. Optical FiberCommunication Conference,2007.
    [39] Shih P T, Lin C T, Huang H S, et al.13.75-Gb/s OFDM signal generation for60-GHz RoFsystem within7-GHz license-free band via frequency sextupling. European Conference onOptical Communication,2009.
    [40] Shih P T, Lin C T, Jiang W J, et al. Transmission of20-Gb/s OFDM signals occupying7-GHz license-free band at60GHz using a RoF system employing frequency sextuplingoptical up-conversion. Optics Express,2010,18(12):12748-12755.
    [41] Li Wenjing, Sang Xinzhu, Yuan Jinhui, et al.60GHz OCS mm-wave generation for ROFsystem based on saturated parametric amplification effect in HNLF. OptoelectronicsLetters,2010,6(6):443-445.
    [42] Li Jing, Ning Tigang, Pei Li. A bidirectional60GHz RoF system based on FWM in asemiconductor optical amplifier. Optics Communications,2010,283(10):2238-2242.
    [43] Spiegelberg C, Geng Jihong, Hu Yongdan, et al. Low-Noise Narrow-Linewidth FiberLaser at1550nm. Journal of Lightwave Technology,2004,22(1):57-62.
    [44] Alam S U, Grudinin A B. Tunable picosecond frequency-shifted feedback fiber laser at1550nm. IEEE Photonics Technology Letters,2004,16(9):2012-2014.
    [45] Qi Guohua, Yao Jianping, Seregelyi J, et al. Generation and distribution of a wide-bandcontinuously tunable millimeter-wave signal with an optical external modulationtechnique. IEEE Transactions on Microwave Theory and Techniques,2005,53(10):3090-3097.
    [46] Yu J, Jia Z, Yi L, et al. Optical millimeter-wave generation or up-conversion usingexternal modulators. IEEE Photonics Technology Letters,2006,18(1):265–267.
    [47] Zhang Jian, Chen Hongwei, Chen Minghua, et al. Photonic generation of amillimeter-wave signal based on sextuple-frequency multiplication. Optics Letters,2007,32(9):1020-1022.
    [48] Zhang Jian, Chen Hongwei, Chen Minghua. A photonic microwave frequency quadruplerusing two cascaded intensity modulators with repetitious optical carrier suppression. IEEEPhotonics Technology Letters,2007,19(14):1057-1059.
    [49] Wang Tianliang, Chen Minghua, Chen Hongwei, et al. Millimeter-wave signal generationusing two cascaded optical modulators and FWM effect in semiconductor optical amplifier.IEEE Photonics Technology Letters,2007,19(16):1191-1193.
    [50] Kawanishi T, Sakamoto T, Miyazaki T, et al. M. High-speed optical DQPSK and FSKmodulation using integrated Mach-Zehnder interferometers. Optics Express,2006,14(10):4469-4478.
    [51] Keang P H. Phase-modulated Optical Communication Systems. Springer Press,2004:303-304.
    [52] Kawanishi T, Izutsu M. Linear single-sideband modulation for high-SNR wavelengthconversion. IEEE Photonics Technology Letters,2004,16(6):1534-1536.
    [53] Kawanishi T, Oikawa S, Yoshiara K, et al. Low noise photonic millimeter-wavegeneration using an integrated reciprocating optical modulator. IEEE PhotonicsTechnology Letters,2005,17(3):669-671.
    [54] Mason B, Ougazzaden A, Lentz C, et al.40-Gb/s tandem electroabsorption modulator.IEEE Photonics Technology Letters,2002,14(1):27-29.
    [55]欧海燕.微波光子滤波器及其在微波信号产生和Radio-over-Fiber系统中的应用.浙江大学博士学位论文,2009.
    [56] ISHIBASHI T, SHIMIZU N, KODAMA S, et al. Uni-traveling-carrier photodiodes.Ultrafast Electronics and Optoelectronics,1997,13:83-87.
    [57] Ito H, Furuta T, Kodama, S, et al. InP/InGaAs uni-travelling-carrier photodiode with310GHz bandwidth. Electronics Letters,2000,36(21):1809-1810.
    [58] Chen Xiangfei, Deng Zhichao, Yao Jianping. Photonic generation of microwavesignalusing a dual-wavelength single-longitudinal-mode fiber ring laser. IEEE Transactions onMicrowave Theory and Techniques,2006,54(2):804-809.
    [59] Yao Yu, Chen Xiangfei, Dai Yitang, et al. Dual-wavelength erbium-doped fiber laser witha simple linear cavity and its application in microwave generation. IEEE PhotonicsTechnology Letters,2006,18(1):187-189.
    [60] Sun Jie, Dai Yitang, Zhang Yejin, et al. Dual-wavelength DFB fiber laser based onunequalized phase shifts, IEEE Photonics Technology Letters,2006,18(23):2493-2495.
    [61] Ramos R T, Gallion P, Erasme D, et al. Optical injection locking and phase-lock loopcombined systems. Optics Letters,1994,19(1):4-6.
    [62] Fan Z, Dagenais M. Optical generation of a mHz-linewidth microwave signal usingsemiconductor lasers and a discriminator-aided phase-locked loop. IEEE Transactions onMicrowave Theory and Techniques,1997,45(8):1296-1300.
    [63] Bhattacharya M, Saw A K, Chattopadhyay T. Millimeter-wave generation throughphase-locking of two modulation sidebands of a pair of laser diodes. IEEE PhotonicsTechnology Letters,2004,16(2):596-598.
    [64] Wake D, et al. Optical generation of millimeter-wave signals for fiber-radio systems usinga dual-mode DFB semiconductor laser. IEEE Transactions on Microwave Theory andTechniques,1995,43(9):2270-2276.
    [65] Ohno T, Sato K, Fukushima S, et al. Application of DBR mode-locked lasers inmillimeter-wave fiber-radio system,Journal of Lightwave Technology,2000,18(1):44-49.
    [66] Grosskopf G, Rohde D, Eggemann R, et al. Optical Millimeter-Wave Generation andWireless Data Transmission Using a Dual-Mode Laser, IEEE Photonics TechnologyLetters,2000,12(12):1692-1694.
    [67] Wang Tianliang, ChenMinghua, Chen Hongwei, et al. Millimeter-wave radio-over-fiberdownlink transmission system based on optical carrier suppression up-conversion. Journalof Tsinghua University,2009,49(4):518-521.
    [68] Wang Tianliang, ChenMinghua, Chen Hongwei, et al. RoF downlink transmission systemusing FWM effect of SOA for generating MM-wave. Optics Communications,2009,15(16):3360-3363.
    [69] Shi Ran, Chen Hongwei, Li Mo, et al. A novel photonic method formillimetre-wave band vector signal modulation in60GHz RoF systems.Proceedings of SPIE-The International Society for Optical Engineering,2010,7988:79880T1-79880T6.
    [70] Minasian R A. Photonic signal processing of microwave signals. IEEE Transactions onMicrowave Theory and Techniques,2006,54(2):832-846.
    [71] Minasian R A, Alameh K E, Chan E H W. Photonics-based interference mitigation filters.IEEE Transactions on Microwave Theory and Techniques,2001,49(10):1894-1899.
    [72] Capmany J, Ortega B, Pastor D, et al. Discrete-time optical processing of microwavesignals. Journal of Lightwave Technology,2005,23(2):702-723.
    [73] Coppinger F, Bushan A, Jalali B. Photonic time stretch and its application toanalog-to-digital conversion. IEEE Transactions on Microwave Theory and Techniques,1999,47(7):1309-1314.
    [74] Juodawlkis P, Twitchell J, Betts G, et al. Optically sampled analog-to-digital converters,”IEEE Transactions on Microwave Theory and Techniques,2001,49(10):1840-1853.
    [75] Roussell H, Helkey R. Optical frequency conversion using a linearized LiNbO3modulator.IEEE Microwave and Guided Wave Letters,1998,8(11):408-410.
    [76] Hunter D, Minasian R. Programmable high-speed optical code recognition using fiberBragg grating arrays. Electronics Letters,1999,35(5):412–414.
    [77] Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator,” IEEEPhotonics Technology Letters,2003,15(4):581-583.
    [78] Zmuda H, Soref R, Payson P, et al. Photonic beamformer for phased array antennas usingfiber grating prism. IEEE Photonics Technology Letters,1997,9(2):241-243.
    [79] Agrawal G P. Lightwave technology: Telecommunication Systems. New Jersey: Wiley,2005.
    [80] Parker M C, Walker S D. A unified Fourier transform theory for photonic crystal and FBGfilters in the strong coupling regime. IEEE Photonics Technology Letters,2002,14(9):1321-1323.
    [81] Henry C. Theory of the phase noise and power spectrum of a single mode injection laser.IEEE Journal of Quantum Electronics,1983,19(9):1391-1397.
    [82] Pham T T, Kim H S, Won Y Y, et al. Bidirectional1.25Gbps WDM RoF Wired wirelessoptical transmission using multiple SSB carriers in FP LD by multiple mode injectionlocking. European Conference on Optical Communication,2008.
    [83] Lin C T, Chen J, Peng P C, et al. Hybrid optical access network integratingfiber-to-the-home and radio-over-fiber systems. IEEE Photonics Technology Letters,2007,19(8):610-612.
    [84] Yu Jianjun, Jia Zhensheng, Yu Jianguo. Novel RoF network architecture for providingboth wireless and wired broadband services. Microwave and Optical Technology Letters,2007,49(3):659-662.
    [85] Yu Jianjun, Gu Jinxing, Liu Xiang, et al. Seamless integration of an8×2.5Gb/sWDM-PON and Radio-Over-Fiber using all-optical up-conversion based onraman-assisted FWM. IEEE Photonics Technology Letters,2006,17(9):1986-1988.
    [86] Jia Zhensheng, Yu Jianjun, Chowdhury A, et al. Simultaneous generation of independentwired and wireless services using a single modulator in millimeter-wave-bandradio-over-fiber systems. IEEE Photonics Technology Letters,2007,19(20):1691-1693.
    [87]曹志刚,钱亚生.现代通信原理.清华大学出版社,2007.
    [88] Wang Kai, Zheng Xiaoping, Zhang Hanyi, et al. A radio-over-fiber downstream linkemploying carrier-suppressed modulation scheme to regenerate and transmit vector signals.IEEE Photonics Technology Letters,2007,19(18):1365-1367.
    [89] Raman S, Barker N S, Rebeiz G M. A W-band dielectric-lens-based integrated monopulseradar receiver. IEEE Transactions on Microwave Theory and Techniques,1998,46(12):2308-2316.
    [90] Attema E P W. The active microwave instrument on-board the ERS-1satellite.Proceedings of the IEEE,1991,79(6):791-799.
    [91] Gonzalez G, Cliffs E. Microwave transistor amplifiers: analysis and design. New Jersey,1984.
    [92] Boyd J A, Harris D B, King D D, et al. Electronic countermeasures. Los Altos, Calif.,Peninsula Publishing,1978.
    [93] Cai C M, Usami K, Hayashi M, et al. Frequency-modulation-type MI sensor usingamorphous wire and CMOS inverter multivibrator. IEEE Transactions on Magnetics,2004,40(1):161-163.
    [94] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. Journal ofLightwave Technology,2006,24(1):201-229.
    [95] Vidal B, Polo V, Corral J L, et al. Efficient architecture for WDM photonic microwavefilters. IEEE Photonics Technology Letters,2004,16(1):257-259.
    [96] Mora J, Andrés M V, Cruz J L, et al. Tunable all-optical negative multitap microwavefilters based on uniform fiber Bragg gratings. Optics Letters,2003,28(15):1308-1310.
    [97] Mora J, Martinez A, Manzanedo M D, et al. Microwave photonic filters with arbitrarynumber of positive and negative coefficients using multiple phase inversion in a SOAbased XGM wavelength converter. International Topical Meeting on MicrowavePhotonics,2005.
    [98] Ning G, Aditya S, Shum P., et al. Tunable photonic microwave bandpass filter using phaseModulation and a chirped fiber grating in a Sagnac loop. IEEE Photonics TechnologyLetters,2005,17(9):1935-1937.
    [99] Capmany J, Pastor D, Martinez A, et al. Microwave photonic filters with negativecoefficients based on phase inversion in an electro-optic modulator. Optics Letters,2003,28(16):1415-1417.
    [100] Wang Jun, Zeng Fei, Yao Jianping. All-optical microwave bandpass filters implemented ina radio-over-fiber link. IEEE Photonics Technology Letters,2005,17(8):1737-1739.
    [101] Orfanidis S J. Introduction to Signal Processing. Englewood Cliffs, New Jersey:Prentice-Hall,1996.
    [102]翁晓龙.高等数学.北京:光明日报出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700