用户名: 密码: 验证码:
微型振动式发电机的基础理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电源是MEMS技术发展最重要的研究方向之一,随着MEMS技术的迅速发展和成熟,微电源已成为该领域急待研究解决的关键问题,是实现MEMS传感器、执行器和微系统独立工作最重要的关键基础部件。尽管各种微电源已经面世,但是,研究一种在理论上可以无限期使用的微型发电机系统(换能器)将外界环境的能量转换为电能的微电源,一直是人们期待解决的重要课题。
    本文概述了微型电源的国内外发展现状和趋势,对各种工作原理的微型发电机进行了分析比较,针对解决某些无法实现电池充电或燃料更换等诸多使用条件受限环境下微电源的问题,在国内首次提出利用微电子技术和MEMS技术等、依据电磁感应原理,将微型螺旋弹簧及永磁铁构成的拾振系统、感应线圈构成一种体积很小的振动式发电机系统的新思想和新方法。以满足工业自动控制、植入式医疗装置、无线网络传感系统、微小机器人自由移动系统等存在微振动领域的微电源的需求;是实现微电源与微传感器、微执行器、低功耗电路和微系统一体化集成的一次重要探索,具有十分重要的科学意义和广泛的应用前景。本文主要研究工作如下:
    ① 本文在查阅了大量文献、资料的基础上分析了微电源的国内外发展现状,特别是对微型振动式发电机的发展现状进行了系统分析。
    ② 较深入地研究分析了微型电磁式振动发电机的拾振相关基础理论。采用有限元分析软件ANSYS6.0对拾振系统的参数进行了优化设计。对线圈的电阻、电感和线圈的尺寸等关系进行了理论计算与分析。对永久磁铁在空间产生的磁场分布、感应线圈中的感应电动势与磁铁相应振动等因素的相互关系进行了计算分析。
    ③ 进行了振动式发电机的工艺研究,完成了振动式发电机的工艺设计和工艺试验,研制出了微型振动式发电机实验样机。主要参数如下:内阻为514.7Ω,典型工作频率为122Hz,负载为1000Ω时,发电机的输出电压为134.3mV,输出功率达到18.04μW。
    ④ 进行了振动式发电机的实验系统和实验方法的设计,对研制出的振动式微型发电机样品进行了实验测试,并对实验结果进行了分析和讨论。
Micro power is one of key area in the development of MEMS technology. With the quick development and maturity of MEMS technology, micro power has become the key problem in this field. It is an important element in realizing the autonomous working of MEMS sensors, actuators and Microsystems. Different kinds of micro powers have been developed, however, to develop a micro generator system or micro energy conversion device, which can be used without the limitation of time, has long being a important research program.
    In this paper, the recent development of the micro power is illustrated. The principles of these micro powers are analyzed. In many circumstances, these micro powers cannot be recharged or replaced. To solve the problem, we propose a novel miniature vibration generator, which consists of a micro threadlike spring, a magnet and an inductance coil. It will meet the requirement of many vibration circumstances, such as automation control, embedded medical device, wireless net sensor system and micro robot. It is an important research in the attempt to realize the integration of micro power, micro sensor, micro actuator, and low power consumption circuit. We can foresee its scientific importance and its possible applications. The research work is presented as following.
    ① Based on analyzing existing documents, the current development in the area of micro power is analyzed, especially those vibration ones.
    ② The relevant theories of micro electromagnetic vibration power generator are studied. Finite element analysis is employed to optimize the design of the vibration pickup system. Theoretical computation and analysis is carried out to find the relationship between the resistance and induction of the coil and its size. We also analyzed the interaction among the distribution of the magnetic field around the magnet, the induced electromotive force in the coil and the vibration of the magnet.
    ③ The techniques are developed to fabricate such vibration generator. A prototype is fabricated. Its main parameters are given as following, resistance 514.7Ω, and typical working frequency 122Hz. The output voltage is about 134.3mV and the output power is about 18.04μW, when load resistance is 1000Ω.
    ④We also designed the experiment system and the method to test the micro generator. The result is analyzed and discussed.
引文
[1] 石庚辰编著. 微机电系统技术. 国防工业出版社. 北京. 1999年8月
    [2] 刘广玉. 樊尚春. 周浩敏编著. 微机械电子系统及其应用. 北京航空航天大学出版社,2003年2月
    [3] P. B. Koeneman, Ilene J. Busch-Vishniac, and K.L.Wood, Feasibility of Micro power supplies for MEMS. Journal of microelectromechanic systems. Vol.6. No.4, December 1997.
    [4] H. Matsuki et al., Implantable Transformer for an artificial heart utilizing amorphous magnetic fibers. J. Applied Physics. vol.64. pp5859-5861.
    [5] J. B. Bates, G.R.Gruzalski, C.F. Luck rechargeable solid state lithium micro batteries. Proc.6th IEEE workshop on MEMS. Fort Lauderdale. Florida. February 1993.
    [6] B. Rashidian, M.G.Allen. Electrothermal microactuators based on dielectric loss heating. 6th IEEE workshop on MEMS. Fort Lauderdale. Florida. February 1993.
    [7] J. B. Lee, Z. Chen, M.G. Allen. A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply. Journal of MEMS.Vol.4. No.3. September. 1995.
    [8] C.Shearwood, R. B. Yates. Development of an electromagnetic Microgenerator. Electronics Letters. Vol.33. No.22. Oct 23.1997.
    [9] C. B. Williams, R. B. Yates. Analysis of a Micro-Electric generator for Microsystems. Sensors and Actuators. A52.pp8-11. 1996.
    [10] R. Amirtharajah, A. P. Chandrakasan. Self-powered signal processing using vibration-based power generator. IEEE Journal of Solid-State Circuits. Vol.33. No.5.May 1998.687-695.
    [11] N. J. Dudney, B. J. Neudecker. Solid state thin-film lithium battery systems. Current Opinion in Solid State and Materials Science Vol.4, 1999,pp.479- 482.
    [12] D. Chu, R. Jiang. Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks-Part I. Evaluation and simulation of an air-breathing PEMFC stack. Journal of power source Vol. 83. 1999. pp128-133.
    [13] Daniel R. Palo, Jamie D. Holladay, et al. Development of a soldier-portable fuel cell power system Part I: A bread-board methanol fuel processor. Journal of Power Sources Vol. 108. 2002. pp 28-34.
    [14] Jamie Holladay, Evan O. Jones, Max Phelps. Micro scale Power Generation Using a Fuel Processor and Fuel Cell. IECEC 2002.
    [15] Harb. J. N, R. L. La, Follette. R. H. Selfridge and L. L. Howell. 2002. "Microbatteries for Self-Sustained Hybrid Power Supplies." Journal of Power Sources. Vol. 104. pp. 46-51.
    
    
    [16] http://www.ritsumei.ac.jp/se/~sugiyama/research/re_3.2e'.html
    [17] http://www.cea.wsu.edu/P3_PRESSRELEASE/P3PRESSRELEASE.htm
    [18] http://www.nsfc.gov.cn/nami/htm/50071040.htm
    [19] Rajeevan Amirtharajah, Anantha P. Chandrakasan. Self-Powered Signal Processing Using Vibration-Based Power Generation. IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL. 33. NO. 5. MAY 1998.pp687-695.
    [20] T. Sterken, K. Baert, R. Puers1, S. Borghs, Power Extraction from Ambient Vibration Proceedings of SeSens 2002 ,November 29. 2002 - Veldhoven. the Netherlands.
    [21] Scott Meninger, Jose Oscar Mur-Miranda, Rajeevan Amirtharajah, Vibration-to-Electric Energy Conversion,Very Large Scale Integration (VLSI) Systems. IEEE Transactions on . Volume: 9 Issue: 1 . Feb 2001. pp.64 -76.
    [22] Scott Meninger, Jose Oscar Mur-Miranda, Rajeevan Amirtharajah, Vibration-to-Electric Energy Conversion,Low Power Electronics and Design. 1999. Proceedings. 1999 International Symposium on . 1999 .pp.48 -53.
    [23] P. Glynne-Jones, S. P. Beeby, N. M. White. Towards a piezoelectric vibration-powered micogenerator.IEE Pro. Sci. Mean. Technol. Vol.148.No. March 2001. pp68-72.
    [24] M. El-hami, P.Glynne-Jones, N. M. White, et al. Design and fabrication of a new vibration-based electromechanical power generator. Sensor and Actuator A 92.2001.pp335-342.
    [25] Wen J. Li, Zhiyu Wen, et al. A micromachined vibration-induced power generator for low power sensors of robotic systems. World Automation Congress:8th International symposium on robotics. June 16-21. 2000.Hawaii. USA.
    [26] Neil N. H. Ching, H. Y. Wong, Wen J. Li, Philip H. W. Leong, Zhiyu Wen. A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sensor and Acuators A 97-98(2002). pp685-690.
    [27] R. C. Dorf and R. H. Bishop. Modern Control Systems. 7# Ed. Addison-Wesley Publishing Co.. 1995.
    [28] 方同主编, 振动理论及应用.西安.西安工业大学出版社.1998年5月
    [29] 王彬主编.振动分析及应用. 北京.海潮出版社, 1992
    [30] 黄长艺.严普强主编.机械工程测试技术基础.北京.机械工业出版社.1994年第二版
    [31] 刘迎春编著.传感器原理设计与应用.国防科技大学出版社.1995年4月第二版
    [32] 王国强主编.实用工程数值模拟技术及其在ANSYS上的实现.西安.西北工业大学出版社.1999年第一版
    [33] 李承祖.赵凤章.电动力学教程.长沙.国防科技大学出版社 1994年8月第1版
    [34] 陈惟蓉.黄天麟等编著.电磁学.北京.清华大学出版社.1994年6月第1版
    
    
    [35] 郭硕鸿编著.电动力学.北京.人民教育出版.1979年2月第1版。
    [36] 程耀东主编.机械振动学(线性系统).杭州.浙江大学出版社.1988年11月第一版。
    [37] 刘鸿文.简明材料力学.1997年7月第1版。
    [38] 周寿增等编者.稀土永磁材料及其应用.北京.冶金工业出版社.1990年12月第一版。
    [39] 温志渝.降低集成化平面螺旋电感寄生串联电阻的途径[J].微电子学, 2001, Vol.31.360-362。
    [40] Kim Y-J, Surface micromachined solenoid inductors for high frequency applications [A].IMAPS[C].1997.1-6
    [41] 王明勇.郎志坚.李国军.方形磁体的空间磁场分布.磁性材料及器件.Vol.32, No.3, 2000, pp.17-20
    [42] 庄同曾主编.集成电路制造技术-原理与实践.电子工业出版社.北京.1987.10.pp419-441
    [43] 郑福元等编著.厚薄膜混合集成电路-设计、制造和应用.北京.科学出版社.1984年第一版
    [44] 王少洪,周和平,罗凌虹等.多层片式电感及其材料的研究与发展.机械工程材料,Vol.26 No.6, Jun 2002.pp.1-6
    [45] 张三慧主编.大学物理学第3册.电磁学.北京.清华大学出版社.1999.12.第二版
    [46] 陈文意.自感对感应电流的影响.攀枝花大学学报.Vol.12, No.1.1995.5.pp.83-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700