用户名: 密码: 验证码:
半主动座椅悬架控制理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越野车辆和工程机械经常工作于恶劣的环境中,在行驶或作业的过程中,由于路面的不平而产生强烈的振动。如果驾驶员或操作者长时间暴露于一定强度的振动中,将影响到其工作效率,严重的还会导致身体损伤。为了减小振动传递到驾驶员或操作者身上,一般通过座椅悬架系统对振动进行隔振,从而改善乘坐的舒适性。由于被动座椅悬架系统对隔振性能的改善空间有限,不能有效减小低频段振动传递的强度,因而需要半主动或主动悬架系统来进行有效衰减。
     磁流变液这种功能材料在近年来受到人们的极大重视,利用磁流变液特性的产品在土木工程、机械工程中的应用中显示出了优越的性能,其中以磁流变阻尼器作为减振控制的应用最为突出,例如高楼隔振和大桥悬拉索减振等。磁流变阻器减振应用的一个重要领域是悬架系统,其中包括车辆悬架系统和车辆座椅悬架系统。在磁流变阻尼器的悬架应用中,主要是为了耗散由路面激励所产生的对车辆和乘员的振动能量,改善乘座的舒适性。
     本文中将以基于磁流变阻尼器半主动座椅悬架为研究对象,研究和探讨控制系统的这些关键技术。研究内容主要包括如何利用磁流变阻尼器阻尼特性实验的结果,通过优化方法得到其数学模型的参数,并由此数学模型推导出结构简单、精度较高的逆模型。以及如何设计一个控制策略,不仅对参数不确定性具用鲁棒性,而且能减少传感器的使用和避免用到一些难以获取的状态量作为控制决策量,从而使控制策略容易实现,且降低其实现成本。最后通过数值仿真和实验的方法检验这些关键技术。在本文中所做的具体工作包括以下几个方面:
     (1)对磁流变阻尼器进行阻尼特性实验,并利用实验结果通过遗传算法辨识Bouc-Wen现象模型中的14个参数,由此建立了该磁流变阻尼器的数学模型,为座椅半主动悬架系统的数值仿真提供基础。
     (2)由磁流变阻尼器Bouc-Wen现象模型推导出不仅结构简单,容易实现,但又具有一定精度的磁流变阻尼器逆模型。该逆模型利用期望控制力和当前的活塞速度而得到磁流变阻尼器需要输入的电压,利用此逆模型能将目前众多的主动控制算法运用到半主动控制当中。
     (3)针对实际物理系统难以准确建模,以及被控对象参数随环境变化而变化的特点,运用参数不确性理论将这些因素考虑到控制器的设计过程中,推导出具有参数不确定性的H∞鲁棒输出反馈控制器,由此提高半主动控制系统的控制器对参数摄动的鲁棒性,保证控制器动态性能。
     (4)根据工程车辆座椅悬架系统振动实验的国家标准,利用激振加速度的功率谱密度要求,通过傅里叶逆变换的方法求得激振输入在时域的位移和速度数据,这些数据可作为半主动座椅悬架系统数值仿真和实验的激励输入。
     (5)应用数值仿真的方法对半主动座椅悬架系统进行仿真研究,不仅将被动悬架与半主动悬架系统的动态性能在时域中进行了对比研究,而且运用频域分析方法来进行分析比较。另外,通过在仿真中加入多种参数摄动的方法,检验控制器对参数不确定性的鲁棒性。
     (6)运用LabVIEW程序设计的方法来实现半主动座椅悬架的控制器,该控制器包括数据采集、信号调理、半主动约束、磁流变阻尼器逆模型、控制信号输出、H∞鲁棒输出反馈控制器等部分。
     (7)为了检验控制系统的可行性和鲁棒性,对基于磁流变阻尼器的座椅半主动悬架系统进行了实验设计,主要包括座椅模态实验、座椅激振的实现、座椅夹具设计、驾驶员模拟、控制器实现等方面。通过座椅悬架实验,比较被动悬架和半主动悬架系统的振动控制效果,验证控制系统的有效性。
Off-road vehicles and engineering machineries often work in harsh environment, in which the road unevenness leads to the intensive vibrations in the process of driving or operating. If the drivers or operators are exposed to a certain intensity of vibration for long time, which will affects their work effectiveness, even serious bodily injury. In order to reduce the vibration energy transmitting to the drivers or operators, the seat suspension system has been equipped for vibration isolation and improvement of the riding comfort in general. Since passive seat suspension system with limited functions in improvement of vibration isolation, can not effectively reduce the strength of vibration transmitting, especially in low frequency band. Recently, semi-active or active suspension systems become popular in effective attenuation of vibrations.
     Magneto-Rheological (MR) fluid, such functional material has received great attentions in recent years. Many application products utilizing the MR fluid have shown superior performance in civil engineering and mechanical engineering. In these applications, the utilizations of vibration control with MR damper are the most prominent, such as vibration isolation of high buildings and vibration damping of big bride cables. In additon, suspension system is the important application field of MR damper for vibration absorption including vehicle suspension and seat suspension, and playes a role that dissipates the main vibration energy generated by road exciting. As a result, the comfort of riding is improved.
     This paper studies the key technologies of semi-active seat suspension based on MR damper mentioned above. The main work includes how to build the mathematical model of MR damper with the aid of experiments by optimizing method, derive MR damper inverse model with simple structure and high precision, and design a control strategy that not only takes on robust performance for parameter uncertainties, but also reduces the using of transducer, or avoids some hard-to-access state as decision-making variable. The control strategy is reqiured to be easy to apply and reduce the realizing cost accordingly. At last, numerical simulations and experiments are used to verify these key technologies. In this dissertation, the concrete work includes the following aspects.
     (1) In order to establish the mathematical model of a given MR damper, the fourteen parameters of the Bouc-Wen model of MR damper are identifyed by genetic algorithm using the experimental results.
     (2) The inverse model is derived from the Bouc-Wen model of a given MR. This model, with only structure simple and a certain precision, is easy to be implemented. The inverse model can determine the input voltage for the MR damper by using the expected force and current speed of piston, such that a number of active suspension control algorithms can apply to the semi-active suspension control.
     (3) Considering the properties in the controller design process that the actual physical system is difficult to be accurately modeled, and the plant parameters changes with environmental changing, an H∞robust output feedback controller with parameter uncertainty is derived, which can enhance the robustness of the semi-active controller in control system with parameter perturbation and ensure the dynamic performance.
     (4)According to the requirements for acceleration power spectral density (PSD) in national standard, in which vibration experiment of engineer vehicle seat suspension system is regulated, displacement and velocity signal of excitation input in time domain can obtain through the way of inverse Fourier transform, and these signal can act as excitation input in numerical simulaion and experiment of seat suspension.
     (5)The dynamic performance of passive seat suspension and semi-active seat suspension are compared and studied by numerical simulation not only in time domain and frequency domain. In addition, the simulation tests the robust performance of controller for parameter uncertainties, in which a variety of parameter perturbations are added in.
     (6) Semi-active seat suspension controller is designed by LabVIEW program, which including data acquisition, signal condition, semi-active constraint, MR damper inverse model , control signal outputing, robust H∞output feedback controller, and other parts.
     (7) To verify the feasibility and robustness of the control system, an experiment is performed for semi-active seat suspension based on MR damper, which including the seat modal experiments, realization exciting of seat, seat fixture designing, driver simulation, controller designing, and so on. The experiments compare the performances of passive seat suspension and semi-active seat suspension, and verify the effectiveness of the designed control system.
引文
[1] Sandover J. Vibration, posture, and low-back disorders of professional driver. Rep. No. DHS 402. Department of Human Sciences, University of Technology, Loughborough, England, 1981
    [2] Pradko F, Orr T R,Lee R A. Human vibration analysis. SAE Paper No.650426, 1967
    [3] Huston D R, Johnson C C, Wood M A, el at. Vibration attenuating characteristics of air filled seat cushions. Journal of Sound Vibration, 1999, 222 (2): 333-340
    [4] Wu X,Griffin M J. A semi-active control policy to reduce the occurrence and severity of end-stop impacts in a suspension seat with an electrorheological fluid damper. Journal of Sound and Vibration, 1997, 203 (5): 781-793
    [5] Gunston T. An investigation of suspension seat damping using a theoretical model. In: Proceedings of the 35th U.K. Group on Human Response to Vibration, Southampton, England, 2000, 137-149
    [6]余志生.汽车理论.北京:机械工业出版社, 2005
    [7] Hostens I, Deprez K,Ramon H. An improved design of air suspension for seats of mobile agricultural machines. Journal of Sound and Vibration, 2004, 276 (1-2): 141-156
    [8] Wan Y,Schimmels J M. Improved vibration isolating seat suspension designs based on position-dependent nonlinear stiffness and damping characteristics. Journal of Dynamic System, Measurement, and Control, 2003, 125 (3): 330-338
    [9]白胜勇,靳晓雄.工程机械悬置式座椅动态参数设计研究.同济大学学报, 1999, 27 (1): 74-77
    [10] Choi S B,Han Y M. Vibration control of electrorheological seat suspension with human-body model using sliding mode control. Journal of Sound and Vibration, 2007, 303 (1-2): 391-404
    [11]魏铁华,杨晓红.电流变技术与磁流变技术.水利电力机械, 2002, 24 (2): 57-60
    [12] Reichert B A. Application of magnetorheological dampers for vehicle seat suspensions. [dissertation].Virginia:Virginia Ploytechnic Institute and State University, 1997
    [13]陈家瑞.汽车构造.北京:机械工业出版, 2003
    [14]王文瑞,顾亮,陈兵.车辆智能悬架发展的研究.北京汽车, 2005, 2 (6): 27-31
    [15] Hrovat D. Survey of advanced suspension developments and related optimal control applications. Automatica, 1997, 33 (10): 53-57
    [16] Wright P G,Williams D A. The application of active suspension to high performance road vehicles, ImechEJ. Automobile Engineering, 1984, 199 (1): 23-28
    [17] Yokoya Y, Kizu R, Kawaguchi H, el at. Integrated control system between active control suspension and four wheel steering for the 1989 CELICA. SAE Transactions, 1990, 99 (6): 1546-1561
    [18] Hillbrecht P, Konik D, Pfeil D, el at. The active suspension between customer benefits and technological competition. In:XXIV FISITA Congress, London, UK, 1992, 75-87
    [19] Goran M B, Bachrach B I,Smith R E. The design and development of a broad bandwidth active suspension concept car. In:XXIV FISITA Congress, London, UK, 1992, 91-97
    [20] Goodall R M,Kortüm W. Active controls in ground transportation -a review of the state-of-the-art and future potential. Vehicle System Dynamics, 1983, 12 (4): 225-257
    [21]余淼.汽车磁流变半主动悬架控制系统研究. [重庆大学博士论文].重庆:重庆大学, 2003
    [22] Grosby M J,Karnopp D C. The active damper-a new concept for shock and vibration control. The Shock and Vibration Bull, 1973, 43 (4): 119-133
    [23]董小闵.汽车磁流变半主动悬架仿人智能控制研究. [重庆大学博士论文].重庆:重庆大学, 2006
    [24] Kim H,Yoon Y S. Semi-active suspension with preview using a frequency-shaped performance index. Vehicle Systems Dynamics, 1995, 24 (10): 759-780
    [25]李栓成,王天颖.现代轿车电控悬架的结构原理和检修.北京:北京理工大学出版社, 1998
    [26]鲁植雄.汽车电子控制悬架故障诊断图解.南京:江苏科学技术出版社, 2003
    [27] Gunston T P, Rebelle J,Griffin M J. A comparison of two methods of simulating seat suspension dynamic performance. Journal of Sound andVibration, 2004, 78 (1-2): 117-134
    [28] Wu J D,Chen R J. Application of an active controller for reducing small-amplitude vertical vibration in a vehicle seat. Journal of Sound and Vibration, 2004, 274 (3-5): 939-951
    [29] Song X B,Ahmadian M. Study of semiactive adaptive control algorithms with magneto-rheological seat suspension. SAE Paper No:2004-01-1648, 2004
    [30] Duke M,Goss G. Investigation of tractor driver seat performance with non-linear stiffness and on-off damper. Biosystems Engineering, 2007, 96 (4): 477-486
    [31] Mcmanus S J, Clair K A S, Pakheja S, el at. Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper. Journal of Sound and Vibration, 2002, 253 (1): 313-327
    [32]何炎权,刘少军,朱浩,等.基于磁流变阻尼器的半主动车辆座椅悬架模糊控制研究.汽车工程, 2006, 28 (7): 667-670
    [33]徐晓美,朱思洪.一种剪式座椅振动特性的理论分析.中国机械工程, 2006, 17 (8): 802-804
    [34] Ericksen E O,Gordanninejad F. A magneto-rheological fluid shock absorber for an off-road motorcycle. International Journal of Vehicle Design, 2003, 33 (1): 139-152
    [35]黄英,张以忱.工程机械驾驶员座椅主动悬架主动控制.东北大学学报, 2001, 22 (4): 309-412
    [36]赵德敏,张琪昌.车辆座椅减振研究.天津理工大学学报, 2006, 22 (5): 6-8
    [37]王恩荣,陈余寿, Su C Y,等.车辆座椅减振系统中可控磁流液阻尼器的性能测试研究.工业控制计算机, 2003, 16 (6): 44-46
    [38]孙建民,王芝秋,张新玉.车辆主动悬架系统的LMS自适应控制.汽车工程, 2003, 25 (4): 360-363
    [39] Li H,Goodall R M. Linear and non-linear skyhook damping control laws for active railway suspensions. Control Engineering Practice, 1999, 7 (7): 843-850
    [40]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社, 2005
    [41]郑玲,邓兆祥,李以农.汽车半主动悬架的滑模控制及鲁棒性.汽车工程, 2004, 26 (6): 678-682
    [42] Choi S B, Cheong C C,Park D W. Moving switching surfaces for robust control of second-order variable structure systems. International Journal ofControl, 1993, 58 (1): 229-247
    [43] Park D W,Choi S B. Moving sliding surface for high-order variable structure systems. International Journal of Control, 1999, 72 960-970
    [44] Sung K G, Han Y M, Cho J W, el at. Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller. Journal of Sound and Vibration, 2008, 311 (3-5): 1004-1019
    [45]刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社, 2004
    [46]刘韶庆,姚斌,袁善发,等.磁流变减振器半主动悬架的Fuzzy-PID开关切换控制.农业机械学报, 2006, 37 (12): 4-7
    [47]孙涛,陈大跃.电流变智能半主动悬架模糊PID控制.汽车工程, 2004, 26 (5): 605-607
    [48]侯志祥,申群太,吴义虎.汽车主动悬架系统的单神经元自适应PID控制.系统仿真学报, 2004, 16 (9): 2107-2108
    [49]金耀,于德介,宋晓琳.基于单神经元PID的车辆主动悬架最优自适应控制.中国机械工程, 2006, 17 (8): 1972-1974
    [50]诸静.模糊控制原理与应用.北京:机械工业出版社, 1995
    [51]王国军,陈松乔.自动控制理论发展综述.微型机与应用, 2000, 6, 4-7
    [52]巨永锋,李登峰.最优控制.重庆:重庆大学出版社, 2005
    [53]祁建城,李若新,刘志国,等.汽车主动悬架最优控制.汽车工程, 1999, 21 (1): 15-20
    [54]兰波,喻凡.车辆主动悬架LQG控制器的设计与仿真分析.农业机械学报, 2004, 35 (1): 13-17
    [55] Yu F,Crolla D A. An optimal self-tuning controller for an active suspension. Vehicle System Dynamics, 1998, 29 (1): 51-65
    [56] Elbeheiry E M,Karnopp D C. Optimal control of vehicle random vibration with constrained suspension deflection. Journal of Sound and Vibration, 1996, 189 (6): 547-564
    [57] Moheimani S O R,Pertersen I R. Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback. Automatic, 1996, 32 (4): 575-583
    [58]俞立.鲁棒控制-线性矩阵不等式处理方法.北京:清华大学出版社, 2002,
    [59] Chen H,Guo K. An LMI approach to multiobjective RMS gain control for active suspension. In: Proceedings of the American Control Conference. Arlingto VA, 2001, 4, 2646-2651
    [60]史明光,方敏,陈无畏.基于LMI的四自由度车辆模型主动悬架H∞控制.合肥工业大学学报, 2004, 27 (3): 237-241
    [61]张志勇,文桂林,钟志华.车辆主动悬架的混合H2/H∞最优保性控制.汽车工程, 2007, 29 (7): 606-610
    [62]陈新海.自适应控制及应用.西安:西北工业大学出版社, 2003
    [63] Song X B, Ahmadian M, Southward S, el at. Parametric study of nonlinear adaptive control algorithm with magneto-rheological suspension systems. Communication in Nonlinear Science and Numerical Simulation, 2007, 12 (4): 584-607
    [64]丁科,侯朝桢.车辆主动悬架的自应控制研究.北京理工大学学报, 2001, 21 (6): 706-709
    [65] Mamdani E H. Application of Fuzzy Algorithms for simple dynamic plant. In:Proc. IEE. , 1974, 121,1585-1588
    [66] D'Amato F J,Viassolo D E. Fuzzy control for active suspensions. Mechatronics, 2000, 10 (8): 897-920
    [67]李以农,郑玲.基于磁流变减振器的汽车半主动悬架非线性控制方法.机械工程学报, 2005, 41 (5): 31-37
    [68] Yoshimura T, Isari Y, Li Q, el at. Active suspension of motor coaches using skyhook damper and fuzzy logic control. Control Engineering Practice, 1997, 5 (2): 175-184
    [69]吴启迪,汪镭.反馈式神经网络智能控制.上海:上海科技教育出版社, 2005
    [70]杨汝清.智能控制工程.上海:上海交通大学出版社, 2001
    [71]王辉,朱思洪.半主动空气悬架神经网络的自适应控制.农业机械学报, 2006, 37 (1): 28-31
    [72]郑泉.基于遗传算法-神经网络的半主动悬架控制仿真.合肥工业大学学报, 2002, 25 (2): 230-235
    [73] Yildirim S. Vibration control of suspension systems using a proposed neural network. Journal of Sound and Vibration, 2004, 277 (4-5): 1059-1069
    [74] Spentzas K,Kanarachos S A. Design of a non-linear hybrid car suspension system using neural networks. Mathematics and Computers in Simulation, 2002, 60 (3-5): 369-378
    [75] Nagai M, Moran A,Koizumi S. Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks. Control Engineering Practice, 1997, 5 (8): 1137-1144
    [76] Rabinow J. Magnetic fluid torque and force transmitting device. U.S. PatentNumber 2575360, 1951
    [77]孙光飞,强文江.磁功能材料.北京:化学工业出版社, 2007
    [78]石秀东.磁流变减振系统关键技术研究. [南京理工大学博士论文].南京:南京理工大学, 2002
    [79]周云,谭平.磁流变阻尼器控制理论与技术.北京:科学出版社, 2007
    [80] Carlson J D, Catanzarete D M,Clair K A St. Commercial magneto-rheological fluid devices. In:Proc. 5th Int. Conf. on ER Fluid, MR Suspension and Associated Technology, Singapore, 1996, 20-28
    [81] Lee D Y,Wereley N M. Quasi-steady herschel-bulkley analysis of electro- and magneto-rheological flow mode dampers. Journal of Intelligent Material Systems and Structures, 1999, 10 (10): 761-769
    [82]瞿伟廉,嘉刘,涂建维,等. 500kN足尺磁流变液阻尼器设计的关键技术.地震工程与工程振动, 2007, 27 (2): 124-130
    [83]胡建华,王修勇,陈政清等.斜拉桥拉索磁流变阻尼器减振技术的参数优化研究.土木工程学报, 2006, 39 (3): 91-97
    [84] Zheng J, Cao X J,Zhang G H. Research on I-T relationship of MRF soft-starting transmission device. Journal of Engineering Design, 2005, 12 (5): 284-287
    [85]孟令军,蔡清传,孙佳等.圆盘式磁流变离合器的切向传力模型.重庆工学院学报, 2005, 19 (5): 123-124
    [86]李松晶,蒋丹.气动位置控制磁流变流体制动器的研究.中国机械工程, 2005, 16 (22): 1998-2001
    [87] Poynor J C,Ahmadian M. An evaluation of magneto rheological dampers for controlling gun recoil dynamics. Shock and Vibration, 2001, 8 (3-4): 147-155
    [88] Wang X J,Gordaninejad F. Flow analysis of field-controllable, electro- and magneto-rheological fluids using Herschel-Bulkley model. Journal of Intelligent Material Systems and Structures, 1999, 10 (8): 601-608
    [89] Choi Y T,Wereley N M. Vibration control of a landing gear system featuring electrorheological/magneto-rheological fluids. Journal of Aircraft, 2003, 40 (3): 432-439
    [90]侯保林,Ahmadian M.冲击载荷作用下磁流变阻尼器的建模与分析.机械工程学报, 2006, 42 (4): 173-178
    [91]邓志党,高峰,刘献栋,等.磁流变阻尼器力学模型的研究现状.振动与冲击, 2006, 25 (3): 212-126
    [92] Stanway R,Sproston J L. Non-linear Modeling of an ElectrorheologicalVibration Damper. Electrostatics, 1987, 20 (2): 167-184
    [93] Wen Y K. Method of random vibration of hysteretic systems. Journal of Engineering Mechanics. 1976, 102 (2): 249-263
    [94] Spencer B F, Dyke S J, Sain M K, el at. Phenomenological model for magnetorheolo- gical dampers. Journal of Structural Engineering, 1997, 123 (3): 230-238
    [95] Choi S B, Lee S K,Park Y P. A hysteresis model for the field-dependent damping force of a magnetorheological damper. Journal of Sound and Vibration, 2001, 245 (2): 375-383
    [96] Lai C Y,Liao W H. Vibration control of a suspension system via a magnetorheological fluid damper. Journal of Vibration and Control, 2002, 8 (4): 527-547
    [97] Dyke S J,Spencer B F. Modelling and control of magnetorheological dampers for seismic response reduction. Smart Material and Structures, 1996, 110 (5): 565-575
    [98] Chang C C,Zhou L. Neural network emulation of inverse dynamics for a magnetorheological damper. Journal of Structural Engineering, 2002, 128 (2): 231-239
    [99] Xia P Q. An inverse model of MR damper using optimal neural network and system identification. journal of Sound and Vibration, 2003, 266 (5): 1009-1023
    [100] Tsang H H, Su R K L,Chandler A M. Simplified inverse dynamics models for MR fluid dampers. Engineering Sructures, 2006, 28 (3): 327-341
    [101] QC/T 545-1999.汽车筒式减振器-台架试验方法.北京:中国标准出版社, 1999
    [102] Lord Corporation. WonderBox device controller RD-3002-03 product bulletin and operating instructions
    [103] Spencer B F. Reliability of randomly excited hysteretic structures. New York:Springer-Verlag, 1986
    [104]吴敏,桂卫华,何勇.现代鲁棒控制.长沙:中南大学出版社, 2006
    [105]吴志刚.线性鲁棒控制理论与计算.大连:大连理工大学出版社, 2003
    [106]申铁龙. H∞控制理论及应用.北京:清华大学出版社, 1996
    [107]陈奎孚,张森文.半功率点法估计阻尼的一种改进.振动工程学报, 2002, 15 (2): 151-155
    [108] Ho D W C,Lu G. Robust stabilization for a class of discrete-time non-linearsystems via output feedback: the unified LMI approach. International Journal of Control, 2003, 76 (7): 105-115
    [109] Lien C H. Guaranteed cost observer-based controls for a class of uncertain neutral time-delay systems. Journal of Optimization Theory and Applications, 2005, 126 (1): 137-156
    [110] Lien C H,Yu K W. LMI optimization approach on robustness and H∞control analysis for observer-based control of uncertain system. Chaos, Solitons and Fractals, 36 (3): 617-327
    [111] Chen J D. Robust H∞output dynamic observer-based control of uncertain time-delay system. Chaos, Solitons and Fractals, 2007, 31 (2): 391-403
    [112] Boyd L, Ghaoui E, Feron E, el at. Linear matrix inequalities in system and control theory. Philadephia:SIAM, 1994
    [113] GB 8419-87.土方机械-司机座椅振动试验方法和限值.北京:中国标准出版社, 1987
    [114]郑军.新概念车舒适性与操纵稳定性研究. [湖南大学博士论文].长沙:湖南大学, 2001
    [115]薛贯海,马吉胜,崔清斌.由路面谱重构路面不平度的AR模型法.军械工程学院学报, 2005, 17 (2): 20-22
    [116] GB/T 13442-92.人体全身振动暴露的舒适性降低界限和评价准则.北京:中国标准出版社,1992
    [117] Wu X,Griffin M J. The influence of end-stop buffer characteristics on the severity of suspension seat end-stop impacts. Journal of Sound and Vibration, 1998, 215 (4): 989-996
    [118] Wu X,Griffin M J. Towards the standardiztion of a testing method for end-stop impacts of suspension seats. Journal of Sound and Vibration, 1996, 192 (1): 307-319
    [119] GB/T 13441-92.人体全身振动环境的测量规范.北京:中国标准出版社, 1992
    [120]王济,胡晓. MATLAB在振动信号处理中的应用.北京:中国水利水电出版社, 2006
    [121] Griffin M J. Handbook of human vibration. London:Academic Press, 1990
    [122]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社, 2001
    [123]西安精准测控有限公司. PM-LAS I系列加速度传感器说明书
    [124] NI Corporation. NI 6229X Specifications. http://sine.ni.com/manuals/main /p/sn/n23:3478
    [125]北京佛力系统公司.汽车轮胎,悬架试验装置----用户手册. 2003
    [126]邓焱,王磊. LabVIEW7.1测试技术与仪器应用.北京:机械工业出版社, 2004
    [127]侯国屏,王坤,叶齐鑫. LabVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700