用户名: 密码: 验证码:
钢纤维三维编织增强混凝土(3D-BSFC)的静动态力学性能的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是目前应用最广泛的工程材料,存在抗拉强度低、韧性差等固有弱点,改进的主要方法是掺加钢纤维,已有研究证明,混凝土的强度等级越高、钢纤维的掺量越大,纤维的长径比越大,在基体中的分布越均匀,钢纤维增强混凝土的强度也越高,其抗冲击、抗侵彻、抗爆炸和抗震塌能力越强。本文尝试将三维编织技术和SFRC相结合,开发三维编织钢纤维增强混凝土(3-Dbraided steel fiber reinforced concrete,简写为3D-BSFC),提高混凝土中钢纤维的含量,控制钢纤维的分布和取向,形成3-D钢纤维网络结构,充分发挥钢纤维在混凝土中的增强增韧效能,得到性能优越的3D-BSFC,为防护工程提供了一种新的优质混凝土工程材料。本文取得的主要研究成果如下:
     1、首先采用分层铺放-浇注工艺及钢纤维三维骨架编织—浇注工艺方法,成功制备出钢纤维体积率V f为5%、10%的三维正交3D-BSFC材料,以及相应V f的二维正交2D-BSFC材料,其砂浆体积填充率达到100%。
     2、采用微机控制电液伺服万能试验机对3D-BSFC试件进行了2种低应变率(10~(-4)s-1和10~(-2)s~(-1))下的准静态单轴压缩试验,获得了应力—应变全曲线,研究了其强度、压缩韧性以及弹性模量等基本力学特性,探讨了钢纤维掺量和应变率对其基本力学性能的影响规律。结果表明,高掺量3-D正交钢纤维对混凝土的强度可提高3倍以上,同时改善其变形能力,使韧性增强3.87倍;在较低应变率状态下,强度和弹性模量随着应变率的增大而增大,范围为10%~30%。根据力学性能和增强增韧效果,获得了力学性能最优的3D-BSFC材料。
     3、采用直径为75mm的分离式霍普金森压杆(Split Hopkinson Pressure Bar,SHPB)装置研究了混凝土基体材料及其相应的3D-BSFC试件的冲击压缩力学性能,得到了不同应变率下3D-BSFC材料的应力应变关系和动态强度增长因子(Dynamic Increasing Factor,简称DIF),观察了试件的破坏形态,研究了纤维体积率和纤维种类对3D-BSFC的动态性能的影响规律。结果表明,3D-BSFC的冲击抗压强度具有明显的应变率硬化效应,其冲击抗压强度和弹性模量随应变率增大而增大,峰值应变随应变率的增长而逐渐减小。3D-BSFC的DIF与应变率对数成双直线函数关系。在冲击压缩条件下,3D-BSFC的韧性基本上是随着应变率的增大而递增,在相同应变率下,钢纤维体积率越大,其韧性越强。混凝土类材料的冲击抗压强度与应变率之间的关系存在一个临界应变率k,当应变率超过k时其DIF显著增加,研究发现,混凝土类材料的动态应变率临界值k随其静态抗压强度的增大而增加。由于3-D钢纤维网络结构有效地限制了材料在冲击压缩作用下的侧向拉伸破坏,3D-BSFC具有很强的抗动态破坏能力,冲击后试件的完整性好。
     4、首次将高速摄像系统与SHPB冲击实验系统综合运用,获得了3D-BSFC试件高速冲击过程中的变形场与应变场。结果表明,结果表明,在冲击过程中试件沿冲击方向的位移场和应变场都不是均匀的,而且试件相同横截面径向方向不同点的位移方向是随着时间变化的。在SHPB实验中,难以避免试件的端面摩擦效应、弥散效应和惯性效应对实验结果的影响。冲击过程中变形场和应变场的精确分析,有利于改进实验的软硬件环境,推动混凝土类材料的SHPB实验技术发展。
     5、基于实测的准静态和动态力学数据,采用考虑损伤的ZWT本构模型拟合了3D-BSFC的动态本构关系。结果表明,ZWT本构模型能够较准确地反映3D-BSFC试件的动态应力应变曲线的上升段。
     6、用HJC模型使用ANSYS/LS-DYNA有限元软件对3D-BSFC抗冲击和抗侵彻进行了数值模拟,抗冲击数值计算给出的试件强度与实测值比较接近,从数值角度验证了本文SHPB实验的有效性。同时模拟金属炮弹对SC0靶板、SC05靶板和SC10靶板的侵彻过程,结果表明:炮弹贯穿靶板时,相同初始速度及板厚,靶板材料的V f越高,炮弹的速度下降越明显,材料的抗侵彻越好;同时,炮弹残片越小,炮弹越容易产生破碎,靶板的贯穿孔越小,孔缘的残余应变越大,靶板的变形性能越好。入射角较小时,由贯穿通道较长,贯穿时间较长,炮弹剩余速度也较小,贯穿难度越大,但是60°倾斜入射比90°垂直入射产生的残余应变更大,破坏更严重。考察炮弹对厚板的垂直侵彻深度:炮弹对SC10靶板和SC05靶板的侵彻深度分别是SC0靶板的57%和80%,即相同初始条件下,靶板材料的V f越高,侵彻深度越小;而且残余应变越大,塑性变形能力越强,吸能效果越好;同时,炮弹速度减小越快,靶板的抗侵彻能力越强。以上结论对工程防护、抗侵彻、抗震塌等有非常重要的指导意义。
As one of the most widely used engineering materials, concrete are characterised by the inherentlow tensile strength and brittleness. Research has shown that high fiber content, large fiberlength-diameter ratio and well-proportioned distribution are beneficial to the strength and toughness ofsteel fiber reinforced concrete(SFRC), which consequently result in excellent anti-blast andanti-penetration performance, and obvious reduction of explosion induced spalling This research aimsat integrating3D braiding technique with SFRC and developing3-D braided steel fiber reinforcedconcrete (3D-BSFC).. Since fibers are not mixed in, fiber content in BSFC is not limited by the mixprocess as in SFRC, and the fiber orientation and distribution can also be designed. Furthermore, asbraided steel fibers can work integrally. It provides a new concrete material with high quality forvarious national defense and civil engineering. This paper obtained the main research results are asfollows:
     The manufacturing procedures of making3D-BSFC include: Layered placement-castingtechnology and three-dimensional skeleton of steel fibers woven-casting technology.Then specimens of3D-BSFC and2D-BSFC with steel fiber volume content (V f) of0(SC0),5%(SC05)and10%(SC10) were prepared, and the mortar volume filling rate was100%.
     Specimens with matrix strength of the C50were tested uniaxially by a multifunctionservo-controlled testing machine under three types of quasi-static low strain rate (10~(-4)s-1and10~(-2)s~(-1)).The whole stress-strain curve, strength, toughness and compression elasticity modulus were obtained.Compressive characteristics of3D-BSFC and influences of steel fiber content and strain rate on thebasic mechanical performances were investigated. The results show that the strength of3D-BSFCaresignificantly increased to3times as the matrix,and the ability of deformation is also improved withcompressive ductility increased to3.87times as the matrix. With the increase of strain rates, strengthand elastic modulus increase10%~30%respectively. At the same time, according to the mechanicalproperties of different fiber volume ratio, different fiber types and different fiber permutation,3D-BSFC is optimized,3D-BSFC specimens with superior performance were prepared.
     Dynamic compressive properties of3D-BSFC specimens were tested by a75mm Split HopkinsonPressure Bar (SHPB), dynamic increasing factors(DIF) and stress-strain relations were obtained underdifferent strain rates, and dynamic failure modes were observed. And the effect of fiber-content andtype of fiber on the dynamic properties of materials were discussed. The results show that, Impactcompressive strength of3D-BSFC had a significant strain rate hardening effect, the impactcompressive strength and elastic modulus increased when the strain rate increased, but the peak straindecreased.The DIF of3D-BSFC and the logarithm of strain rate was double linear function; Thenotable contribution of steel fiber to3D-BSFC was toughening in shock compression, the toughnessbasically increased when the strain rate increased. In the same strain rate, the bigger of steel fibervolume ratio, the greater of the toughness. There is a critical strain rate k between strain rate and theimpact compressive strength of concrete materials, when the strain rate exceeds k, the DIF increasedsignificantly. It was found that the dynamic strain rate critical value of3D-BSFC increased when thestatic compression strength increased. The3D braid steel fiber skeleton played an enhanced role inanti-cracking resistance, effectively limited the destruction of materials under the action of lateral tensile damage.3D-BSFC had ability of strong resistance to dynamic destructive capacities. Shaperemains intact, only a few edge falls off, three-dimensional steel fiber complete still, did not loose.Dynamic strain rate critical value of concrete materials increased when its static compression strengthincreased.
     For the first time, high-speed camera system and SHPB impact experiment system workedtogether, deformation fields and strain fields of specimens in the process of the high-speed impactwere obtained. By analying displacement field and strain field of the3D-BSFC specimens of impactduring compression, the results show that,in the impact process,the displacement field and strain fieldof the specimen along the impact direction is not uniform, and the displacement direction of differentpoints in the same radial cross section of the specimen change over time. Then it was found that frictioneffect, dispersion effect and the inertia effect of experimental impact of SHPB experiments wereunavoidable. In later study, the hardware and software environment would be changed through accurateanalysis of deformation fields and strain field, then the development of SHPB experiments theory ofconcrete materials would also be pushed forward.
     Based on the experimental research work,3D-BSFC dynamic simulation of stress-strain curvecan be achieved by choosing ZWT considering damage constitutive model, The results show that, ZWTconstitutive model can accurately reflect of the the rising phase of dynamic stress-strain curve of the3D-BSFC specimens.
     Using the HJC model, ANSYS/LS-DYNA finite element software was chosen to simulate theprocess of impact and anti-penetration of3D-BSFC. Impact strength of numerical calculation is closeto measured value of experiments, and the effectiveness of experiment is verified from the numericalperspective. Then the process of projectiles penetrating targets of3D-BSFC were simulated, resultsshowed that: when the projectiles went through the targets, under the same initial velocities ofprojectiles and the same thickness of the targets, the higherV fof the targets, the greater decline of thevelocity, the better anti-penetration characteristic, the smaller the shrapnel, the greater residual strain ofthe hole edge, and the better deformation performance of targets; and the smaller the angle of incidencewith the longer distance and duration,the smaller residual velocity, the greater difficulty going through;compared the oblique incidence of60°and the vertical incidence of90°, the former had the greaterresidual strain than the latter, and which produced more serious damage. When the projectiles verticallypenetrated the thick targets, the penetration depth of targets of SC10and SC05were57%and80%ofSC0; as the initial conditions were same, the higherV fof the targets,the smaller the penetrationdepth, the greater the residual strain, the better the plastic deformation performance, the stronger theenergy absorption; the faster the projectile velocity decreases, the stronger the anti-penetrationability.The conclusions above were very important guiding significance for the protection engineering,anti-penetration, and anti-collapse.
引文
[1]过镇海.混凝土的强度和变形:试验基础和本构关系[M].北京:清华大学出版社,1997.
    [2]赵国藩,彭少民,黄承逵等.SFRC结构[M].北京:中国建筑工业出版社,1999.
    [3]卢亦众,SFRC材料及其在路面工程中的应用[J].公路,1999,(4):41-44.
    [4]陈本沛,混凝土结构理论和应用研究的现状与发展[M].大连:大连理工大学出版社,1994.
    [5] R. Narayaman and A. S. Palanjing, Factors influencing the strength of steel fiber reinforcedconcrete[J]. Developments of Fiber Reinforced Cement and Concrete, RILEM Symposium,1986,2:1-9.
    [6]高丹盈,刘建秀,SFRC基本理论[M].北京:科学技术文献出版社,1994.
    [7]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004.
    [8] Naaman A E High Performance of Fiber Reinforced Cementitious Composites[M].
    [9]黄士元,蒋家奋,杨南如,等.近代混凝土技术[M].陕西:陕西科学技术出版社,1998.
    [10]荀勇,李玉寿,佘斌,等.混杂SIFCON弯曲抗拉性能试验研究[J].盐城工学院学报,2000,13(1):32-34.
    [11] Xin Luo, Wei Sun, Sammy Y.N. Chan. Characteristics of high-performance steelfiber-reinforced concrete subject to high velocity impact [J].Cement and Concrete Research,2000,30:907-914.
    [12]刘瑞朝,吴飚,张晓忠,等.高强高含量SFRC抗侵彻性能试验研究[J].爆炸与冲击,2002,22(4):368-372.
    [13] HACKMAN L E,FARRELL M B,DUNHAM O O. Slurry infiltrated mat concrete(SIMCON)[J]. Concr Int,1992,14(12):52–56.
    [14] Land D R.Prepations,properties and Applications of Cement-based Composites CompositesContining5to20Percent Steel Fiber[A].In:Shah S P,Skarendahl A eds.US-Sweden JointSeminar on Steel Fiber Concrete[C]. Swedish Cement&Concrete ReasearchInstitute.Stockholm:1985,199-217.
    [15]沈荣熹.新型纤维增强水泥复合材料研究的进展[J].硅酸盐学报,1993,21(4):356-364.
    [16] Reinhardt H W,Naaman A E eds.High Performance Fiber Reinforced Cement Composites:Workshop Summary,Evaluation,and Recommendations[A].In:Reinhart H W,NaamanA E eds High Performance Fiber Reinforced Cement Composites[C],Proceedings of theInternational RILEM/ACI Workshop.London:E&FN Spon,1992,551-557.
    [17]荀勇,周启兆,沈刘甲.含混杂纤维的注浆纤维混凝土(SIFCON)力学性能及应用[J].混凝土与水泥制品,2000,(4):39-41.
    [18]易成,沈世剑.局部高密度SFRC梁弯曲性能研究[J].工业建筑,1998,28(8):1-5.
    [19]沈荣熹.对四种高性能纤维增强水泥复合材料的评价与展望[J].河南科学,2002,20(6):615-620.
    [20] Murakami H,Jack Y Zeng.Experimental and analytical study of SIMCON tension members[J].Mechanics of Materials,1998,28:181-195.
    [21]孙伟,刘志勇,齐承庆.纤维网片复合方式对纤维增强水泥基材料性能的影响[J].东南大学学报,2003,33(6):767-772.
    [22]孙伟,刘志勇,齐承庆.变应变速率下乱向短纤维与网片复合增强混凝土力学性能的研究[J].建筑技术,2005,36(3):216-218.
    [23] Fanella D A, Naaman A. E.Stess-strain properties of fiber reinforced mortar in compression[J]. ACI Journal,1985,82(4):475~483.
    [24] M. A. Mansur, M S. Chin and T. H. Wee.Stress-strain relationship of confined high-strengthplain and fiber concrete [J]. Journal of Material in Civil Engineering.1997,9(4):171~179.
    [25] M. A. Mansur, M. S. Chin and T. H. Wee.Stess-strain relationship of high-strength fiberconcrete in compression [J]. Journal of Material in Civil Engineering.1999,11(1):21~28.
    [26] Yining Ding, Wolfgang Kusterle. Compressive stress-strain relationship of steel fibrereinforced concrete at early age [J]. Cement and Concrete Research,30(2000):1573~1579.
    [27] K.Ramesh, D R Seshu, M Prabhakar. Constitutive behaviour of confined fibre reinforcedconcrete under axial compression [J]. Cement&Concrete Composites,25(2003):343~350.
    [28]赵国藩,高丹盈,黄承逵.单调荷载作用下SFRC应力应变全曲线试验研究[R].大连:SFRC试验方法编写组,1988,47-58.
    [29] Sun Wei, Yan Yun. Mechanical behavior and interfacial performance of steel fiber reinforcedsilica fume high strength concrete”[J]. Science in China, Series A,1992,35(5):607-617.
    [30]高丹盈.重复荷载下SFRC轴压全曲线的研究[J].水力发电,1994(5):18-22.
    [31]严少华,钱七虎,孙伟等.钢纤维高强混凝土单轴压缩下应力—应变关系[J].东南大学学报(自然科学版),2001,31(2):77-80.
    [32]杨木秋,林泓.混凝土单轴受压受拉应力—应变全曲线的试验研究[J].水利学报,1992(6):60-66.
    [33]赵顺波,孙晓燕,黄承逵.钢纤维高强混凝土基本力学性能试验研究[J].水利学报,2002,增刊:93-99.
    [34] Romualdi J P,Briton G B.Mechanics Cracks Arrest in Concrete[J].ASCE.1963, Vol.89EM3147-168.
    [35] Ramaachandran V S,黄士元,孙复强,王善拔等译.混凝土科学[M].北京:中国建筑工业出版社,1986.
    [36]章文纲,程铁生.SFRC的力学性能及工艺特性[J].混凝土与加筋混凝土1984(4):1-9.
    [37]章文纲,程铁生.SFRC梁正截面强度的试验研究[J].建筑技术通讯(建筑结构)1981(3):
    [38]章文纲,程铁生.装配式框架纤维混凝土齿槽结点[J].建筑结构学报.1995,16(3):52-58.
    [39]关丽秋,赵国藩.SFRC在单向拉仲时的增强机理与破坏形态分析[J].水利学报,1986(9):25-36.
    [40]高路彬,程庆国.一种新的各向同性损伤本构模型及其应用[J].中国铁道科学,1989(2):5-15.
    [41]中国工程建设标准化协会标准.CECS38:92SFRC结构设计与施工规程[S].北京:中国计划出版社,1996.
    [42]中国工程建设标准化协会标准.CECS13:89SFRC试验方法[S].北京:中国计划出版社,1996.
    [43]林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学出版社,2002.
    [44] Watstein D. Effect of straining rate on the compressive strength and elastic properties ofconcrete [J]. ACI Journal,1953,49(8):729-744.
    [45] Atchley B L,Furr H L. Strength and energy absorption capabilities of plain concrete underdynamic and static loading[J].ACI Journal,1967,64(11):745-756.
    [46] Hughes B P,Gregory R. Concrete subjected to high rates if loading in compression[J].Magazine of concrete Research,1972,24(78):25-36.
    [47] Sierakowsi R L, Malvern L E and Doddington H, Hopkinson Bar Tests of Three-Fourths InchDiameter Concrete Specimens [J]. Journal of University of Florida, Gainesvile.1981(1):15-19.
    [48] Tang Tianxi, Malvern L. E. and Jenkins D. A. Rate effects in uniaxial dynamic compressionof concrete [J]. Journal of Engineering Mechanics,1992,118(1):108-124.
    [49] C Allen Ross, Joseph W Tedesco, Steven T Kuennen. Effects of strain rate on concretestrength [J]. ACI Materials Journal,1995,92(1):37-47.
    [50] Han Zhao. A study on testing techniques for concrete-like materials under compressiveimpact loading [J]. Cement and Concrete Composites,1998, Vol.20:293-299.
    [51] Han Zhao. Analysis of High Strain Rate Dynamic Tests On Concrete [C]. In: The5thInternational symposium on Cement and Concrete. Shanghai: Tongji Unversity Press,2002.583-589.
    [52] Gerard Gary, Patrice Bailly. Behaviour of quasi-brittle material at high strain rate.Experiment and modelling [J]. European Journal of Mechanics. A/Solids,1998,17(3):403-420.
    [53] Lok T S, Asce M, Zhao J.Impact response of steel fiber-reinforced concrete using a splitHopkinson pressure bar[J]. Journal of Material in Civil Engineering,2004,16(1):54-59.
    [54] Frew D J, Forrestal M J, Chen W. Pulse Shaping techniques for testing brittle materials with asplit Hopkinson pressure bar[J].Experimental Mechanics,2002,42(1):93-106.
    [55] Lok T S, Zhao P J. Impact response of steel fiber reinforced concrete using a split Hopkinsonpressure bar[J]. Journal of Materials in Civil Engineering,2004,16(1):54-59.
    [56] Gama B A, Lopatnikov S L, Gillespie J W. Hopkinson bar experimental technique:A criticalreview[J]. Applied Mechanics Review,2004,57(4):223-250.
    [57] Lee O S, Kim S H, Han Y H. Thickness effect of pulse shaper on dynamic stress equilibriumand dynamic deformation behavior in the polycarbonate using SHPB technique[J].Experimental Mechanics,2006,21(1):51-60.
    [58] Forrestal M J,Wrightb T W,Chen W. The effect of radial inertia on brittle samples during thesplit Hopkinson pressure bar test[J]. International Journal of Impact Engineering,2007,34:405-411.
    [59]王祥林,王立平,卢东红.多功能SHPB装置及水泥石材料的动态性能研究[J].实验力学,1995,10(2):110-119.
    [60]姜锡权.水泥砂浆静动态力学行为及短纤维增强性能研究[D].[博士学位论文].合肥:中国科学技术大学力学和机械工程系,1996.
    [61]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,2001,18(5):115-118.
    [62]严少华,李志成,王明洋,尹放林.高强SFRC冲击压缩特性试验研究[J].爆炸与冲击,2002,22(3):237-241.
    [63]孟益平,胡时胜.混凝土材料冲击压缩试验中的一些问题[J].实验力学,2003,18(1):108-112.
    [64]巫绪涛,胡时胜,陈德兴,余泽清.钢纤维高强混凝土冲击压缩的试验研究[J].爆炸与冲击,2005,25(2):125-131.
    [65]胡时胜,王道荣.冲击荷载作用下馄凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242.246.
    [66]巫绪涛.钢纤维高强混凝土动态力学性质的研究[D].合肥:中国科学技术博士学位论文,2006,5.
    [67]王礼立,余同希,李永池.冲击动力学进展[M].中国科学技术大学出版社,1992:379-413.
    [68]焦楚杰,孙伟,高培正.钢纤维超高强混凝土动态力学性能[J].工程力学,2006,23(8):85-89.
    [69] Wang Z L, Liu Y S, Shen R F. Stress-strain relationship of steel fiber-reinforced concreteunder dynamic compression[J]. Construction and Building Materials(2007).
    [70]肖大武,胡时胜.SHPB实验试件横截面积不匹配效应的研究[J].爆炸与冲击,2007,27(1):87-90.
    [71]刘飞,赵凯,王肖钧,任辉启.软材料和松散材料SHPB冲击压缩实验方法研究[J].实验力学,2007,22(1):20-26.
    [72]朱钰,王礼立,胡时胜.应变率相关混凝土类材料SHPB试验的若干问题[J].工程力学,2007,24(1):78-87.
    [73]李为民,许金余,沈刘军,李庆.Φ100mmSHPB应力均匀及恒应变率加载实验技术研究[J].振动与冲击,2008,27(2):129-133.
    [74]李为民,许金余.大直径SHPB试验中的波形整形技术研究[J].兵工学报,2009(3):350-355.
    [75] Abrams D A. Effect of rate of application of load on the compressive strength of concrete[J].Journal of ASTM International,1917,17(2):364-377.
    [76] Bhargava J,Rhenstrom A. dymamic strength of polymer modified and fiber-reinforcedconcretes[J]. Comment and Concrete Research,1977,7:199-208.
    [77] Malvern L E,Jenkions D A,Tang T X,etc. Dynamic compressive testing of concrete [A].Proceedings of20d symposium on the International of Non_unclear Munitions withStructures[J]. Florida:Us Department of Defense,1985:194-199.
    [78] Ross C A,Thompson PY,Tedesco J W. Split-Hopkinson pressure bar tests on concrete andmotar in tension and compression[J].ACI Material Journal,1989,86(5):475-481.
    [79] Bischoff P H, Perry S H. Compressive behavior of concrete at high strain rates [J].Materialsand Structures,1991,24:425-450.
    [80] Grote D L,Park SW,Zhou M. Dynamic behavior of concrete at high strain rates andpressures:Ⅰ.Experimental characterization[J].International of Solids and Structures,2003,40:343-360.
    [81] Li Q M, Meng H. About the dynamics strength enhancement of concrete-like materials in asplit Hopkinson pressure bar test[J]. International of Solids and Structures,2003,40:343~360.
    [82] Ragueneau F, Gatuingt F. Inelastic behavior modeling of concrete in low and high strain ratedynamics[J].Computers and Structures,2003,81:1287-1299.
    [83] CEB. Concrete structures under impact and implosive loading, Synthesis report,Bulletind’information No.187(Committee Euro-International du Beton Lausanne,1988).
    [84]董毓利,谢和平,赵鹏.不同应变率下混凝土受压全过程的实验研究及其本构模型.水利学报[J].1997,7:72-77.
    [85] Takeda J,Tachikawa H. The mechanical properties of several kinds of concrete atcompressive, tensile, and flexural tests in high rates of loading (in Japanese)[J]. Trans.Architect. Inst. Jpn1962,No.77:1-6.
    [86] Takeda J, Tachikawa H. Deformatiom and fracture of concrete subjected to dynamic load[A].Proccedings of International Conference on Mechanical Behavior of Material[C].Japan:Kyoto,1971,267-277.
    [87] Rostasy F S, Hartwich K. Compressive strength and deformation of steel fiber reinforcedconcrete under high rate of strain[J].International Journal of Cement CompositesLightweight Concrete,1985,7(1):21-28.
    [88] Ahmad S H, Shah S P. Behavior of hoop confined concrete under high strain rates[J]. AClJournal,1985,82(5):634-647.
    [89] Kvirikadze O P. Determination of the ultimate strength and modulus of deformation ofconcrete at different rates of loading[A]. Proceedings of RILEM International Symposium onTesting ln-Situ Concrete Structure[C].1977,109-117.
    [90] Ban S, Muguruna H. Behavior of plain concrete under dynamic loading with straining ratecomparable to earthquake loading[A]. Proceedings of2nd world conference on earthquakeengineering[C].1960,(3):1979-1993.
    [91] Hughes B P, Watson A J. Compressive strength and ultimate strain of concrete under impactloading[J]. Magazine of Concrete Research,1978,30(105):189-197.
    [92] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under differentstrain rates[J].ACI Journal,1984,81(1):73-81.
    [93] Cowell W L. Dynamic properties of plain Portland cement concrete[A].Technical Report8447[R].California: Naval Civil Engineering Laboratory, Port Hueneme,1966.
    [94] Hatano T, Tsutsumi H. Dynamic compressive deformation and failure of concrete underearthquake load[A]. Proceedings of2nd world conference on earthquakeengineering[C].1960,3:1963-1978.
    [95] Paul F M, Ken P V, Robert A C. Dynamic tensile-compressive behavior of concrete[J].ACIJournal,1985,82(4):484-491.
    [96] Shraddhakar H, Zhenjia S. Strain-rate sensitive behavior of cement paste and mortar incompression[J]. ACI Material Journal,1990,87(5):508-516.
    [97]Fu H C, Erki M A, Seckin M.Review of effects of loading rate on concrete in compression[J].Journal of Structural Engineering,1991,117(12):3645-3659.
    [98] Fu H C, Erki M A, Seckin M. Review of effects of loading rate on reinforced concrete[J].Journal of Structural Engineering,1991,117(12):3660-3679.
    [99] Tedesco J W, Ross C A. Strain-rate-dependent constitutive equations for concrete[J]. ASMEJournal of Pressure Vessel Technology,1998,20(4):398-405.
    [100] Tedesco J W, Powell J C, Ross C A, etal.A strain-rate-dependent concrete material modelfor ADINA[J]. Computers and structures,1997,64(5):1053-1067.
    [101]王道荣.高速侵彻现象的工程分析方法和数值模拟研究(博士学位论文)[D].合肥:中国科学技术大学,2002.
    [102] Donze F V, Magnier S A,Daudeville L. Numerical study of compressive behavior ofconcrete at high strain rates[J].Journal of Engineering Mechanics,1999,25(10):1154-1163.
    [103] Grote D L,S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:Ⅰ Experimental characterization[J].International Journal of Impact Engineering,2001:869-886.
    [104] Bischoff P H, Peny S H. Impact behavior of plain concrete loaded in uniaxialcompression[J]. Journal of Engineering Mechanics Division,ASCE,1995,121(6):685-693.
    [105] Harris D W, Mohorovic C E, Dolen T P. Dynamic properties of mass concrete obtainedfrom dam cores[J]. ACI Material Journal,2000,97:290-296.
    [106] Sukontasukkul P, Nimityongskul P, Mindess S.Effect of loading rate on damage ofconcrete[J].Cement and Concrete Reasearch,2004,34:2127-2134.
    [107] Soroushian P, Choi K B, Abdulaziz A.Dynamic constitutive behavior of concrete[J].ACIJournal,1986,83(26):251-259.
    [108] Mchenry D, Shideler J J. Review of data on effect of speed in mechanical testing ofconcrete[A].Symposium on speed of testing of non-metallic materials[C]. Philadelphia:ASTM Special Technical Publication,1956:72-82.
    [109] Shkolnik I E. Effect of nonlinear response of concrete on its elastic modulus andstrength[J].Cement and Composites,2005,27:747-757.
    [110]严少华,钱七虎,姜锡全.超短钢纤维高强混凝土静力与动力抗压特性对比试验及分析[[J].混凝土与水泥制品,2001,(1):33-35.
    [111] Suaris W, Shah S. Constitutive model for dynamic loading of concrete [J].Journal ofEngineering Structural,1985,(111)563-576.
    [112] Suaris W, Shah S. Strain-rate effects in fiber-reinforced concrete subjected to impact andimpulsive loading[J]. Composites,1982,(13):153-159.
    [113] Scott B T, Park R, Priestley M J N. Stress-strain behavior of concrete confined byoverlapping hoops at low and high strain rates[J]. ACI Journal,1982,79(10):13-27.
    [114] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model of confinedconcrete[J].Journal of Structure Engineering, ASME,1988,114(8):1804-1826.
    [115] Holomquist T J,Johnson G R, Cook W H.A computational constitutive model for concretesubjective to large strains, high strain rates, and high pressures[A]. Jackson N, Dickers S. The14th International Symposium on Ballistics[C].USA:American Defense PreparenessAssociation,1993:591-600.
    [116] Ottosen N S. A failure criterion for concrete [J]. Journal of Engineering MechanicsDivision,ASCE,1977,103:527-535.
    [117] Ottosen N S. Constitutive model for short-time loading of concrete[J]. Journal ofEngineering Mechanics Division, ASCE,1979,105:127-141.
    [118]李庆斌,张楚汉,王光纶.单压状态下混凝土的动力损伤本构模型[J].水利学报,1994,(3):85-89.
    [119]李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型[J].水利学报,1994,(12):55-60.
    [120]李庆斌.混凝土静、动力双剪损伤本构理论[[J].水利学报,1995,,(2):27-34.
    [121]李庆斌,邓宗才,张立翔.考虑初始弹模变化的混凝土动力损伤本构模型[J].清华大学学报,2003,43(8):1088-1091.
    [122] Eibl J,Sehmidt-Hurtienne B.Stress rate sensitive constitutive law of concrete[J]JournalofEngineering Mechanies,ASCE,1999:125(12):1411-420.
    [123] Zheng S, Combe U H, Eibl J. New approach to strain rate sensitivity of concrete inCompression[J].Journal of Engineering Mechanics, ASCE,1999:125(12):1403-1410.
    [124] Chen D N, AI-Hassani S T S, Yin Z H, etal. Rate-dependent constitutive law and nonlocalspallation model for concrete subjected to impact loading[J]. Key Engineering Materials,2000,177-180:261-266.
    [125]陈大年,AI-Hassani S T S,尹志华等.混凝土的冲击特性描述[[J].爆炸与冲击,2001,21(2):89-97.
    [126] Geogrin J F, Reynouard J M. Modeling of structures subjected to impact: concretebehaviour under high strain rate[J].Cement and Concrete Composites,2003,25:131-143.
    [127] Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blast loading[J].International Journal of Solids and Structures,2004,41(1):131-143.
    [128] Deng H, Nemat-Nasser S. Dynamic damage evolution in brittle microcrackingsolids[J]. Mechanics of Material,1992,14:83-103.
    [129] Nemat-Nasser S, Deng H. Strain-rate effect on brittle failure in compression[J]. ActaMetallurgica Et Materialia,1994,42(3):1013-1024.
    [130] Vargas-Loli L M, Fenves G L. Effects of concrete cracking on the earthquake response ofgravity dams[J]. Earthquake Engineering Structural Dynamics,1989,18(4):575-592.
    [131] Chandra D. Dynamic effects on fracture mechanics of cracked solid[J].EngineeringFracture Mechanics,1995,51(5):809-822.
    [132]郑旦,李庆斌.考虑细观缺陷和静力本构的混凝土动力本构模型[[J].清华大学学报,2004,,44(3):410-412.
    [133] Bazant Z P, Asghari A A. Constitutive law for nonlinear creep of concrete[J].Journal ofEngineering Mechanics Division, ASCE,1977,103(1):113-124.
    [134] Bazant Z P, Panula L. Prediction of time-dependent deformation of concrete: Part Ⅰ andPart II[J]. Materials and Structures,1978,11(65):307-328.
    [135] Bazant Z P, Panula L. Prediction of time-dependent deformation of concrete: Part Ⅲ andPart Ⅳ[J]. Materials and Structures,1978,11(66):415-434.
    [136] Bazant Z P, Panula L. Prediction of time-dependent deformation of concrete: Part V andPart VI[J].Materials and Structures,1979,12(69).
    [137] Bazant Z P, Oh B H. Strain-rate effect in rapid triaxial loading of concrete[J].Journal ofEngineering Mechanics Division, ASCE,1982,108(5):764-782.
    [138] Bazant Z P, Gettu R. Rate effects and load relaxation: Static fracture of concrete[J].ACIMaterial Journal,1992,89(5):456-468.
    [139] Bazant Z P, Jirasek M. R-curve modeling of rate and size effects in quasi-brittle fracture[J].International Journal of Fracture,1993,(62):355-373.
    [140] Bazant Z P, Gu W H, Faber K T. Softening reversal and other effects of a change in loadingrate on fracture of concrete[J]. ACI Material Journal,1995,92(1):3-9.
    [141] Bazant Z P, Baweia S. Creep and shrinkage prediction models for analysis and design ofconcrete structures一Model B3[J]. Materials and Structures,1995,28:357-365.
    [142] Bazant Z P, Baweia S. Justification and refinement of Model B3for concrete creep andshrinkage Ⅰ:Statistics and sensitivity[JJ. Materials and Structures,1995,28:415-430.
    [143] Bazant Z P, Baweia S. Justification and refinement of Model B3for concrete creepandshrinkage II:Updating and theoretical basis[J]. Materials and Structures,1995,28:488-495.
    [144] Bazant Z P, Xiang Y, Part P C. Microplane model for concrete I: Stress-strain boundariesand finite strain[J]. Journal of Engineering Mechanics, ASCE,1996,122(3):245-254.
    [145] Bazant Z P, Xiang Y, Adley M D, etal. Microplane model for concrete Ⅱ:Datedelocalization and verification[J]. Journal of Engineering Mechanics, ASCE,1996,122(3):255-262.
    [146] Bazant Z P, Li Y N.Cohesive crack with rate-dependent opening and viscoelasticity I:Mathematical model and scaling[J].International Journal of Fracture,1997,86(3):247-265.
    [147] Bazant Z P, Caner F C, Carol I, etal. Microplane model M4for concrete1:Formulationwith work-conjugate deviatoric stress[J].Journal of Engineering Mechanics,2000,126(9):944-953.
    [148] Bazant Z P, Caner F C, Adley M D, etal. Fracturing rate effect and creep in microplanemodel for dynamics[J]. Journal of Engineering Mechanics,2000,126(9):962-970.
    [149]陈江瑛,黄旭升,王礼立.水泥砂浆的率型损伤演化[[J].中国矿业大学学报,1998,27(2):189-191.
    [150]陈江瑛,王礼立.水泥沙浆的率型本构方程[[J].宁波大学学报,2000,13(2):1-5.
    [151] Park S W, Kim Y R, Schapery R A. A viscoelastic continuum damage model and itsapplication to uniaxial behavior of asphalt concrete[J]. Mechanics of Materials,1996,24:241-255.
    [152]商霖,宁建国.强冲击载荷一下混凝土动态本构关系[J].工程力学,2005,22(2):116-119.
    [153]商霖,宁建国,孙远翔.强冲击载荷作用下钢筋混凝土本构关系的研究[[J].固体力学学报,2005,26(2):175-181.
    [154] Perzyna P. Fundamental prblem in visco-plasticity[J].Advances in Applied mechanics,1966,9:243-377.
    [155] Bicanic N, Zienckiewicz O C. Constitutive model for concrete under dynamicloading[J]. Earthquake Engineering and Structural Dynamics,1983(11):689-711.
    [156] Tashman L, Masad E, Little D, etal. A microstructure-based viscoplastic model for asphaltconcrete[J]. International Journal of Plasticity,2005,21:1659-1685.
    [157]肖诗云,林皋,王哲.Drucker-Prager材料一致率型本构模型[J].工程力学,2003,20(4):147-151.
    [158]肖诗云.混凝土率性本构模型及其在拱坝动力分析中的应用(博士学位论文)[D].大连:大连理工大学,2002.
    [159]肖诗云,林皋,李宏男.混凝土WW三参数率相关动态本构模型[J].计算力学学,2004,21(6):641-646.
    [160]林皋,陈健云,肖诗云.混凝土的动力特性与拱坝的非线性地震响应[J].水利学报,2003,(6):30-36.
    [161]肖诗云,林皋,李宏男.拱坝非线性地震反应分析[[J].地震工程与工程振动,2002,22(4):36-40.
    [162]林皋,闫东明,肖诗云,胡志强.应变速率对混凝土特性及工程结构地震响应的影[J].土木工程学报,2005,38(11):1-8.
    [163]肖诗云,李宏男,杜荣强,林皋.应变率对拱坝地震反应的影响[[J].土木工程学报,2005,38(8):5-9.
    [164] Wang W. Stationary and propagative instabilities in metals-a Computational point of view
    [PhD thesis][D]. Delft University of Technology,1997.
    [165] Burlion N, Gatuingt F, Pijaudier-Cabot G, etal.Compaction and tensile damage in concrete:constitutive modelling and application to dynamic[J].Computer Methods in AppliedMechanics and Engineering,2000,183:291-308.
    [166] Gatuingt F, Pijaudier-Cabot G. Coupled damage and plasticity modelling in transientdynamic analysis of concrete[J]. International Journal for Numerical and Analytical Methodin Geomechanics,2002,26:1-24.
    [167] Gatuingt F, Pijaudier-Cabot G. Coupled Gurson plasticity and damage model for concretestructures indynamics[A].15th ASCE Engineering Mechanics Conference[C].New York:Columbia University,2002,1-8.
    [168] Winnicki A, Pearce C J, Bicanic N. Viscoplastic Hoffman consistency model forconcrete[J]. Computers and Structures,2001,79:7-19.
    [169] Barpi F. Impact behaviour of concrete: a computational approach[J]. Engineering FractureMechanics,2004,71:2197-2213.
    [170]尚晓江,苏建宇,王化锋等,LS-DYNA3D动力分析方法与工程实例[M].中国水利水电出版社,2008.
    [171]白金泽,LS-DYNA3D基础理论与实例分析[M].科学出版社,2005.
    [172] Mouritz A. P. Review of applications for advanced three-dimensional fiber textilecomposites. Composites:Part A30(1999):1445-1461.
    [173] Yunsong L., Lihua L., a, Baozhong S., et al. Transverse impact behavior and energyabsorption of three-dimensional orthogonal hybrid woven composites. Composite Structures81(2007):202–209.
    [174] H. Ma, Q. Fang, B. Ji, H. Yu. Mechanical behavior of3D-BSFC[A]. InternationalConference on Microstructure Related Durability of CementitiousComposites;2008:1513-1518.
    [175] Yunsong L., Lihua L., a, Baozhong S., et al. Transverse impact behavior and energyabsorption of three-dimensional orthogonal hybrid woven composites. Composite Structures81(2007):202–209.
    [176] Sun Wei, Yan Yun. Mechanical behavior and interfacial performance of steel fiberreinforced silica fume high strength concrete. Science in China, Series A,35:607-617.
    [177] Zongjin Li, Bin Mu and T. Y. Paul Chang, et al.Prediction of overall tension behavior ofshort fiber-reinforced composites. International Journal of Solids and Structures.36(1999):4071-4087.
    [178] Reinhardt H W, Naaman A E eds. High Performance Fiber Reinforced CementComposites:Workshop Summary,Evaluation,and Recommendations.In:Reinhart H W,Naaman A E eds High Performance Fiber Reinforced Cement Composites,Proceedings of theInternational RILEM/ACI Workshop.London:E&FN Spon,1992.551-557.
    [179]中华人民共和国建筑行业标准.JG/T3064-1999SFRC [S].北京:中国标准出版社,1999.
    [180]孙伟,陈荣生,黄熙.SFRC路面结构设计与施工规程(草案)[R].见:江苏省交通厅公路局鉴定文件:SFRC路面性能设计与施工的研究.1990.115-118.
    [181]蒙云.SFRC新型路面设计与施工[M].重庆:重庆大学出版社,1995.148-175.
    [182]焦楚杰.高与超高性能钢纤维砼抗冲击和抗爆研究[D].南京:东南大学博士学位论文,2004,8.
    [183]季斌,麻海燕,余红发,程宇.三维编织钢纤维增强渍浆混凝土的受压力学性能研究[J].南京航空航天大学学报,2009,41(5):688-692.
    [184]王礼立.应力波基础第2版[M].北京:国防工业出版社,2005.
    [185] Davies E D,Hunter S C.The dynamic compression testing of solid by the method of thesplit Hopkinson pressure bar[J]. Journal of Mechanics and Physics ofSokids.1963,11(2):155-179.
    [186] Peters W. H, Ranson W. F. Digital Imaging Techniques in Experimental Mechanics[J].Opt.Eng.,1982,21(3):427-431.
    [187] Yamaguchi I, Simplified laser—speckle strain gauge[J].Opt.Eng.,1982,21(3):436-440.
    [188]张育宁,方秦,刘小斌,等.高强高掺量SFRC动力性能的SHPB试验研究[J].混凝土,2006,7(201):32-35.
    [189]孙伟.钢纤维对高强混凝土的增强、增韧及阻裂效应的研究[J].东南大学学报,1991,21(1):50-57.
    [190]唐志平,田兰桥,朱兆祥,王礼立.高应变率下环氧树脂的力学性能研究[C].第二届全国爆炸力学学术会议论文集(第三册),扬州:1981.
    [191]陈江瑛.水泥砂浆的动态力学性能研究[硕士学位论文][D].杭州:浙江大学,1997.
    [192] Albertini C, Cadoni E, Labibes K. Impact Fracture Process and Mechanical Properties ofPlain Concrete by Means of an Hopkinson Bar Bundle[R].Colloque C3,Supplement auLournal de Physique III d’aout1997:915-920.
    [193] Peter H, Bischoff P H, Perry S H. Impact Behaviour of plain concrete loaded in uniaxialcomp ression[J].J Engrg Mech,1995;121(7):685-693.
    [194] G R Johnson, W H Cook. Fracture Characteristics of Three Metals Subjected to VariousStrains, Strain Rates, Temperatures and Pressures [J]. Journal of Engineering FractureMechanics, Vol.21, NO.1, pp.31-48,1985.
    [195]张凤国,李恩征.混凝土撞击损伤模型参数的确定方法[J].弹道学报,2001,13(4):12-16.
    [196]孙善飞,巫绪涛,李和平等.SHPB实验中试样形状和尺寸效应的数值模拟[J].合肥工业大学学报,2008,31(9):1509-1512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700