用户名: 密码: 验证码:
芳纶纤维和芳纶浆粕的结构与芳纶纸特性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳纶纸是由芳纶纤维和芳纶浆粕按一定比例混合抄造而成的特种纤维纸,具有优良的机械性能和耐高温电绝缘性能,广泛用于电气绝缘、航空航天和交通运输等关键领域。高性能芳纶纸是高附加值的电气绝缘纸和结构材料纸,是国家战略性新兴产业重点发展的新材料,其生产技术被美国杜邦公司独家垄断。尽管目前芳纶纸已经国产化,但国产芳纶纸在匀度、强度和色度等方面与杜邦公司的Nomex纸有明显的差距。其主要的原因有两个方面:一是国产芳纶纤维(尤其是芳纶浆粕)本身的性能不是非常适合抄造芳纶纸,另一个原因就是对最优化的芳纶纸微观结构和纤维界面结合状态和机理不太清楚。为了打破高性能芳纶纸生产的技术瓶颈,有必要建立一套有别于传统的植物纤维原料造纸的合成纤维造纸理论,揭示芳纶浆粕纤维结构、热性能、界面结合机理与芳纶纸结构和性能的关系。本研究对芳纶浆粕的结构形态、热性能与芳纶纸结构性能之间的关系进行了深入分析,同时还研究了不同表面改性方法对芳纶纤维表面和芳纶纸结构性能的影响,旨在对适合抄造芳纶纸的芳纶浆粕的结构形态进行分析和表征,对影响芳纶纸强度的主要因素进行评价,阐明芳纶纤维、浆粕在纸张中分布与纸张结构性能的关系,探讨芳纶纤维表面改性方法和芳纶纸界面增强理论,为国内芳纶纤维和芳纶浆粕生产企业提供必要的基础数据和研发目标,为完善纤维表面改性和界面增强技术、优化芳纶纸成形和热压工艺、提高国产芳纶纸质量提供理论及技术支持。
     采用鲍尔筛分仪对芳纶浆粕进行筛分,并用纤维分析仪、比表面分析仪、打浆度仪、X-射线衍射仪(XRD)等对各组分浆粕的平均长度、比表面积、打浆度、结晶度、分子质量等形态和结构进行测定,分析了浆粕形态结构与芳纶纸性能的关系。结果表明,芳纶浆粕呈无定形结构,结晶度很低,提高温度及施加外力会提高芳纶浆粕的结晶度。相对分子质量将影响链段活动性从而影响结晶速度,相对分子质量高的要比相对分子质量低的结晶慢。未热压芳纶纸中芳纶短切纤维与芳纶浆粕之间主要是物理混合,浆粕的表面形态对芳纶纸的强度影响较大,芳纶纸强度随着浆粕比表面积和打浆度的增大而增大,与浆粕分子质量和结晶度关系不大。热压后芳纶纸紧度和强度大幅提高,热压后浆粕结晶度越大的,热压芳纶纸紧度越高,空隙率越低,相应的强度越大。中等分子质量的浆粕较适合配抄高强度的热压芳纶纸。
     利用示差扫描量热法(DSC)测定了芳纶纤维、不同分子质量芳纶浆粕及不同来源芳纶纸的热性能,分析了芳纶纤维、浆粕及芳纶纸的冷结晶行为、共混组分的相容性和热稳定性。结果表明,芳纶纤维、浆粕及芳纶纸的玻璃化转变温度(Tg)均在270℃以上,三者均具有较好的耐热性能。但三者的Tg存在一定的差异,其中芳纶短切纤维的Tg比芳纶浆粕的略高几度,而芳纶纸的Tg介于两者之间。这主要是由于芳纶短切纤维在生产过程中进行了一定程度的拉伸取向,结晶度较高,从而使其Tg增高,而芳纶浆粕的生产加工方法与芳纶短切纤维不同,其结晶度很低,因此其Tg略低。芳纶纸是由芳纶短切纤维与芳纶浆粕以一定比例混合抄制而成的,所以其Tg介于短切纤维与浆粕之间。芳纶纸只出现了一个玻璃化转变温度,这说明芳纶浆粕和芳纶短切纤维在一定程度上是相容的。
     芳纶短切纤维、芳纶浆粕和自制芳纶纸在高于Tg时均会产生冷结晶现象,其中芳纶浆粕的冷结晶温度远高于芳纶短切纤维,而冷结晶放热量低于芳纶短切纤维,说明芳纶浆粕通过冷结晶来提高结晶完善程度的潜力较大一些。芳纶短切纤维、芳纶浆粕和自制芳纶纸的熔融温度(Tm)在430~445℃之间,短切纤维的Tm最高,熔融吸热量最大,芳纶浆粕最小。由于芳纶纸由芳纶浆粕和短切纤维以一定比例混合抄造而成,分子质量分布较宽,吸热反应较缓慢,因此其熔程最长。芳纶浆粕和自制芳纶纸在480~495℃会出现明显的热裂解峰。
     芳纶浆粕的玻璃化转变温度Tg、Tm和热裂解温度(Td)均随着分子质量的增大而提高,其耐热性能与其分子质量及分子质量分布的均匀性密切相关。各种不同分子质量的芳纶浆粕均在385~395℃之间出现冷结晶峰。
     两种国产纸的Tm和熔融吸热量都高于杜邦公司的Nomex纸,即国产芳纶纸的耐热性能优于Nomex纸,但Nomex纸的吸热峰宽△T小于两种国产芳纶纸,说明其分子质量的均一性优于国产芳纶纸,这可能是其物理强度性能优于国产芳纶纸的原因之一。
     利用动态热机械分析仪(DMA)研究自制芳纶纸、杜邦公司的Nomex纸与纯浆粕芳纶纸热压前后的储能模量、损耗模量和损耗因子等参数随温度变化的关系,结合结晶度的变化,研究不同芳纶纸的玻璃化转变、链段松弛等结构差异和变化过程,分析芳纶纤维原料结构、热压工艺对芳纶纸机械性能的影响。结果表明,自制芳纶纸热压前后的Tg均比Nomex纸略高,这说明自制芳纶纸的耐热性能较好,这与所用芳纶纤维和浆粕的分子质量较高有关。但热压前自制芳纶纸的储能模量远远低于Nomex411纸,这一方面与芳纶本身的结晶度相关,另一方面与芳纶纸中短切纤维和浆粕的界面粘合情况有关,较低的初始结晶度和较差的芳纶纤维/浆粕界面粘合是导致自制未热压芳纶纸的储能模量和强度远低于Nomex411纸的根本原因。热压使得自制芳纶纸、Nomex410纸和纯浆粕芳纶纸的模量大幅提高。升温使得芳纶浆粕部分熔融,在压力作用下比表面积增大,与芳纶纤维结合力增强,同时在热压过程中芳纶分子链重排,变得更规整,分子链取向度和结晶度提高,分子间相互作用力增大,从而提高了芳纶纸的模量和物理强度。由于自制未热压芳纶纸中芳纶纤维分布杂乱而无规律,所以在热压后成纸中仍存在一些空隙,芳纶纤维与浆粕的结合不及Nomex410纸紧密,导致自制热压芳纶纸的模量和强度不及Nomex410纸。
     利用各种纸张匀度表征方法分析了芳纶纸匀度、纤维的定向分布等结构特性对纸张性能的影响。结果表明,β射线匀度仪和微扫描匀度仪的匀度表征方法与热压前芳纶纸的物理强度有较好的相关性,未热压芳纶纸的定量标准偏差越大,其抗张强度和撕裂度越小,微扫描法测定出来的匀度指数越高,则未热压芳纶纸的物理强度越大。热压后芳纶纸的抗张强度与定量标准偏差和Paper Perfect Formation (PPF)匀度值的相关性较好,但撕裂度与各种匀度测定结果没有明确的相关性。
     纸张表面小尺寸的云彩花较多对芳纶纸的强度是不利的,而大尺寸云彩花的存在对芳纶纸的强度是有利的。改变芳纶纸的抄造工艺,使更多的浆粕存在于纸张表面,则热压后纸张表面平滑度、质感将会更好,其强度也将更大。
     热压后芳纶纸的抗张挺度取向(TSO)远大于普通的书写、印刷及包装类纸张。两种国产芳纶纸和自制芳纶纸的纵横向抗张挺度指数及抗张挺度指数纵横向比均低于Nomex410纸。国产芳纶纸的模量低是其抗张挺度低的主要原因,而抗张挺度纵横向比低是与成形工艺、热压工艺相关的。改变抄纸工艺和热压工艺,尽可能地改善纤维的取向,同时避免热压时对芳纶纸的过分压紧,对提高芳纶纸纵向抗张挺度指数和抗张挺度指数纵横向比是有益的。
     在相同定量下,自制热压芳纶纸的透气度高于Nomex410纸,而两种国产机制芳纶纸的透气度更高,其紧度反而比Nomex410纸大。采用分层抄造技术,在芳纶纸表面覆盖更多的薄膜状浆粕,有利于提高芳纶纸表面的致密性,降低其透气度,对于改善芳纶纸的强度性能及电气性能是有益的,同时还可提高芳纶纸的平滑度。
     热压过程中芳纶浆粕表面化学结构发生了变化,从而导致芳纶纸白度下降,在芳纶纸中添加含铋的氧化物可抑制热压过程中纸面发生氧化,减轻纸张的返黄,但纸张的抗张强度没有明显变化。
     对芳纶纤维进行不同浓度的磷酸改性、硅烷偶联剂改性、硝化/还原改性和NaOH改性,然后以改性后的芳纶纤维配抄芳纶纸。结果表明,20%的磷酸溶液处理芳纶纤维后,使其表面粗化,纤维表面含氧量提高,改善了芳纶纤维与浆粕间的结合,从而提高了芳纶纸的抗张强度和撕裂度。硅烷偶联剂改性、硝化还原法改性、NaOH改性均不同程度地改善了芳纶纤维与浆粕的结合能力,提高了芳纶纸的物理强度。相比而言,20%的磷酸溶液改性对提高芳纶纸强度效果最好,偶联剂法和NaOH改性法次之,而硝化还原改性对提高芳纶纸的抗张性能和撕裂性能效果较差。
Aramid papers are specialty papers made from aramid fibers and aramidpulp, which are well known for their excellent mechanical properties, hightemperature resistance and electrical insulating property, and are widely used inelectrical insulation, aviation, transportation and other key areas. Highperformance aramid paper is a high value-added electrical insulating paper andstructural material paper, is the strategic new material of our country, but theproduction technology of it is exclusively monopolized by the Dupont Company.Though aramid papers are achieved domestically currently, domestic aramidpapers are obviously weaker in formation, strength and color than Nomex papers.The reasons mainly lie in two aspects: firstly, demestic aramid fiber (especiallyaramid pulp) itself is not quite suitable for making aramid paper; secondly, theoptimum aramid paper microscopic structure and fiber interface bonding stateand mechanism are not very clear, which limits the production technologicalimprovement of high performance aramid paper. To break the technicalbottleneck of high performance aramid paper production, it is necessary toestablish a set of new synthetic fiber papermaking theory which is different fromthe traditional papermaking theory, to reveal the relationship between fiberstructure, thermal properties, interfacial bonding and paper structure, paperproperties. In this research, the relationship between the structure and thermalproperties of aramid pulp and the structure and properties of aramid papers hasbeen analyzed, and the influence of different surface modification methods onthe fiber surface structure and aramid paper structure has also been investigated.The aim is to analyze and characterize the optimum configuration of aramidpulp for making aramid papers, to evaluate the main factors influencing thestrength of aramid paper, to elaborate the relationship between the distribution of aramid fibers and aramid pulp and the structure and properties of aramid paper;to discuss fiber surface modification mechanism and its effect on the interfacialbonding properties, thereby provide necessary basic data and development goalsfor domestic aramid fiber production enterprises, and provide theoretical andtechnical support for improving fiber surface modification and interfaceenhancement technology, as well as for optimizing the forming and hotcalendaring technology of aramid papers to improve their quality.
     Bauer screen was used to screen the aramid pulp, and fiber quality analyzer,BET specific surface area analyzer, Schopper-Riegler beating degree tester,X-Ray Diffraction (XRD) and other methods were used to determine the averagefiber length, specific surface area, beating degree, crystallinity, and molecularweight of aramid pulp, and the relationship between the structure of aramid pulpand the properties of aramid papers was discussed. Results show aramid pulp isamorphous, and has lower crystallinity. Increasing the temperature and exertingpressure can improve the crystallinity of aramid pulp, and the molecular weightof aramid pulp has an effect on the crystallization rate. The crystallization rate ofaramid pulp with higher molecular weight is lower than that of aramid pulp withlower molecular weight. Aramid fibers and aramid pulp in uncalendered aramidpapers are bonded by simple physical blend, so the surface morphology ofaramid pulp is the fundamental determinant of the uncalendered aramid paperstrength, and the strength of uncalendered aramid papers improves with theincrease of specific surface area and beating degree of aramid pulp, however, themolecular weight and crystallinity of aramid pulp have little influence on theuncalendered aramid paper strength. After hot calendaring, the density andstrength of aramid papers are greatly increased, and the higher the crystallinityand density, the lower the porosity, the higher the paper strength. Aramid pulpwith medium molecular weight is suitable for making high strength aramidpaper.
     Differential Scanning Calorimetry (DSC) was used to determine the thermalperformance parameters of aramid fibers, aramid pulp with different molecularweight and aramid papers of different sources, and cold crystallization behavior,component compatibility and thermostability of aramid fibers, aramid pulp andaramid papers were analyzed. Results show that the glass transition temperature (Tg) of aramid fibers, aramid pulp and aramid papers are all higher than270℃,that is, they all have good heat resistance. However, they are different from eachother, and among them, the Tgof aramid fibers is higher that that of aramid pulp,and the Tgof aramid papers is in between. This is because that aramid fibers havehigh crystallinity after stretch orientation in the process of production, butaramid pulp has different process from aramid fibers, and it has low crystallinity.Aramid papers are made from the mixture of aramid fibers and aramid pulp, soits Tgis in between aramid fibers and aramid pulp. Furthermore, aramid papershave only one Tg, which indicates that the two components in aramid papershave good compatibility.
     Cold crystallization peak was also observed in the DSC of aramid fibers,aramid pulp and aramid papers when the temperature is higher than the Tg, andcompared with aramid fibers, aramid pulp has higher cold crystallizationtemperature and lower cold crystal enthalpy, and it indicates that aramid pulp hasgreater potential in increasing crystallinity through cold crystallization. Themelting temperature of aramid fibers, aramid pulp and aramid papers are in therange of430~445℃, and aramid fibers has the highest melting temperature andheat absorption capacity, but aramid pulp has the lowest melting temperature andheat absorption capacity. Because aramid paper is made from aramid fibers andaramid pulp, and it has wider molecular weight distribution, so its endothermicreaction is the slowest and its melting range is the longest. For aramid pulp andself-made aramid paper, there appears obvious pyrolysis peak when thetemperature is in the range of480~495℃.
     The glass transition temperature Tg, melting temperature and pyrolysistemperature of aramid pulp increase with the increase of its molecular weight,which indicates that the heat resistance of aramid pulp is closely related to itsmolecular weight and the uniformity of its molecular weight distribution. Thereare cold crystallization peaks in the temperature range of385~395℃for aramidpulp with different molecular weight.
     The melting temperature and heat absorption capacity of two domesticaramid papers (MetaStarTMand X-Fiper) are higher than that of Nomex papers,that is, the heat resistance of domestic aramid papers are superior to that ofNomex papers. However, Nomex papers have narrower endothermic peak than the two domestic aramid papers, which indicates that Nomex papers have moreuniform molecular weight distribution, and this may be one of the reasons fortheir superior physical strength.
     Dynamic Mechanical Analyzer (DMA) was used to discuss the storagemodulus, loss modulus and loss factor of self-made aramid papers, Nomexpapers and pure aramid pulp paper before and after hot pressing, and to find howthese parameters change with temperature. Combined with the changes incrystallinity, the glass transition, relaxation of the chain segments and otherstructure differences and change process of different aramid papers werediscussed, thereby analyzing the influence of fiber structure and hot pressing onthe physical properties of aramid papers. The results show that the Tgofself-made aramid before and after hot pressing are a little higher than that ofNomex papers, self-made aramid papers have better heat resistance, and thisresults from the higher molecular weight of aramid fibers and aramid pulps.However, the storage modulus of self-made aramid papers before hot pressingare far less than that of Nomex411papers. On the one hand, it is related to thecrystallinity of aramid raw materials, on the other hand, it is related to theinterfacial bonding between aramid fibers and aramid pulp. The lower initialcrystallinity and weaker interfacial bonding make the modulus and strength ofself-made uncalendered aramid papers far lower than that of Nomex papers. Hotpressing significantly improves the modulus of self-made aramid papers, Nomex410papers and pure pulp aramid papers. Heating makes aramid pulp partlymolten, and the specific surface area of aramid pulp increases under the pressure,which increases the interfacial bonding between aramid pulp and fibers.Meanwhile, aramid molecular chains rearrange and become more regular duringhot pressing, which improves the orientation and crystallinity of molecularchains, and increases the molecular interaction, thus improving the modulus andphysical strength of aramid papers. Because fiber distribution in self-madeuncalendered aramid papers is disorderly and irregualarly, after hot pressing,there are still some voids in self-made aramid papers, and the interfacial bondingbetween aramid fibers and pulp in self-made aramid papers is less than that inNomex410papers, which leading to a lower modulus and strength of self-madearamid papers than that of Nomex410papers.
     Various kinds of characterization methods were used to analyze the effectsof paper formation, fiber orientation distribution on paper properties. Resultsshow that β Formation Tester and Micro-scanner Formation Analyzer aresuitable for uncalendered aramid papers, and the paper formation characterizedby these two methods have good relation with the physical strength of aramidpapers. The bigger the basis weight standard deviation of uncalendered aramidsheets, the less the tensile strength and tear strength of them, and the higher theformation index by Micro-scanner formation analyzer, the higher physicalstrength of uncalendered aramid papers. After hot pressing, the tensile strengthof aramid papers have good relations with their basis weight standard deviationand Paper Perfect Formation (PPF) values, but there is no clear correlationbetween the tear strength of aramid papers and their formation determinationresults.
     Small size clouds on the surface of aramid papers is unfavorable to thestrength of aramid papers, while large size clouds on paper surface is beneficialto the strength of aramid papers. Changing papermaking technology andallowing more aramid pulp deposit onto the surface of paper will improve thesurface smoothness and texture of aramid papers, thus improves their physicalstrength.
     Tensile stiffness orientation angle (TSOAngle) of calendered aramid papers isfar larger than that of the common writing paper, printing paper and packagingpaper. The tensile stiffness index in machine direction (TSIMD), tensile stiffnessindex in cross machine direction (TSICD) and TSIMD/CDof two domestic aramidpapers and self-made aramid papers are all lower than that of Nomex410papers.The lower tensile stiffness of domestic aramid papers mainly due to their lowermodulus, and the lower TSIMD/CDof domestic aramid papers relates to theirforming and hot-pressing technology. Changing the papermaking technology andhot-pressing technology to improve the fiber orientation as far as possible andavoiding overcompaction during hot pressing are useful for improving the TSIMDand TSIMD/CDof aramid papers.
     Air permeability of self-made aramid papers, especially air permeability oftwo domestic aramid papers are higher than that of Nomex410papers with thesame basis weight, but the density of Nomex410papers are lower than that of self-made and two domestic aramid papers. Multi-ply forming can let morearamid pulp cover on the surface of aramid paper like a thin film, therebyimproves the surface density of aramid paper and decreases its air permeability,which is beneficial to improve the smoothness, strength property and electricalperformance of aramid papers.
     Hot pressing decreases the whiteness of aramid papers, and surfacefunctional groups change of aramid pulp during hot pressing is perhaps the majorreason. Addition of bismuth oxide or bismuth nitrate into aramid paper caninhibit oxidation and reduce whiteness reversion of aramid paper during hotpressing, however, the tensile strength of aramid paper has no obviously change.
     In this work, surface modification of aramid fibers were performed by usingdifferent consistency of phosphoric acid solution (PA), silane coupling agent(KH-550), nitration/reduction agent and sodium hydroxide solution (NaOH),respectively, and modified aramid fibers were used to make aramid papers witharamid pulp, then the optimal modifying process was studied. Results show thattreatment with20%phosphoric acid solution roughs the surface of aramid fibersand increases the oxygen content of fiber surface, thus improves the interfacialbonding between aramid fibers and aramid pulp and increases the tensile strengthand tear strength of aramid papers. Surface modification of aramid fibers bysilane coupling agent, nitration/reduction agents and NaOH can all increase thebonding between aramid fibers and aramid pulp at a certain extent, and improvethe tensile strength and tear strength of aramid papers. In contrast, surfacemodification with20%phosphoric acid has the best effect on improving thestrength of aramid papers, silane coupling agent and NaOH modification areworse than20%phosphoric acid, but better than nitration/reductionmodification.
引文
[1]高田忠彦,毕鸿章.对位型芳纶的性能及应用[J].高科技纤维与应用,1998,23(6):40-44.
    [2]俞波.对位芳纶的生产和应用技术[DB/OL].http://wenku.baidu.com/view/65c934848762caaedd33d441.html,2006-04-27.
    [3]高启源.高性能芳纶纤维的国内外发展现状[J].化纤与纺织技术,2007,(3):31-36.
    [4]孙茂健,宋西全.我国间位芳纶产业的发展现状及前景[J].纺织导报,2007,(12):65-68.
    [5]陈蕾,胡祖明,刘兆峰.芳纶1313纤维制备技术进展[J].高分子通报,2004,(6):1-8.
    [6]尤秀兰,傅群,刘兆峰.芳纶浆粕纤维的结构性能与应用[J].产业用纺织品,2001,(8):27-29.
    [7]王曙中.芳纶浆粕的现状及其应用前景[J].高科技纤维与应用,2003,28(3):14-17.
    [8]顾超英.概述对位芳纶纤维生产工艺开发与应用[DB/OL].http://wenku.baidu.com/view/9b57b8ed102de2bd96058861.html.2007-04-12.
    [9]顾超英.综述2009-2012年芳纶纤维的生产与扩建情况[DB/OL].http://www.sinotex.cn/news/Html/huaxian-info/huaxiandongtai.2011-3-14.
    [10]王曙中.芳纶浆粕和芳纶纸的发展概况[J].高科技纤维与应用,2009,34(4):15-18.
    [11]杨福萍,刘璐萍.加快间位芳纶纸国产化建设势在必行[J].中国化纤,2009,(7):52-54.
    [12]圣欧集团(中国)有限公司.间位芳纶超美斯绝缘纸[DB/OL].http://www.sro.hk/zh/products/meta-aramid-x-fiper-insulation-paper/x-fiper-paper,2009.
    [13]烟台民士达特种纸业股份有限公司. YT516型主要技术指标[DB/OL].http://www.metastar.cn/product/?type=detail&id=83,2010-4-8.
    [14]烟台民士达特种纸业股份有限公司.YT564型主要技术指标[DB/OL].http://www.metastar.cn/product/?type=detail&id=25,2009-8-12.
    [15] DuPont Nomex. Technical Literature[DB/OL].http://www2.dupont.com/Energy_Solutions/en_US/tech_info/papers.html,2011.
    [16]西鹏,高晶,李文刚.高技术纤维[M].北京:化学工业出版社,2004:84-85.
    [17] Northolt M.G. X-ray diffraction study of poly(p-phenylene terephthalamide) fibres[J].European Polymer Journal,1974,10(9):799-804.
    [18] Piyarat Nimmanpipug, Kohji Tashiro, Yasuhiko Maeda, Orapin Rangsiman. FactorsGoverning the Three-Dimensional Hydrogen Bond Network Structure ofPoly(m-phenylene isophthalamide) and a Series of Its Model Compounds:(1) SystematicClassification of Structures Analyzed by the X-ray Diffraction Method[J]. Journal ofPhysics and Chemistry,2002,106(27):6842-6848.
    [19] Y Rao, A J Waddon, R J Farris. Structure-property relation in poly(p-phenyleneterephthalamide)(PPTA) fibers[J]. Polymer,2001,42(13):5937-5946.
    [20] Y Rao, A J Waddon, R J Farris. The evolution of structure and properties in(poly-phenyleneterephthala mide) fibers[J]. Polymer,2001,42(13):5925-5935.
    [21] Tetsuo Asakura, Joo-Hong Yeo, Makoto Demura. Structural Analysis of UniaxiallyAligned Polymers Using Solid-statel5N-NMR[J]. Macromolecules,1993,6(24):6660-6663.
    [22] Joo-Hong Yeo, Makoto Demura, Tetsuo Asakura, et al. Structural analysis of highlyoriented poly(p-phenylene-terephthalamide) by15N solid-state nuclear magneticresonance[J]. Solid State Nuclear Magnetic Resonance,1994,3(3):209-218.
    [23] Yan Guan, Yi-jun Zheng, Jia-xi Cui, et al. Synthesis and characterization of graftcopolymers based on poly(p-phenylene terephthalamide) backbone and well-definedpolystyrene side chains[J]. Chinese Journal of Polymer Science,2010,28(2):257267.
    [24] Snbtivy D, Vaneso G J, Rutledgy G C. Atomic Force Microscopy of Polymer Crystals:Molecular imaging and study of polymorphism in Poly(p-phenylene terephthalamide)fibers[J]. Macromolecules,1992,25(25):7037-7042.
    [25] Serge Rebouillatt, Jean Baptiste Donnet, Tong Kuan Wang. Surface microstructure of aKevlar aramid fibre studied by direct atomic force microscopy[J]. Polymer,1997,38(9):2245-2249.
    [26] V N Kiya-Oglu, A V Volokhina, S I Banduryan.Effect of the molecular weight ofpoly-para-aramids and structural changes in heat treatment on the mechanical indexes ofthe fibres[J]. Fibre Chemistry,1999,31(3):208-214.
    [27]郯志清,钱咸或,吴小红,等.芳纶1313的结构与性能[J].合成纤维工业,1993,l6(6):18-21.
    [28] Paul Winthrop Morgan. Synthetic polymer fibrid paper[P]. USPatent:2999788,1961-09-12.
    [29] Zhao Tingting, Wang Huaping, Wang Biao. Rheological Behavior of Poly(m-phenyleneisophthalamide) in Ionic Liquid[J]. Polymer Bulletin,2006,5(3):369-375.
    [30] Yayoi Yoshioka, Katsuya Asao, Kazuhiko Yamamoto, Hideki Tachi. New method forfabricating aromatic polyamide particles with a narrow particle size distribution[J].Macromolecular reaction engineering,2007,1(2):222-228.
    [31]尤秀兰,刘兆峰.芳纶浆粕纤维制备技术的研究进展[J].高分子材料科学与工程,2003,19(3):45-48.
    [32] George Conrad Gross, Waynesboro Va. Synthetic paper structures of aromaticpolyamides[P]. US Patent:3756908,1973-10-04.
    [33] Merriman E A. Aramid pulp processing and properties for industrial papers [J].TappiJournal,1984,67(8):66~68.
    [34]王宜,胡健,周雪松,等.芳纶酰胺纸基材料的研究[J].造纸科学与技术,2004,23(6):57-69.
    [35]王习文,詹怀宇,周雪松.造纸用高性能合成纤维浆粕性能的表征[J].中国造纸学报,2005,120(1):18-20.
    [36]孙智华,唐爱民.对位芳纶浆粕结构及性能的表征[J].中国造纸,2008,27(10):22-26.
    [37] Sufeng Zhang, Meiyun Zhang. Direct measurement of the adhesion forces betweenaramid fiber-fibrids surfaces by AFM[C]. Nanjing, ICPPB,2008:929-935.
    [38] Herrera-Franco P J, Drzal L T. Comparsion of methods for the measurement offiber/matrix adhesion in composites[J]. Composties,1992,23(1):2-27.
    [39] Kim J K, Mai Y W. High strength, high fracture toughness fiber composties withinterface control-A review[J].Composites Science and Technonoly,1991,41(4):333-378.
    [40] Bartos P. Analysis of pull-out tests on fibers embedded in brittle matrices[J]. Journal ofMaterials Science,1980,15(12):3122-3128.
    [41] Huang Y D, Zhangf Z Q, Liu L X, et al. Study on Single-Fiber-Pull-Out Method forEvaluating Interfacial Strength in CFRP[J]. High Technology Letters,1995,1(1):105-109.
    [42] Drzal L T, Rich M J, Koenig M F, Lloyd P F. Adhension of graphite fibers to epoxymatrices [J]. Journal of Adhesion,1983,16(22):133-152.
    [43] Mandell J F, Grande D H, Tsiang T H, Mcgarry F J. Modified Microdebonding test fordirect insitu fiber/matrix bond strength determination in fiber composites, CompostieMaterials: Test and Design (Seventh Conference)[C]. ASTM STP893, American Societyfor Testing and Materials, Philadelphia,1986:87-108.
    [44] Wu H F, Claypool C M. An analytical approach of the microbond test method used incharactering the fiber/matrix interface[J]. Journal of Materials Science letter,1991,10(5):269-271.
    [45]黄玉东,魏月贞,张志谦,等.复合材料界面强度微脱粘测定技术的研究[J].宇航学报,1994,15(3):30-34.
    [46]黄玉东,孔宪仁,张志谦,等.纤维/聚合物基体界面性能的原位表征[J].复合材料学报,1995,12(3):83-88.
    [46]黄玉东,张志谦,魏月贞,等.用微脱粘技术表征芳纶纤维材料界面强度[J].材料研究学报,1995,9(4):368-371.
    [48]张志谦,黄玉东,李寅,等.树脂基复合材料界面及界面表征[J].材料科学与工艺,1995,3(1):1-5.
    [49] Cen H, Kang Y L, Lei Z K, et al. Micromechanics analysis of Kevlar-29aramid fiber andepoxy resin microdroplet composite by Micro-Raman spectroscopy [J]. CompositeStructures,2006,75(1-4):532–538.
    [50]刘丽,张翔,黄玉东,等.芳纶表面及界面改性技术的研究现状及发展趋势[J].高科技纤维与应用,2002,27(4):12-16.
    [51]袁海根,曾金芳,杨杰,等.芳纶表面改性研究进展[J].高科技纤维与应用,2005,30(2):27-33.
    [52] Brown J R, Mathys Z.Plasma Surface Modification of Advanced Organic Fibers[J].Journal of Materials Science,1997,32(10):2599-2604.
    [53] Sheu G S, Shyu S S. Surface modification of Kevlar149fibers by gas plasma treatment.Part I. Morphology and surface characterization[J]. Journal of Adhesion Science andTechnology,1994,8(5):531-542
    [54] K. Tamargo-Martínez, A. Martínez-Alonso, M.A. Montes-Morán, J.M.D. Tascón. Effectof oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties ofsingle fiber/epoxy composites studied by Raman spectroscopy[J].Composites Scienceand Technology,2011,71(6):784–790.
    [55] Jia C X, Chen P, Liu W, et al. Surface treatment of aramid fiber by air dielectric barrierdischarge plasma at atmospheric pressure[J]. Applied Surface Science2011,257(9):4165–4170.
    [56]张美云,俞锦红,陆赵情.低温等离子体处理增强芳纶1313纸的机理[J].中国造纸学报,2006,21(3):72-76(EI收录).
    [57] Zhang Y H, Huang Y D, Liu L, et al. Surface modification of aramid fibers with γ-Rayradiation for improving interfacial bonding strength with epoxy resin [J]. Journal ofApplied Polymer Science,2007,106(4):2251-2262.
    [58] Zhang Y H, Huang Y D, Liu L, et al. Effects of γ-ray radiation grafting on aramid fibersand its composites[J]. Applied Surface Science,2008,254(10):3153–3161.
    [59]刘丽,黄玉东,张志谦,等.超声波对F-12/环氧复合材料力学性能的影响[J].复合材料学报,1999,16(1):67-71.
    [60] Liu L, Huang Y D, Zhang Z Q, et al. Ultrasonic modification of aramid fiber–epoxyinterface [J]. Journal of Applied Polymer Science,2001,81(11):2764-2768.
    [61]刘丽,张翔,黄玉东,等.超声作用对芳纶纤维表面性质的影响[J].复合材料学报,2003,20(2):35-40.
    [62]李龙,郭楠.酸处理条件下芳纶纤维的结构与性能[J].西安工程大学学报,2008,22(2):139-142.
    [63]王杨,李鹏,于运花,等.芳纶纤维的磷酸表面处理及其树脂基复合材料界面性能[J].复合材料学报,2007,24(3):7-13.
    [64] Yue C Y, Padmanabhan K. Interfacial studies on surface modified Kevlar fiber/epoxymatrix composite[J] Composites Part B:Engineering,1999,30(2):205-217.
    [65] Lin J S. Effect of surface modification by bromination and metalation on Kevlarfiber-epoxy adhesion[J]. Europea Polymer Journal,2002,38(1):79-86.
    [66] Day R J, Hewson K D, Lovell P A. Surface modification and its effect on the interfacialproperties of model aramid-fibre/epoxy composites[J]. Composites Science andTechnology,2002,62(2):153-166.
    [67] Jin Gyu Kima, Ilbeom Choia, Dai Gil Leea, et al. Flame and silane treatments forimproving the adhesive bonding characteristics of aramid/epoxy composites[J].CompositeStructures,2011,93(11):2696–2705.
    [68]陈晔,顾伯勤,于涛.纤维表面处理对芳纶-预氧化丝混杂纤维增强材料耐温性能的影响[J].润滑与密封,2006(6):8-11.
    [69] Maity J, Jacob C, Das C K, et al. Fluorinated aramid fiber reinforced polypropylenecomposites and their characterization[J]. Polymer Composites,2007,28(4):462-469.
    [70] Maity J, Jacob C, Das C K, et al. Direct fluorination of Twaron fiber and themechanical,thermal and crystallization behavior of short Twaron fiber reinforcedpolypropylene composites[J]. Composites: Part A,2008,39(5):825-833.
    [71] Wu J, Cheng X H. Interfacial studies on the surface modified aramid fiber reinforcedepoxy composites [J].Journal of Applied Polymer Science,2006,102(5):4165-4170.
    [72] Cheng X H, Wu J, Xie C Y. Effect of rare earth elements surface treatment on tensileproperties of aramid fiber-reinforced epoxy composites[J]. Journal of Applied PolymerScience,2004,92(2):1037-1041.
    [73] Wu J, Cheng X.H. Study of interlaminar shear strength of rare earths treated aramid fiberreinforced epoxy composites [J]. Journal of Materials Science,2005,40(4):1043-1045.
    [74]廖颖芳,申明霞,蒋林华,等.改善芳纶与橡胶粘合性能的处理方法[J].高科技纤维与应用,2005,30(3):32-35.
    [75]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21-23.
    [76]申明霞,蒋林华,费传军,等.芳纶纤维与表面处理层界面粘合机理研究[J].橡胶工业,2007,54(8):463-466.
    [77]申明霞,李红香,杨开宇,等.芳纶纤维表面处理与浸渍工艺研究[J].材料开发与应用,2008,23(1):41-44.
    [78] Varelidis P C, Papakostopoulos D G, Pandazis C I, et al. Polyamide Coated KevlarTMFabric in Epoxy Resin:Mechanical Properties and Moisture Absorption Studies[J].Composites: Part A,2000,31(6):549-558.
    [79]朱诚身.聚合物结构分析[M].北京:科学出版社,2004.
    [80] Brown J R, Ennis B C. Thermal analysis of Nomex and Kevlar Fibers[J]. TextileResearch Journal,1977,47(1):62-66.
    [81] Kunugi T, Watanabe H, Hashimoto M. Dynamic mechanical properties ofpoly(pphenylenetere phthalamide) fiber[J]. Journal of Applied Polymer science,1979,24(4):1039-1051.
    [82] Hindeleh A M, Abdo Sh M. Effects of annealing on the crystallinity andmicroparacrystallite size of Kevlar49fibres[J]. Polymer,1989,30(2):218-224.
    [83] Hindeleh A M, Abdo Sh M. Relationship between crystalline structure and mechanicalproperties in Kevlar49fibres[J]. Polymer Communications,1989,30(6):184-186.
    [84] Anjana Jain, Kalyani Vijayan. Kevalr49fiber: Thermal expansion coefficients from hightemperature X-ray data.[J].Current Science,2000,78(3):331-335.
    [85] JW Downing Jr, JA Newell.Characterization of structural changes in thermally enhancedKevlar-29fiber[J].Journal of Applied Polymer Science,2004,91(1):417-424.
    [86] Anjana Jain, Kalyani Vijayan. Thermally induced structural changes in Nomex fibres [J].Bulletin Materals Science,2002,25(4):341–346.
    [87] S Villar-Rodil, A Mart′nez-Alonso, J M D Tasco′n.Studies on pyrolysis of Nomexpolyaramid fibers[J].Journal of Analytical and Applied Pyrolysis,2001,58(59):105-115.
    [88] S Villar-Rodil, J I Paredes, A Mart′nez-Alonso, et al. Atomic Force Microscopy andInfrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers[J].Chemistry Materials,2001,13(11):4297-4304.
    [89] S Villar-Rodil, J I Paredes, A Martinez-Alonso, et al.Combining thermal analysis withother techniques to monitor the decomposition of poly(m-phenylene isophthalamide)[J].Journal of Thermal Analysis and Calorimetry,2002,70(1):37-43.
    [90] K E Perepelkin, E A Pakshver, I V Andreeva.Thermal characteristics of high-strengthand thermostable aromatic fibres[J].Fibre Chemistry,2005,37(5):346-351.
    [91]赵稼祥.美国Kevlar布性能测试分析[J].纤维复合材料,1994,11(2):32-39.
    [92]余荣华.芳纶1414的结构和性能[J].合成纤维,1990,19(4):24-29.
    [93] Wen Yang, Hao Yu, Meifang Zhu. Poly(m-Phenylene Isophthalamide) Ultrafine Fibersfrom an Ionic Liquid Solution by Dry-Jet-Wet-Electrospinning[J]. Journal ofMacromolecular Science: Physics,2006,45(4):573-579.
    [94] Li X G, Huang M R. Thermal degradation of Kevlar fiber by high-resolutionthermogravimetry [J]. Journal of Applied Polymer Science,1999,71(4):565-571.
    [95]陆赵情.芳纶1313纤维造纸技术研究及产品开发[D].西安:陕西科技大学,2004.
    [96]何方,张美云,张素风.热压光对纸基芳纶纤维结构的影响[J].陕西科技大学学报,2008,26(1):34-37.
    [97]何方,张美云,张素风.纸基芳纶纤维结构与热裂解性能研究[J].中华纸业,2008,29(18):25-28.
    [98] Chen X D, HouG, Chen Y J, et al.Effect of molecular weight on crystallization, meltingbehavior and morphology of poly(trimethylene terephalate)[J].Polymer Testing,2007,26(2):144-153.
    [99] J Ferguson, B Mahapatro.Pyrolysis studies on polyacrylonitrile fibres: Influence ofconditions and molecular weight on tensile property changes during the initial stages ofpyrolysis[J]. Fibre Science and Technology,1978,11(1):55-66.
    [100] Roberto J Cano, Brian J Jensen. Effect of molecular weight on processing and adhesiveproperties of the phenylethynyl-terminated polyimide LARCTM-PETI-5[J]. Journal ofAdhesion,1997,60(1):113-123.
    [101] Daniel Harwood, Hroshi Aoki. Solution and Rheological of Poly (mphenyleneisophtalamide) in Dimethylacetamide/LiCl [J].Journal of Applied Polymer Science,1979,23(7):2155-2168.
    [102] Han Sik Yoon. Synthesis of fibres by growth-packing[J]. Nature,1987,326:580-582.
    [103] Thmos I. Bair; Paul W.Morgan. Optically anisotropic spinning Dopes ofpolycarbonamides [P]. US Patent:3673143,1972.
    [104] Han Sik Yoon.Tae W Son. Highly oriented aromatic polyamide short fibers[P]. USPatent:4511623,1985.
    [105] Roland T.Brierre, Stephan C. De La Veaux, James E. Geary, et al. Method for producingpara-aramid pulp[P]. US Patent:5028372,1991-07-02.
    [106]刘雄军,佘万能,何晓东.芳纶纤维的合成方法及纺丝工艺的研究[J].化工技术与开发,2006,35(7):14-18.
    [107]戴信飞,曹煜彤,尤秀兰,等.合成方法对共缩聚PPTA比浓对数粘度的影响[J].合成纤维工业,2005,28(3):28-31.
    [108]赵玮,胡盼盼,王新威,等.聚对苯酰胺浆粕的制备[J].合成纤维,2006,(5):1-3.
    [109] GB/T2678.1-1993,纸浆筛分测定方法[S].北京:全国造纸工业标准化委员会,1993.
    [110] GB/T23175.6-2008,造纸纤维长度测定[S].北京:全国造纸工业标准化委员会,2008.
    [111]莫志深,张宏放.X射线衍射法测定聚合物结晶度[J].高分子材料科学与工程,1988(3):9-20.
    [112]许聚良,鄢文,吴大军.XRD分峰拟合法测定炭材料的石墨化度和结晶度[J].武汉科技大学学报,2009,32(5):522-525.
    [113]范雄,源可珊.高聚物结晶度的X射线衍射测定[J].理化检验物理分册,1998,34(12):17-19.
    [114]裴光文等.单晶、多晶和非晶物质的X射线衍射[M].济南:山东大学出版社,1989.
    [115] GB.T19587-2004,气体吸附BET法测定固态物质比表面积[S].北京:全国有色金属标准化委员会,2004.
    [116] T410om-02. Grammage of Paper and Paperboard (Weight Per Unit Area)[S]. USA:TAPPI,2002.
    [117] T411om-97Thickness (Caliper) of Paper, Paperboard, and Combined Board [S]. USA:TAPPI,1997.
    [118] T494om-01Tensile Properties of Paper and Paperboard (Using Constant Rate ofElongation Apparatus)[S]. USA: TAPPI,2001.
    [119] T414om-04.Internal Tearing Resistance of Paper (Elmendorf-Type Method)[S]. USA:TAPPI,2004.
    [120] ASTM D2734-09.Standard test Methods for Void Content of Reinforced Plastics.[S].USA: ASTM,2009.
    [121]卢谦和.造纸原理与工程[M].北京:中国轻工业出版社,2004.
    [122] T Kuroki,Y Tanaka, T Hokudoh, et al. Heat Resistence Properities of Poly(p-phenylene-2,6-benzobisoxazole) Fiber[J]. Journal of Applied Polymer Science,1997,65(5):1031-1036.
    [123]李金宝,张美云,修慧娟.热压工艺对芳香族聚酰胺纤维纸性能的影响[J].纸和造纸,2007,26(3):30-32.
    [124]刘振海,徐国华,张洪林,等.热分析与量热仪及其应用[M].北京:化学工业出版社,2011:12-13.
    [125] Guang Ming Cai, Wei Dong Yu. Study on the thermal degradation of high performancefibers by TG/FTIR and Py-GC/MS[J]. Journal of thermal Analysis Calorimetry,2011,104(2):757-763.
    [126] Hong Ting Zhang. Comparison and analysis of thermal degradation process of aramidfibers(Kevlar49and Nomex)[J]. Journal of Fiber Bioengineering and Informatics,2010,3(3):163-167.
    [127]王郗,李莉,陈宁,等.山梨醇改性聚乙烯醇体系的氢键作用及对水状态的影响[J].高等学校化学学报,2012,33(4):813-817.
    [128]刘振海,畠山立子,陈学思,等.聚合物量热测定[M].北京:化学工业出版社,2002:117-118.
    [129]郭明,宋传虎,卢迪,等.羟丙基纤维素接枝甲基丙烯酸丁酯共聚物的合成与表征[J].浙江农林大学学报,2011,28(1):132-138.
    [130] M J Jenkins, K L Harrison. The effect of molecular weight on the crystallization kineticsof polycaprolactone[J]. Polymer for Advanced Technologies,2006,17(6):474-478.
    [131] Chen Xudong, Hou Gong, Chen Yujun, et al. Effect of molecular weight oncrystallization, melting behavior and morphology of poly(trimethylene terephalate)[J].Polymer Testing,2007,26(2):144-153.
    [132] Xue-Song Wang, Deyue Yain, Guo-Hua Tian, et al.Effect of molecular weight oncrystallization and melting of poly(trimethylene terephthalate).1: Isothermal anddynamic crystallization[J]. Polymer Engineering&Science,2001,41(10):1655–1664.
    [133] Antonio marigo, Caria Marega, Valerio Causin, et al. Influence of thermal treatments,molecular weight distribution on the crystallization of bisotactic polypropylene[J].Journal of Applied Polymer Science,2004,91(2):1008-1012.
    [134]胡开堂.纸页的结构与性能[M].北京:中国轻工业出版社,2006:46-47.
    [135]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003:400-413.
    [136]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:34-35.
    [137]胡健,黄一磊,郑炽嵩,等.Nomex纸基复合材料[J].造纸科学与技术,2003,22(4):29-31.
    [138] V Frosini, G Levita and E Butta. Dynamic mechanical and broad line nuclear magneticresonance behaviour of some aromatic polyamides[J]. Polymer Engineering and ScienceB,1979,19(1):56-62.
    [139] Polyakova A, Stepanov E. V, Sekelik D, et al. Effect of crystallization on oxygen-barrierproperties of copolyesters based on ethylene terephthalate[J]. Journal of Polymer Science:Part B: Polymer Physical,2001,39(16):1911-1919.
    [140] Hesler Lee James. Molded aramid sheets[P].USPatent:5998309,1999-12-07.
    [141] Bhatia A. Aramid papers with improved dimensional stability[C]. Proceedings of theElectrical/Electronics Insulation Conference, Rosemont,1995:18-20.
    [142]何方.芳纶纤维结构特点与成纸性能之间的关系研究[D].西安:陕西科技大学,2008.
    [143] K Haraguchi, T Kajiyama and M Takayanagi. Dynamic Mechanical Properties ofPoly(p-phenyleneterephthalamide) Fiber[M].Sen-I Gakkaishi,1977,33, T-535.
    [144] Ashida M, Noguchi T. Effect of Matrix’s Type on the Dynamic Properties for ShortFiber Elastomer Composite[J]. Journal of Applied Polymer Science,1985,30(3):1011-1021.
    [145] Luis Ibarra, David Panos. Dynamic Properties of Thermoplastics Butadiene-Styrene(SBS) and Oxidized Short Carbon Fiber Composite Materials[J]. Journal of AppliedPolymer Science,1998,67:1819-1826.
    [146] Lyne M B and Hazell R. Formation testing as a mean of monitoring strengthuniformity[C]. The Fundamental Properties of Paper Related to its Uses, Transactions ofthe Cambridge Symposium, ed. BPBIF,1976,(1):75-103.
    [147] Norman B, and Wahren D. Mass distribution and sheet properties of paper[C].TheFundamental Properties of Paper Related to its Uses, Transactions of the CambridgeSymposium, ed. BPBIF,1976,(1):7-73.
    [148] Bernié J-Ph and Douglas W J M. Paper strength-paper formation relations [C].84thCPPA Technical Section Annual Conference, Montreal,1998:A330-332.
    [149] Bernié J-Ph, Romanetti J L and Douglas W J M. Use of components of formation forpredicting print quality and physical properties of newsprint[C].86th meeting, Pulp&Paper Technical Association of Canada, Montréal,2000:285-291.
    [150] Bernié J-Ph and Douglas W J M. Exploration of the print quality-paper formationrelation [C].1997Tappi Process&Product Quality Conference&Trade Fair,Jacksonville, FL,1997:73-77.
    [151] Bernié J–Ph and Douglas W J M. Local grammage distribution and formation of paperby light transmission image analysis [J].Tappi Journal,1996,79(1):193.
    [152] Heintze H U and Rutland D F. Visual scale quality correlates with small-scale opacitychange[J]. Pulp and Paper of Canada,1978,79(3): T102.
    [153]阎东波,刘焕彬.纸页匀度的一种表征方法[J].中国造纸,1997,16(6):6-11.
    [154]阎东波,李军,何北海,等.纸页匀度的测量[J].广东造纸,1999(5):109-111.
    [155]杨仁党,陈克复.分散剂在薄页纸生产中的应用[J].广东造纸,1997(1):43-44.
    [156]俞锦红,张美云.PEO在芳纶1313纤维纸页中应用的研究[J].上海造纸,2006,37(2):39-41.
    [157]孙广卫,何北海,侯轶,等.纸页抗张挺度测定仪的原理及应用[J].造纸科学与技术,2003,22(6):101-104.
    [158] Gunnar Lindblad and Thomas Fürst. The Ultrasonic measuring Technology on Paperand Board[M]. Lorentzen&Wettre,2001.
    [159]李世雄.TSO仪的测试原理、方法及其在纸张质量控制中的应用[J].江苏造纸,2003(4):21-27.
    [160]北京丹贝尔仪器有限公司[DB/OL].http://www.danbell.com/product/show_product.asp?id=286&bigclassname=制浆造纸&smallclassname=纸和纸板检测
    [161]北京丹贝尔仪器有限公司[DB/OL].http://www.danbell.com/product/show_product.asp?id=199&bigclassname=制浆造纸&smallclassname=纸和纸板检测
    [162]北京丹贝尔仪器有限公司[DB/OL]. http://www.danbell.com/product/show
    [163]王海毅,王晖,王冬生,等.抗张挺度取向角和抗张挺度指数对纸张尺寸稳定性的影响[J].纸和造纸,2008,27(1):61-64.
    [164]张素风.芳纶纤维/浆粕界面及结构与成纸性能相关性研究[D].西安:陕西科技大学,2010.
    [165]孙才英,王红,董春梅.氧化铋对环状膦酸酯阻燃棉织物的协效阻燃抑烟作用[J].精细化工,2011,28(12):1212-1217,1243.
    [166]吴娜,刘国胜,苗贤,等.氧化铋在膨胀阻燃聚丙烯体系中的催化协效作用[J].高分子材料科学与工程,2009,25(6):63-66.
    [167]夏纪勇,唐谟堂.纳米超细氧化铋的制备及其在阻燃剂方面的应用前景[J].现代化工,2008,28(6):89-91.
    [168]李金宝.高性能芳纶纤维纸基材料的研究[D].西安:陕西科技大学硕士学位论文,2005.
    [169]张素风,朱光云,张美云.芳纶纤维与浆粕材料界面结构的TEM表征[J].中华纸业,2011,32(14):11-14.
    [170] Sufeng Zhang, Meiyun Zhang, Kecheng Li. Adhesion characteristics of aramidfibre-fibrids in a sheet hot calendering process [J]. Appita Journal,2010,63(1):58-64(SCI、EI收录).
    [171] Sufeng Zhang, Meiyun Zhang, Kecheng Li. Adhesion force between aramid fibre andaramid fibrid by AFM [J]. Polymer bulletin,2011,66(3):351-362(SCI、EI收录).
    [172] Sufeng Zhang, Meiyun Zhang, Yangyu Wu. Characteristic of aramid fibre/fibrids andtheir properties for sheet making [J]. Nordic Pulp and Paper Research Journal,2010,25(4):488-494(SCI、EI收录).
    [173]何方,张美云,张素风.芳纶纤维/浆粕表面能及其复合纸性能[J].复合材料学报,2008,25(4):62-67(EI收录).
    [174]李涛,张美云,路金杯,等.芳纶纸的动态热力学性质研究[J].造纸科学与技术,2010,29(5):15-17.
    [175] Huifang Zhao, Meiyun Zhang, Sufeng Zhang, Jinbei Lu. Influence of FiberCharacteristics and Manufacturing Process on the Structure and Properties of AramidPaper[J]. Polymer-Plastics Technology and Engineering,2012,51(2):134-139(SCI、EI收录).
    [176]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003:281-338.
    [177] A. Godara, L. Gorbatikh, G. Kalinka, et al. Interfacial shear strength of a glassfiber/epoxy bonding in composites modified with carbon nanotubes[J]. CompositesScience and Technology,2010,70(9):1346–1352.
    [178] Zheng Liu, Xinhua Yuan, Alison J. Beck, et al. Analysis of a modified microbond testfor the measurement of interfacial shear strength of an aqueous-based adhesive and apolyamide fibre[J]. Composites Science and Technology,2011,71(13):1529–1534.
    [179] Yang L, Thomason J L. Interface strength in glass fibre–polypropylene measured usingthe fibre pull-out and microbond methods[J]. Composites Part A: Applied Science andManufacturing,2010,41(9):1077-1083.
    [180] Soo-Keun Kang, Deok-Bo Lee, Nak-Sam Choi. Fiber/epoxy interfacial shear strengthmeasured by the microdroplet test[J]. Composites Science and Technology,2009,69(2):245-251.
    [181] Balint Morlin, Tibor Czigany. Cylinder test: Development of a new microbond method[J]. Polymer Testing,2012,31(1):164-170.
    [182] Nak-Sam Choi, Joo-Eon Park. Fiber/matrix interfacial shear strength measured by aquasi-disk microbond specimen[J].Composites Science and Technology,2009,69(10):1615-1622.
    [183] Liu L, Huang Y D, Zhang Z Q, et al. Ultrasonic treatment of aramid fiber surface and itseffect on the interface of aramid/epoxy composites[J]. Applied Surface Science,2008,254(9):2594–2599.
    [184] Liu T M, Zheng Y S, Hu J. Surface modification of aramid fibers with new chemicalmethod for improving interfacial bonding strength with epoxy resin[J].Journal of AppliedPolymer Science,2010,118(5):2541-2552.
    [185] Li G, Zhang C, Wang Y, et al. Interface correlation and toughness matching ofphosphoric acid functionalized Kevlar fiber and epoxy matrix for filament windingcomposites[J]. Composites Science and Technology,2008,68(15-16):3208–3214.
    [186]张素凤,朱光云,刘文,等.芳纶纤维表面改性对粘附功与成纸强度性能的影响[J].中华纸业,2011,32(18):43-47.
    [187] Lin T K, W S J, Lai J G, et al. The effect of chemical treatment on reinforcement/martirx interaction in Kevlar-fiber/bismaleimide composites[J]. Composites Scienceand Technology,2000,60(9):1873-1878.
    [188] Ramazan B, Tesoro C G. Effect of surface-limited reaction on the properties of Kevlarfibers [J].Textile Research Journal,1990,60(6):334-344.
    [189]金辉,张爱玲,刘洋,等.国内外芳纶纤维表面改性的研究进展[J].材料导报,2007,2(5):6-10.
    [190]周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000:167-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700