用户名: 密码: 验证码:
复杂动力学网络与混沌系统的控制与同步
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先简单介绍了混沌和复杂网络的控制和同步研究的起源、现状和典型方法;然后研究了一些复杂动力学网络模型和混沌系统的控制与同步问题。内容包括单向耦合网络的追踪控制、自适应耦合网络的同步、自适应脉冲微扰法控制多个混沌系统从混沌运动到低周期运动、驱动无耦合R?ssler混沌系统达到脉冲同步、参数不匹配的统一混沌系统的滑模控制同步、脉冲方法实现混沌系统的广义同步及广义同步化流形的H?lder连续性。具体的研究工作概括如下:
     (1)利用Lyapunov稳定性理论,针对单向耦合网络联接的Lorenz系统,设计一种追踪控制方案。只对网络系统的一个结点加入控制器,就实现了单向耦合网络联接的Lorenz系统的单个输出变量对任意给定参考信号的追踪。
     (2)提出了关于平衡点的渐近稳定性一个新概念——平衡点的分量导出渐近稳定性;构造了一种自适应耦合联接的复杂网络。一般来说,要实现复杂动力学网络的同步化非常困难,往往需要网络的耦合强度系数非常大,特别是当网络的结点较多时。但我们利用著名的LaSalle不变原理,证明了只要自适应耦合强度系数为正数,这种自适应耦合的复杂动力网络就可以达到同步。值得指出的是这里只对网络中每一个作为结点的动力学系统的第一个状态方程作了自适应耦合,其余状态方程均没有任何形式的耦合。
     (3)选择脉冲微扰控制下的系统的某个变量为输入变量,设计一种新的自适应控制器,对多个混沌系统进行脉冲微扰,引导这些系统从混沌运动到低周期运动,实现同时控制多个混沌系统到不同的周期态。当选择相同的输入变量实施脉冲微扰时,还可控制多个混沌系统达到周期态同步。
     (4)选取适当的外部信号脉冲驱动两个无耦合的R?ssler混沌系统的参数,实现了控制混沌的目的。利用脉冲微分方程理论,从理论上证明了这种无耦合R?ssler混沌系统可以实现同步。注意到这里两个混沌系统不需要耦合即可实现同步,由于在实际中有些系统之间是很难甚至是不可能被耦合在一起的,因而这样的控制方法在实际操作中更实用、更易实现,期望这种新的控制方法能有更好的应用。
     (5)采用滑模控制技术,设计了一种新的自适应滑模控制器,实现了参数不匹配的统一混沌系统的同步化。所作的理论分析和计算机仿真都有力地证明了这种新的控制方法的有效性。
     (6)给出了两个完全不同的混沌动力系统实现脉冲广义同步的充分条件,并提出了一个通过构造响应系统实现其与驱动系统脉冲广义同步的一般方法。借助Lyapunov稳定性理论,证明了该脉冲广义同步的稳定性。
     (7)从理论上严格证明了两个不同的混沌系统线性耦合时能实现广义同步化,在一定条件下广义同步化流形是H?lder连续的。采用的思想是Temam的无穷维动力系统的惯性流形理论的改进。在线性耦合下两个混沌系统具有吸收集和吸引子的基础上,通过定义一个函数类上的映射满足Schauder不动点定理,得到了具有不变性的广义同步化流形,还证明了线性耦合下两个混沌系统存在分数维的指数吸引子,指数吸引子与广义同步流形的交集具有指数吸引性。
     本文对所有研究的问题给出了数值仿真例子,仿真结果均很好地验证了相应的理论分析结果。
Firstly in this dissertation, a brief introduction to the historical backgrounds of chaos and complex networks, research progress and typical methods for chaotic control and synchronization are given. Then this dissertation is devoted to the study on control and synchronization for some network models and chaotic systems. The research included tracking control of unidirectional coupling network, synchronization in complex networks with adaptive coupling, control chaos to low-period motion based on adaptive pulse perturbation, impulsive synchronization of uncoupled chaotic systems driven by an external signal, chaos synchronization induced by sliding-mode control for chaotic systems with parameter mismatches, generalized synchronization via impulsive control and H?lder continuity for generalized synchronization manifolds. The detail research results focuse mainly on the followings:
     (1) Based on Lyapunov stability theory, a tracking controller is designed for the tracking control of Lorenz systems in unidirectional coupling network. A controller is put to only one node of this network, then it can be realized that some output signals of this network approach to any desired orbit.
     (2) A new concept about the asymptotic stability of balance point, component leading asymptotic stability, is presented. A new kind model of complex networks with adaptive coupling is constructed. Generally it is very difficult to realize synchronization for some complex networks. In order to synchronize, the coupling strength coefficient of networks has to be very large, especially when the number of coupled nodes is larger. However we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize as long as the coupling strength coefficient is positive. Moreover it is noted that there is a couple only between the first state equations for each node of the network.
     (3) A new controller is designed, which input variable comes from some state variable of a pulse perturbed chaotic system, to direct many chaotic systems towards low-period motions via adaptive pulse perturbing. Many chaotic systems can be controlled to be different periodic orbits simultaneously. When the same input state variable of the controller is used, many chaotic systems can be controlled to be different periodic synchronizations.
     (4) In oreder to synchronize two uncoupled systems, a new method is designed that is to drive impulsively the parameters of two uncoupled R?ssler systems via using external chaotic signal. By using the existing results of impulsive control theory, it is proved theoretically that chaotic and periodic synchronizations can be implemented. The key point is that there is no couple between two chaotic systems, in practice, sometimes it is difficult even impossible to couple two chaotic systems. So it is more useful and easier to realize in practice, and hope have better application.
     (5) Using the sliding mode control technique, a new adaptively control law is established which realizes the synchronization of two unified chaotic systems with parameter mismatches. Both theoretical analysis and illustrative examples have been presented to verify the validity of the developed control scheme.
     (6) A sufficient condition for the occurrence of impulsively generalized synchronization of two completely different dynamical systems is given. Moreover a method of constructing a response system to achieve impulsively generalized synchronization with drive system is presented. By using Lyapunov theory, the stability of this impulsively generalized synchronization is demonstrated.
     (7) It is also proved theoretically that generalized synchronization can occur in two linear coupled dynamical systems, and the generalized synchronization manifolds are H?lder continuous under certain conditions. By using Temam’s amended interial manifolds theory. Under the presumption that two linear coupled systems have attractor and the basin of attraction, the existence of generalized synchronization manifold can be attained by Schauder’s Fixed-Point Theorem via defining a map over a functional category. This kind of manifold has positive invariant property. It is also proved that there is an exponential attractor with a fraction number dimension. The intersection set of a H?lder continuous inertial manifold and an exponential attractor has exponential attraction.
     For all the above theoretical results, we proposed numerical simulations which verity the corresponding theoretical results.
引文
1 Poincare J H.科学与方法[M].郑太朴译.上海:商务印书馆,1933
    2 Kolmogorov A N.在具有小改变量的哈密顿函数中条件周期运动的保持性[C].国际数学会议.阿姆斯特丹. 1954
    3 Lorenz E N. Deterministic non-periodic flow [J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141
    4 Ruelle D, Takens F. On the nature of turbulence [J]. Common Mathematics Physics, 1971, 20 (1): 167-192
    5 Li T Y, Yorke J A. Period three implies chaos [J]. American Mathematical Monthly, 1975, 82: 985-992
    6 Mandelbrot B B.分形对象—形、机遇和维数[M].文志英等译.北京:世界图文出版公司,1999
    7 Feigenbaum M J. Quantitative university for a class of nonlinear transformations [J]. Journal of Statistical Physics, 1978, 19(1): 25-52
    8 Packard N H, Crutchified J P, Farmer J D, et al. Geometry from a time series [J]. Physical Review Letters, 1980, 45(6): 712-716
    9 Grassberger P, Procaccia I. Charaterization of strange attractors [J]. Physical Review Letters, 1983, 50: 448-451
    10 Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Physical Review Letters, 1990, 64: 1196-1199
    11 Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64: 821-824
    12 Hao B L. Chaos [M]. Singapore: World Scientific, 1984
    13 Hao B L. Chaos II [M]. Singapore: World Scientific, 1990
    14郝柏林.分岔、浑沌、奇怪吸引子、湍流及其它[J].物理学进展, 1983, 3(3): 329-416
    15刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社, 1995
    16王光瑞,于熙龄,陈式刚.混沌控制、同步与应用[M].北京:国防工业出版社, 2001
    17吕金虎.一个统一混沌系统及其研究[D].北京:中国科学院研究生院(数学与系统科学研究院)博士学位论文,2002
    18吕金虎,陆君安,陈士华.混沌时间序列分析及应用[M].武汉:武汉大学出版社,2002
    19刘延柱,陈立群.非线性动力学[M].上海:上海交通大学出版社, 2000
    20 Hénon M. A two-dimensional mapping with a strange attractor [J]. Commun Math Phys, 1976, 50: 69-77
    21 Li C, Chen G. Chaos and hyperchaos in the fractional-order R?ssler equations [J]. Physica A, 2004, 341: 55-61
    22 Yu X. Controlling Lorenz chaos [J]. Int J Syst Sci, 1996, 27(4): 355-359
    23 Madan R N. Chua’s Circuit: A paradigm for chaos [M]. Singapore: World Scientific, 1993
    24 Chen G, Ueta T. Yet another chaotic attractor [J]. Int J Bifurcation chaos, 1990, 9(7): 1465-1466
    25 Day R H. The emergence of chaos from classical economic growth [J]. Quarterly Journal of Econimics, 1983, 97(2): 201-213
    26 Devaney R. An introduction to chaotic dynamical systems [M]. New York: Addison-Wesley Publishing Company, 1989
    27 John G, Philip H. Nonlinear oscillations [J], Dynamical systems and bifurcations of vector fields. 1983, 166-211
    28 Huberman B A, Lumer E. Dynamics of adaptive systems [J]. IEEE Trans CAS, 1990, 37: 547
    29 Sinha S, Ramaswamy R, Rao J. Adaptive control in nonlinear dynamics [J]. Physica D, 1990, 43: 118-128
    30 Pyragas K. Continuous control of chaos by self-controlling feedback [J]. Physics Letters A, 1992, 170: 421-428
    31 Guemez J, Matias M A. Control of chaos in unidimensional maps [J]. Physics Letters A, 1993, 182: 29
    32 Rulkov N F, Sushchik M M, Tsimring L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems [J]. Phys Rev E, 1995, 51: 980-994
    33 Kocarev L, Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J]. Phys Rev Lett, 1996, 76: 1816-1819
    34 Abarbanel H D I, Rulkov N F, Sushchik M M. Generalized synchronization ofchaos: The auxiliary system approach [J]. Phys Rev E, 1996, 53: 4528-4535
    35 Zhang G, Liu Z R, Ma Z J. Generalized synchronization of different dimensional chaotic dynamical systems [J]. Chaos, Solitons & Fractals, 2007, 32(2): 773-779
    36 Yan J P, Li C P. Generalized projective synchronization of a unified chaotic system [J]. Chaos, Solitons & Fractals, 2005, 26(4): 1119-1124
    37 Hu M F, Xu Z Y, Zhang R, et al. Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems [J]. Physics Letters A, 2007, 361(3): 231-237
    38 Roseblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic oscillators [J]. Phys Rev Lett, 1996, 76: 1804-1807
    39 Rosa E R, Ott E, Hess M H. Transition to Phase synchronization of chaos[J]. Phys Rev Lett, 1998, 80: 1642-1645
    40 Roseblum M G, Pikovsky A S, Kurths J. From phase to lag synchronization in coupled chaotic oscillators [J]. Phys Rev Lett, 1997, 78: 4193-4196
    41 Boccaletti S, Valladarees D L. Characterization of intermittent lag synchronization [J]. Phys Rev E, 2000, 62: 7497-7500
    42 Ma Z J, Liu Z R, Zhang G. A new method to realize cluster synchronization in connected chaotic networks [J]. Chaos, 2006, 023103
    43 Huygens C. Horoloqium oscillatorium [M]. France: Paris, 1673
    44 Pecora L M, Carroll T L. Driving systems with chaotic signals [J]. Phys Rev A, 1991, 44: 2374-2383
    45 Kocarev L, Parlitz U. General approach for chaotic synchronization with applications to communication [J]. Phys Rev Lett, 1995, 74: 5208-5031
    46 Pyragas K, Predictable chaos in slightly perturbed unpredictable chaotic systems [J]. Phys Lett A, 1993, 181(3): 203-210
    47 Zanette D H, Mikhailov A S. Condensation in globally coupled populations of chaotic dynamical systems [J]. Phys Rev E, 1998, 57: 276-281
    48 Wang C C, Su J P. A new adaptive variable structure control for chaotic synchronization and secure communication [J]. Chaos, Solitons & Fractals, 2004, 20: 967-977
    49 Lu Z, Shieh L S, Chandra J. Tracking control of nonlinear systems: a sliding mode design via chaotic optimization [J]. Int. J. Bifurcation and chaos, 2004, 14(4): 1343-1355
    50 Khadra A, Liu X Z, Shen X M. Application of impulsive synchronization tocommunication security [J]. IEEE Trans. Circuits Syst., 2003, 50(3): 341-351
    51 Alexander E H, Alexey A K. An approach to chaotic synchronization [J]. Chaos, 2004, 14(3): 603-610
    52 Wu X F, Chen G R, Cai J P. Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control [J]. Physica D, 2007, 229: 52-80
    53 Watts D J, Strogatz S H. Collective dynamics of small world networks. Nature, 1998, 393: 440-442
    54 Erd?s P, Rényi A. On the evolution of random graphs [J]. Publ. Math. Inst. Hung. Acad. Sci, 1960, 5: 17-60
    55 Newman M E J, Watts D J. Renormalization group analysis of the small-world network model [J]. Phys Lett A, 1999, 263: 341-346
    56 Newman M E J, Watts D J. Scaling and percolation in the small-world network model [J]. Phys Rev E, 1999, 60: 7332-7342
    57 Baralási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks [J]. Physica A, 1999, 272: 173-187
    58 Moore P K, Horsthemke W. Localized patterns in homogeneous networks of diffusively coupled reactors [J]. Physica D, 2005, 206: 121-144
    59 Chen G, Zhou J, Liu Z. Global synchronization of coupled delayed neural networks and applications to chaotic models [J]. Int J Bifurc Chaos, 2004, 14: 2229-2240
    60 Zeng Z, Wang J. Completely stability of cellular neural networks with time-varying delays [J]. IEEE Trans. Circuits Syst.-I, 2006, 53(4): 944-955
    61 Zhou J, Chen T. Synchronization in general complex delayed dynamical networks [J]. IEEE Trans Circuits Syst-I, 2006, 53(3): 733-744
    62 Li C, Chen G, Liao X, et al. Chaos quasisynchronization induced by impulses with parameter mismatches [J]. Chaos, 2006, 16: 023102
    63 Cao J D, Li P, Wang W W. Global synchronization in arrays of delayed neural networks with constant and delayed coupling [J]. Phys Lett A, 2006, 353: 318-325
    64 Lu W, Chen T. New approach to synchronization analysis of linearly coupled ordinary differential systems [J]. Physica D, 2006, 213: 214-230
    65 Lu W, Chen T. Synchronization of coupled connected neural networks with delays [J]. IEEE Trans Circuits Syst-I, 2004, 51(12): 2491-2503
    66 Wang X F, Chen G R. Synchronization in small-world dynamical networks [J]. Int J Bifurc Chaos, 2002, 12: 187-192
    67 Watts D J. Small Worlds: The Dynamics of Networks between Order and Randomness [M]. Princeton: Princeton University Press, 1999
    68 Gade P M, Hu C K. Synchronous chaos in coupled map with small-world interactions [J]. Phys Rev E, 2000, 62(5): 6409-6413
    69 Wu C W, Chua L O. Synchronization in an array of linearly coupled dynamical systems [J]. IEEE Trans Circuits Syst-I, 1995, 42(8): 430-447
    70 Wang X F, Chen G. Synchronization in scale-free dynamical networks: Robustness and Fragility [J]. IEEE Trans Circuits Syst-I, 2002, 49: 54-62
    71 Li X, Jin Y Y, Chen G R. Complexity and synchronization of the World trade Web [J]. Physica A, 2003, 328: 287-296
    72 Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium [J]. IEEE Trans Circuits Syst-I, 2004, 51(10): 2074-2087
    73 Chen T P, Liu X W, Liu W L. Pinning complex networks by a single controller [DB]. arXiv:math-ph/0601030 v2, 2006, 28 Feb
    74 Li C G, Chen G R. Phase synchronization in small-world networks of chaotic oscillators [J]. Physica A, 2004, 341: 73-79
    75陈士华,谢进,陆君安等. R?ssler混沌系统的追踪控制与同步[J].物理学报, 2002, 51(4): 749-752
    76伍维根,古天祥.混沌系统的非线性反馈跟踪控制[J].物理学报, 2000, 49(10): 1922-1925
    77张家树,肖先赐.连续混沌系统的非线性自适应预测跟踪控制[J].物理学报, 2001, 50(11): 2092-2096
    78 Li Z, Chen G R, Shi S J, et al. Robust adaptive tracking control for a class of uncertain chaotic systems [J]. Phys Lett A, 2003, 310(1): 40-43
    79李建芬,林辉,李农.基于追踪控制的混沌异结构同步[J].物理学报, 2006, 55(8): 3992-3996
    80 Chien T I, Liao T L. Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization [J]. Chaos, Solitons & Fractals, 2005, 24: 241-255
    81 Skufka J D, Bollt E M. Communication and synchronization in disconnected networks with dynamic topology: moving neighborhood networks [J]. MathBiosci, 2004 1(2): 347
    82 Stilwell D J, Bollt E M, Roberson D G. Sufficient conditions for fast switching synchronization in time-varying network Topologies [J]. Society for Industrial and Applied Mathematics, 2006, 5(1): 140–156
    83 Amritkar R E, Hu C K. Synchronized state of coupled dynamics on time-varying networks [J]. Chaos, 2006, 16: 015117
    84 LüJ H, Chen G R, Zhang S, et al. Controlling in between the Lorenz and the Chen systems [J]. Int J of Bifur Chaos, 2002, 12: 1417-1422
    85 Matías M A, Güémez J. Stabilization of chaos by proportional pulses in the system variables [J]. Phys Rev Lett, 1994, 72(10): 1455-1458
    86 Yang L, Liu Z R. An improvement and proof of OGY method [J]. Applied Mathematics and Mechanics, 1998, 19: 1-8
    87 Braiman Y, Goldhirsch I. Taming chaotic dynamics with weak periodic perturbations [J]. Phys Rev Lett, 1991, 66(20): 2545-2548
    88杨世平,牛海燕,田钢等.用驱动参量法实现混沌系统的同步[J].物理学报, 2001, 50(4): 619-623
    89 Yang T, Yang C M, Yang L B. Control of R?ssler system to periodic motions using impulsive control methods [J]. Phys Lett A, 1997, 232: 356-361
    90闵富红,须文波,徐振源.用多凹槽滤波器控制混沌系统[J].物理学报, 2002, 51(8): 1690-1695
    91 Cai C H, Xu Z Y, Xu W B 2002 Automatica 38: 1927
    92闵富红,徐振源,须文波.利用x|x|控制混沌系统[J].物理学报, 2003, 52(6): 1360-1364
    93李丽香,彭海朋,卢辉斌. Hénon混沌系统的追踪控制与同步[J].物理学报, 2001, 50(4): 629-632
    94王兴元,石其江. R?ssle混沌系统的追踪控制[J].物理学报, 2005, 54(12): 5591-5596
    95龚礼华.基于自适应脉冲微扰实现混沌控制的研究[J].物理学报, 2005, 54(8): 3502-3507
    96 Schweizer J, Kennedy M P. Synchronized chaotic circuits [J]. Phys Rev E, 1995, 52: 4865-4879
    97 Stojanovski T, Kocarev L, Parlitz U. Driving and synchronizing by chao icimpulses [J]. Phys Rev E, 1996, 54: 2128 - 2131
    98 Yang T, Chua L O. Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication [J]. Int J Bifurc Chaos, 1997, 7(3): 645-664
    99 Yang T, Yang L B, Yang C M. Impulsive control of Lorenz system [J]. Phys D, 1997, 110(1-2): 18-24
    100 Li Z G, Wen C Y, Soh Y C. Analysis and design of impulsive control systems [J]. Automatic Control, IEEE Transactions on, 2001, 46(6): 894-897
    101 Sun J T, Zhang Y P. Impulsive control of R?ssler systems [J]. Phys Lett A, 2003, 306
    102 Hung J Y, Gao W, Hung J C. Variable structure control: a survey [J]. IEEE Trans Ind Electron, 1993, 40: 2–22.
    103 Slotine J E, Li W. Applied nonlinear control [M]. New Jersey: Prentice Hall, 1991
    104 Utkin V I. Variable structure systems with sliding modes [J]. IEEE Trans Autom Control, 1997, 22: 212–222
    105 Utkin V I. Variable structure systems and sliding mode-state of the art assessment. In: Young KD, editor. Variable structure control for robotics and aerospace applications [C]. Elsevier, Amsterdam, 1993
    106 Yau H T, Kuo C L, Yan J J. Fuzzy sliding mode control for a class of chaos synchronization with uncertainties [J]. International Journal of Sciences and Numerical Simulation, 2006, 7(3): 333-338
    107 Zhang Q, Chen S H, Hua Y M, et al. Synchronizing the noise-perturbed unified chaotic system by sliding mode control [J]. Physica A, 2006, 371: 317–324
    108 Wang X Y, Liu M. Sliding mode control for the synchronization of master-slaver chaotic systems with sector nonlinear input [J]. Acta Physica Sinica, 2005, 54: 2584-2589
    109 Yan J J, Yang Y S, Chiang T Y, et al. Robust synchronization of unified chaotic systems via sliding mode control [J]. Chaos, Solitons & Fractals, 2007. 34: 947-954
    110 Chiang T Y, Hung M L, Yan J J, et al. Sliding mode control for uncertain unified chaotic systems with input nonlinearity. Chaos, Solitons & Fractals, 2007, 34: 437-442
    111 LüJ H, Chen G R, Cheng D Z, et al. Bridge the gap between the Lorenz system and the Chen system [J]. Int J Bifurcat Chaos, 2002, 12: 2917–2926
    112 Yang X S, Chen G R. Some observer-based criteria for discrete-time generalized chaos synchronization [J]. Chaos, Solitons & Fractals, 2002, 13: 1303-1308
    113 Yang T, Chua L O. Generalized synchronization of chaos via linear transformations [J]. Int J Bifurc Chaos, 1999, 9: 215-219
    114 Kittel A, Parisi J, Pyragas K. Generalized synchronization of chaos in electronic circuit experiments [J]. Physica D, 1998, 112: 459-471
    115 Lu J G, Xi Y G. Linear generalized synchronization of continuous-time chaotic systems [J]. Chaos, Solitons & Fractals, 2003, 17: 825-831
    116 Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations[M]. World Scientific Pub. Co. Singapore, 1995
    117 Hunt B R, Ott E, Yorke J A. Differentiable Generalized Synchronization of Chaos [J]. Phys Rev E, 1997, 55(4): 4029-4034
    118李芳,胡爱花,徐振源.两个不相同系统的广义同步化[J].物理学报, 2006, 55(2): 590-597
    119 Temam R. Infinite dimensional system in mechanics and physics [M]. Appel. Math. Series. New York: Springer-verlag, 1988, 68
    120王柔怀,伍卓群.常微分方程讲义[M].北京:人民教育出版社, 1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700