用户名: 密码: 验证码:
反转双涡轮灯泡贯流水轮机设计及流动干涉控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灯泡贯流式水轮机原本是为利用低落差水能而开发的,但是近年来清洁能源的需求不断增加,业界渴望超梯度地提高其动力性能并期待其高落差化。但是由于比转速的限制,很难做到大幅度地提高使用落差至20m/45MW以上等级。本文开发研制了新型反转双涡轮灯泡贯流式水轮机组,可以超梯度增加落差应用范围且大出力化,但是有必要进行如何有效地控制双涡轮动翼间欧拉能量的干涉为最小的研究。
     第二章是为本研究作准备,通过对15m/34MW级单涡轮灯泡贯流式水轮机进行定常流动解析研究了性能预测法,并提出了水力设计新方法。流动解析中在涡轮进口、出口等处设定了内部数值流动界面,能够精确地评价由欧拉能量表示的水力损失,还可以进行静止的活动导叶与转动的涡轮、涡轮与尾水管间的干涉研究,为平稳运行获得最优控制。于模型试验之前通过上述数值解析,可以数值预测可动翼活动导叶与可动翼涡轮最优配合的on-cam性能,能大幅度减少高昂耗时的模型试验。文中还提出了活动导叶、转轮、尾水管最佳配合条件下优化设计涡轮叶片的新设计法。为开发研究反转双涡轮贯流水轮机奠定了必要的基础。
     第三章中代替传统灯泡贯流水轮机的活动导叶设计了前涡轮,前后涡轮反向旋转。为了设计双涡轮灯泡贯流水轮机,从数值上布置了三个内部流动界面:前涡轮入口滑移界面、前后涡轮间的反转滑移界面及后涡轮出口的出口滑移界面,基于三个内部界面上的速度三角形基本原理,研究了在相同设计流量条件下,两个涡轮平均分担落差和出力的设计。结果,在尺寸不变的情况下,双涡轮总落差和出力一举增至传统单涡轮灯泡贯流水轮机的两倍。在相同设计落差条件下,后涡轮的落差可以减少一半,反转双涡轮灯泡贯流式水轮机的下挖深度也较传统灯泡贯流水轮机减少。
     第四章设计了新型的30m/68MW级双涡轮灯泡贯流水轮机。进行了全流道定常流动数值解析,解析结果表现出前、后涡轮间反转滑移界面上的欧拉能量干涉程度较大,主要是因为前后涡轮负荷设计欠缺公平的结果。提出了翼负荷公平度可由前、后涡轮结合进行数值评估的方法。
     第五章提出了两涡轮翼负荷公平设计的新理念及设计方法。为了寻求前、后涡轮欧拉能量需求及交换的合理平衡,优化了翼负荷以确保欧拉能量从轮毂到轮缘的合理分配。运用负荷公平设计优化了新的前、后涡轮,通过定常流动解析证实了反转滑移界面上的欧拉能量干涉程度最小。为了平稳地控制双涡轮灯泡贯流水轮机的运行,预测了前后涡轮可动翼角度的最优配合即on-cam协联工况。继而成功地进行了非定常流动数值解析,得到了压力脉动只为各落差的2%程度左右的最优控制结果。
     所做的研究为可动翼反转双涡轮优化设计及流动分析提供了理论依据,有助于在反转双涡轮可动翼协联工况平稳控制下,不增加机组尺寸和下挖深度,而达到使用水头、出力倍增至40m/90MW的等级水平。
Bulb turbines are originally developed for the low head application. With increasing demand of clean sustainable power, it is urgent to expand their applicable range toward a higher head for the larger power. It is difficult, however, to expand the applicable limit toward higher heads than the 20m/45MW class with the single-stage runner due to the limit of the specific speed. A new bulb turbine having the counter-rotating double-runner was researched in this dissertation, in order to substantially expand the applicable limit toward higher heads with larger power. The research required to minimizing the Euler energy interference between the frontal and rear runners with the optimum control of the adjustable vanes to secure a smooth operation.
     In Chapter 2, as a preliminary study, a method of performance prediction was investigated with the steady flow analysis, followed by a new method of hydraulic design of a 15m/34MW class conventional bulb turbine (BT). By providing the numerical inner interfaces at the runner inlet and outlet etc, the flow Euler energies with hydraulic loss were precisely evaluated. The flow interference between the stationary guide vanes and the rotating runner, as well as the runner and the draft tube was also investigated through the flow on the inner interfaces, to find the optimum control for a smooth operation. As a result, the on-cam performance at the optimum combination of adjustable guide vanes and adjustable runner vanes was numerically predicted before the experimental model test of time consuming. Based on the above basis of flow analysis, a new method of designing an advanced runner vane was created by optimizing the flow through the guide vanes, runner and draft tube. In conclusion, the preliminary preparation was established for the new design of counter-rotating double runner bulb turbine.
     In Chapters 3, a new idea of counter-rotating double-runner bulb turbine (DRT) was established by replacing the stationary guide vanes to a frontal runner (DR_f) rotating in anti-clockwise against the rear runner (DR_r) of clockwise rotation. Three inner interfaces were numerically provided to design the DRT: the inlet sliding interface in front of DR_f, the counter-sliding interface between DR_f and DR_r, and the outlet sliding interface at the exit of DR_r. A basis theory of velocity triangles was established on the three inner interfaces to share the even head and output power by the two runners under the given design discharge. As a result, the total head and output power of DRT was doubled, at a stroke without changing the unit size, compared with the conventional BT. If the given design head is unchanged, as the head for DR_r is reduced to a half, the excavating depth for a new DRT can be reduced to a half for the conventional BT.
     In Chapters 4, a new DRT of 30m/68MW class was designed according to the method established. The steady flow analysis of the DRT revealed that, on the counter-sliding interface between DR_f and DR_r, the Euler energy interference was not small due to the unfair blade loading from hub to tip of both runners. A quantitative evaluation method of fairness in blade loading was proposed for the combination of DR_f and DR_r.
     In Chapter 5, a new idea of fair blade-loading design method was established to both runners. As the result of adjusting a logical balance of supply and demand for Euler energies to DR_f and DR_r, the blade loading was optimized to keep the equilibrium of Euler energy from hub to tip. New DR_f and DR_r were optimized with the fair loading design. The steady flow analysis verified the minimum interference of Euler energy on the counter-sliding interface. The on-cam setting angles of adjustable DR_f and DR_r were predicted to control the operation of DRT smoothly. By the numerical unsteady flow analysis, the pressure fluctuations were less than 2 % of runner head under the optimum control of both runners.
     In conclusion, this research provided a theoretical basis for the optimal design and the flow analysis of the adjustable-vane counter-rotating double-runner bulb turbines. It is feasible to double the limit of applicable head/power to the 40m/90MW class without increasing the turbine size and the excavation depth under the smooth control of counter-rotating frontal/rear runners with the on-cam combination of adjustable runner vanes.
引文
[1]张超,陈武.关于我国2050年水电能源发展战略的思考[J].北京理工大学学报(社会科学版), 2002,51(4):63-66
    [2]郑守仁.我国水能资源开发利用及环境与生态保护问题探讨[J].中国工程科学, 2006.06
    [3]马一太,邢英丽.我国水力发电的现状和前景[J].能源工程,2003,4: 1-3
    [4]胡永平.水力发电前景和趋势[J].科技天地, 2005:44
    [5]陆佑楣.我国水电开发和可持续发展[J].水力发电,2005,31(2): 1-4
    [6]高季章.中国水力发电现状问题和政策建议[J].中国能源,2002, 8:4-6
    [7]韩凤琴,金元敏明.正反转双涡轮水轮机水力性能研究[J].水电能源科学, 2006,24(5):37-39.
    [8]金元敏明,韩凤琴,等.安装气动变矩器的新型涡扇发动机前扇页内流动研究[C]. 2006工程热物理与流体亚洲国际会议(Asian Joint Workshop on Thermophysics and Fluid Science 2006),中国曲阜,2006.6
    [9]韩凤琴,黄积业,范春学,等.混流式水轮机导水机构二重叶栅的流动[J].华南理工大学学报,2005,Vol. 8 33,20-22
    [10]韩凤琴,余颖,等.转轮出流和尾水管入流的动态干涉[J].工程热物理学报. 2009, Vol.30 No.1 P.65-68
    [11]韩凤琴,陈林刚,桂中华,久保田乔.基于小波包提取尾水管水压脉动特征的研究[J].水电能源科学,2005(1)
    [12]黄金树.洪江灯泡贯流式水轮机性能与运行状况分析[J].水电站机电技术, 2009(04)
    [13]韩凤琴,久保田乔.混流式水轮机整体三维粘性解析——最高效率点的流动[J].大电机技术,2000(2): 56-60
    [14]程良骏主编.水轮机[M].第1版.北京:机械工业出版社,1981:1-360
    [15]史振声主编.水轮机. [M].第1版.水利电力出版社,1991.7
    [16]郑源,鞠小明,程云山主编.水轮机. [M].第1版.中国水利水电出版社,2007.4
    [17]吴玉林主编.流体机械及工程[M].北京:中国环境科学出版社,2005: 1-394
    [18]汤毅强.灯泡贯流式和轴伸贯流式水轮机的发展现状[J].东方电气评论,1990,4(4):274-278
    [19]韩凤琴,占志英,吴家声,杨栗晶,等.水轮机比水能数值预测法研究[J].水电科学能源. 2008,4
    [20]谢蓉,单玉姣,王晓放.混流泵叶轮流动性能数值模拟和叶型优化设计[J].排灌机械工程学报, 2010,28 (4): 295-299
    [21]肖惠民,于波.水轮机动静干涉的非定常流动数值模拟[J].大电机技术, 2009. No 5: 33-37
    [22] Roger Lawrence. The identification of opportunities to improve pump system maintenance and reduce system energy losses[C]//IEEE Conference Record of Annual Pulp and Paper Industry Technical Conference, 2009: 139-144
    [23] Yuan Shouqi, Ni Yongyan, Pang Zhongyong. Unsteady turbulent simulation and pressure fluctuation analysis for centrifugal pumps[J]. Chinese Journal of Mechanical Engineering, 2009, 22(1): 1- 6
    [24]韩风琴,黄乐平,杨栗晶,等.可调节活动导叶形状解析[J].工程热物理学报, 2010,31(2): 263-266
    [25]吴家声,欧清树,韩风琴,等.贯流式水轮机协联工况数值预测[J].水电能源科学, 2009,27 (3) : 141-143
    [26] SHEN Na, HAN Fengqin, KUBOTA T.Prediction of Euler energy at channel outlet of runner[C]. Asia-Pacific Power and Energy Engineering Conference(APPEEC 2009,IEEE), Wuhan, IEEE2009: l-4
    [27]吴克启,蔡兆林,区颖达.翼型斜流叶轮的叶形修正方法[J].华中科技大学学报(自然科学版),1987,(04)
    [28]赖喜德.基于性能预测的水轮机更新改造水力优化[J].西华大学学报(自然科学版),2010,29(2):156-163
    [29]陈晓山,宋文武,杨文全.灯泡混流式水轮机的研究与设计[J].大电机技术,2004,1: 41-45
    [30]王正伟,周凌九,陈炎光,等.灯泡贯流式水轮机水力损失分析[J].大电机技术,2004,5:40-43
    [31]吴家声,欧清树,韩凤琴,等.贯流式水轮机协联工况数值预测[J].水电能源科学,2009,27(3):141-143
    [32]马启锋,韩凤琴,安源,等.小弦节比贯流水轮机On-Cam开度设计[J].水电能源科学,2010, 28(1):116-117,156
    [33] Kanemoto et al. Intelligent Wind Turbine Generator with Tandem Rotors Applicable to Offshore Wind Farm [R]. Proc15th International Offshore and Polar Engineering Conference and exhibition, 2005, Vol. 1, Seoul, Korea, pp. 457-462
    [34] Toshiaki KANEMOTO and Ahmed Mohanmed GALAL. Development of intelligent Wind Turbine Generator with Tandem Wind Rotors and Double Rotational Armatures [J]. JSME. Series B,Vol.49, No.2, 2006. pp. 450-457
    [35] CHO Chong-Hyun, CHO Bong-Soo, KIM Chaesil, et al. Performance characteristics on a double chamber rotor with various vanes[C]. 23rd IAHR Symposium, Yoohama, 2006: F2921-F29210
    [36] Shyy W,Braaten E.Three-Dimensional Analysis of the Flow in Curved Hydraulic Turbine Draft Tube [J]. Int.J Num. Meth.in Fluid,1986(6)
    [37] Vu TC,Shy W.Viscous Flow Analysis for Hydraulic Turbine Draft rubes[C].IAIIR Symposium Trondheim, Norway,1988
    [38] Wang X M,Nishi M.Swirling Flow with Helical Vortex Core in a Draft Tube Predicted by a Vortex Method[C].In:E Cabrera,V Espert and F Martinez,X VII IAHR Symposium.Dordrecht:Kluwer Academic Publishers Incorporates,1996
    [39]童秉纲.非定常流与涡运动[M].北京:国防工业出版社,1993
    [40]杨建明,曹树良,吴玉林.水轮机尾水管三维湍流数值模拟[J].水力发电学报,1998(1)
    [41]周凌九,王正伟,黄源芳.转轮出口流态对尾水管内压力脉动的影响[J].清华大学学报(自然科学版),2002,42(12)
    [42]曲洋.轴伸贯流式水轮机尾水管三维流场的数值模拟[D].南京:河海大学,2007
    [43]张克危.流体机械原理. [M].北京,机械工业出版社,2000: pp2-10
    [44] HAN Fengqin, KUBOTA T, KANEMOTO T. Coaxial-shaft counter-rotating double-runner bulb turbine: China, ZL2009 20244619.1[P/OL].2010-09-01[2010-10-18].http://dbpub.cnki.net/Grid2008/Dbpub/Bref.aspx?ID=SCPD&subBase=all
    [45]金元敏明,服部裕司,武田秀夫等.多重翼列整体解析研究(正反转叶轮及涡轮机械),涡轮机械(日语)[J],2000,28(1): 49-55
    [46]宋文武主编.水力机械及工程设计. [M].第1版.重庆大学出版社,2005.12
    [47]阎伟.轴流式水轮机转轮叶片三维设计与性能预估[D].北京:中国农业大学,2007
    [48]廉玲军.混流式水轮机涡轮设计方法的研究[D].成都:西华大学, 2009
    [49]苏铭德,黄素逸.计算流体力学基础[M].清华大学出版社,1997
    [50]赵兴艳,苏莫明,张楚华,苗永淼. CFD方法在流体机械设计中的应用[J].流体机械. 2000,28 (3): 22~25
    [51] SSUZUKI R, DIACONU D, POPESCU E, et al. Development of bulb pump-turbine for refurbishment of lower olt project[C]. 23rd IAHR Symposium, Yokohama, 2006: F1331-F1339
    [52]王福军.计算流体动力学分析[M].北京:北京理工大学出版社,2004: 1-272
    [53]刘胜柱.水轮机内部流动分析与性能优化研究[D].西安:西安理工大学,2005
    [54]马惠萍. HL300水轮机涡轮水力模型开发方案研究[D].兰州:兰州理工大学,2009
    [55]大桥秀雄,黑川淳一.流体機械手册[M].東京:朝倉書店株式会社,1998
    [56] Han Fengqin; Kubota Takashi; et al, CFD of Swirling Flow in Bent Draft Tube for Francis Turbine, The 7th Asian International Conference on Fluid Machinery in Japan, 2003.10
    [57] Han Fengqin, Yu Ying, Fan Chunxue, Kubota Takashi. Dynamic Behavior of Helical Vortex Rope with Dead Core in Bend Draft Tube of Francis Turbine [C]. 23rd IAHR Symposium, Yokohama, 2006
    [58]桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用[J].中国电机工程学报,2005,Vol. 4 25: 99-102
    [59] Fan Chunxue, Gui Zhonghua, Han Fengqin. and Kubota T. Irregular PressurePulsations in Unsteady Flow in Draft Tube of Francis Turbine [C], The 8th Asia International Conference on Fluid Machinery (AICFM8), 2005.10, China, Yichang.265-272
    [60]韩凤琴.高比速可动翼轴流水轮机损失解析(第一报叶轮冲突损失依翼安装角及运转条件的变化)[C].日本机械师学会论文集,Vol.58-550, B (1992.6) (日语): P1780
    [61]韩凤琴.高比速可动翼轴流水涡轮损失解析(第二报水力损失依叶轮出口旋回流的变化)[C].日本机械学会论文集,Vol.58-552, B (1992.8) (日语): P2485
    [62]韩凤琴.高比速可动翼轴流水涡轮损失解析(第三报叶轮内的摩擦损失及摩擦系数)[C].日本机械师学会论文集,Vol.58-556, B (1992.12) (日语): P3659
    [63]韩凤琴.GAMM混流式水轮机吸出扩大管性能研究[C].日本机械师学会论文集,Vol.61-591, B (1995.11) (日语): P3921
    [64]桂中华,韩凤琴,夏才清.基于小波包的水轮机尾水管动态特性信息的提取[C].中国水力发电工程学会2003年学术研讨会论文集,2003.9:111-115
    [65]陈林刚,韩凤琴,桂中华.基于小波包-神经网络的尾水管故障诊断[J].水力发电,2005,(3)
    [66]颜士杰,韩凤琴,王幼青,杨栗晶,久保田乔.可调节叶片灯泡贯流式水轮机协联工况的数值预测.工程热物理学报,第31卷增刊,2010.12: pp137-140
    [67] HAN Fengqin, IDA T, KUBOTAT. Experimental loss analyses in high-specific-speed hydro turbines with adjustable blade runner (4th report,relative scalable loss and loss distribution coefficient)[J].Transactions of the Japan Society of Mechanical Engineers, Part B, 1996, 62(594): 645—651
    [68] Kubota Takashi, Han Fengqin.叶轮机械损失及性能[C]. IAHR国际水力学会,荷兰,2002,9
    [69]程宝清,韩凤琴,桂中华.基于小波的灰色预测理论在水电机组故障预测中的应用[J].电网技术,2005,Vol.13 29:40-44
    [70] Han Feng-qin, Gui Zhong-hua, Kubota Takashi. Prediction of Bearing Temperature Trend Based on Singular Spectrum Analysis and Its Application, Journal of SouthChina University of Technology, 2005, Vol.9 33, 51-54
    [71]幸喆.混流式水轮机全部通流元件的三维湍流流场分析与性能预测[D].北京:中国农业大学,2005
    [72]刘洁.冲击式水轮机内部流动数值模拟及性能研究[D].武汉:华中科技大学,2004
    [73] IEC Publication. Determination of the performance from model acceptance tests of hydraulic machines[M]. 1998: 593
    [74] IEC Publication. Hydraulic turbines, storage pumps and pump-turbines—Model acceptance tests[M].1997
    [75] Yang Lijing, Han Fengqin, Yan Shijie, Kubota,T.. Advanced bulb turbine with counter-rotating tandem-runner[C].2010 International Conference on Pumps and Fans (2010 ICPF), Hangzhou, China, 2010
    [76]范春学,韩凤琴,久保田乔.混流式水轮机内部流动的整体解析及气蚀预测[J].华南理工大学学报(自然科学版),第35卷第3期,2007.03
    [77]刘胜柱,罗兴,纪兴英,等.叶片几何参数对水轮机稳定性的影响[J].水力发电学报.第23卷第1期,2004.02
    [78]刘虎.轴流式水轮机叶片优化设计[D].西安:西安理工大学,2009
    [79]彭维明,杜同.高水头贯流式水轮机涡轮的设计研究[J].四川工业学院学报. 1991, 10(3): 263~264
    [80]王德军,周惠忠,黄志勇.对旋轴流叶轮不同转速比的设计及CFD分析[J].流体机械,2003,31(12):7-10
    [81]何芳.混流式水轮机涡轮结构及优化设计[D].南昌:南昌大学,2008
    [82]刘胜柱,郭鹏程,罗兴琦.混流式水轮机导叶与涡轮的匹配关系[J].西安理工大学学报,第20卷,第1期,2004
    [83]刘攀,韩凤琴,颜士杰,久保田乔.高落差贯流式水轮机叶片过大开度流动研究[J].水电能源科学,2010,28(1)114-115
    [84]章本照.流体力学中的有限元方法[M].机械工业出版社,1986
    [85]拓双芬,朱自强,陈迎春.结构、非结构网格中的数值优化计算[J].北京航空航天大学学报,第29卷,第9期,2003.09
    [86]刘希云,赵润祥编著.流体力学中的有限元与边界元方法[M].上海:上海交通大学出版社,1993
    [87]胡恩球,张新访.有限元网格生成方法发展综述[J].计算机辅助设计与图形学学报. 1997(4):378-383
    [88]张立东,李椿萱.结构型网格分块生成技术[J].计算物理,2001. 18(4)
    [89]卢煜海,陈渊.几种著名CAD软件的综合评述[J].广西大学学报(自然科学版),第28卷,增刊,2003.06
    [90]黄玉娟,李晓东,陈江.湍流模型对涡轮数值模拟结果的影响[J].工程热物理学报,2007.06
    [91] JOHNSON R W. The handbook of fluid dynamics [M]. Boca Raton, Fla.: CRC Press LLC, Chapter 41, p. 12, 1998
    [92]吴克启,流体机械内粘性湍流流动及工程计算[M].武汉:华中理工大学出版社,1991
    [93]韩标,何枫,叶洪开,等.工程中液面波动的数值模拟[J].水动力学研究与进展,1999.06,A辑第14卷第2期: 142~146
    [94] Han F.Q.;Zhou J.L.;Wu D, et al. Boundedness of Atmospheric Pressure in Free-Jet with Two-Phase Flow Analysis [C]. CDAJ中国用户论文集, 2006
    [95]野崎理,儿玉秀和.涡轮发动机大规模流动解析[C].日本涡轮机械学会论文集,Vol.28-12, 2000.12(日语): 739-744
    [96]杨栗晶,安源,王幼青,等.反转双涡轮机械非定常流动干涉与控制[J].排灌机械工程学报,2011,04:307-310
    [97] Risberg. S, Design and production of high performance Pelton turbines[J]. International Journal on Hydropower and Dams, 2002,v 9 :95-97
    [98]段江南.流体机械虚拟实验平台的开发与实践[M].武汉:华中科技大学,2002
    [99] ZHENG Ai-ling, HAN Feng-qin, XIAO Ye-xiang, et al. Unsteady Interference Between Free Water Jet and Rear Surface of Rotating Buckets in Pelton Turbine[A], The 8th Asia International Conference on Fluid Machinery[C], October, 2005, Yichang, China. 302-310
    [100]韩凤琴,久保田乔,刘洁.“数值模拟冲击式水轮机内部非定常流动”[J].华中理工大学学报,2000,28 (11):14-16
    [101]曾洪江,胡继忠.自由涡数值计算的参数影响分析[J].北京航空航天大学学报,2006.02
    [102]齐学义,张庆,邱文斌,马惠萍,赵强.基于流场计算的贯流水轮机叶片修型.兰州理工大学学报[J].2008,34(5):46-49.
    [103]吴子牛编著.计算流体力学基本原理. [M].科学出版社.第1版. 2001年
    [104]久保田乔,水轮机及抽水蓄能机组的性能换算法(解说H,冲击式水轮机性能换算法)日本机械学会基准JSME-S008 (1999/01):124-135.
    [105] Spekreijse S. P., Boerstoel J W., Vitagliano P. L. Domain Modelling and Grid Generation for Multi-Block Structured Grids with Application to Aerodynamic and Hydrodynamic Configurations[M]. NASA CP,1992, 3143:207-229
    [106] Thompson, J.F., Z.U.A Warsi, and C.W. Mastin. Numerical Grid Generation, Foundations and Applications [M]. Amsterdam: North-Holland, 1985
    [107]徐朝晖,吴玉林,陈乃祥,等.基于滑移网格与RNG湍流模型计算泵内的动静干扰[J].工程热物理学报,第26卷第1期,2005.01: 66-68
    [108]夏琪. MobiGrid-移动网格的研究[D].上海:上海交通大学,2006
    [109] Temam, R. Navier-Stokes Equations; Theroy and Numerical Analysis[M]. Amsterdam: North-Holland, 1977
    [110] Jiang Y, Prekwas A J. Implicit pressure-based incompressible Navier-Stokes equations solver for unstructured meshes[C]. AIAA, 1994:94-103
    [111] Drtina P.; Sallaberger M.. Hydraulic turbines - basic principles and state-of-the-art computational fluid dynamics applications[C]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(1): 85-102
    [112]章梓雄.粘性流体力学[M].北京:清华大学出版社,1996
    [113]肖若富,中比转速混流式水轮机内流场数值模拟及性能改善研究[D].武汉:华中科技大学,2004
    [114]桂中华,水轮机故障诊断及振动数字化预测研究[D].广州:华南理工大学,2005
    [115]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社, 1993:52-100
    [116]林建忠.湍流的拟序结构[M].北京:机械工业出版社,1995
    [117]梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999
    [118]张梁,熙藤林,刘树红.混流式水轮机三维非定场湍流计算[C].中国工程热物理学会,2000
    [119]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1993
    [120]范春学,混流式水轮机尾水管内螺旋涡带与死水域的非定常干涉研究[D].广州:华南理工大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700