用户名: 密码: 验证码:
微生物发酵法制备聚唾液酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚唾液酸(Polysialic acid)是唾液酸以α-2, 8和(或)α-2, 9糖苷键连接而成的同聚物。聚唾液酸具备良好的生物相容性、非免疫原性和可降解性,是理想的药物缓释和医用支架材料。此外,聚唾液酸经降解或者酶催化可得到一系列的唾液酸类衍生物,这些衍生物多为应用于医药或食品和保健品领域的高附加值产品。
     微生物发酵法是目前获得聚唾液酸的唯一途径,本研究采用的菌株是大肠杆菌CCTCC M208088 (Escherichia coli CCTCC M208088)。本论文旨在通过对聚唾液酸制备过程中的发酵和提纯工艺进行优化,实现聚唾液酸的高效生产。首先,从E. coli CCTCC M208088合成聚唾液酸的培养条件、培养方式、代谢特性、生理胁迫、释放效率等多个角度出发,实施一系列以强化聚唾液酸合成为目的发酵调控策略;其次,基于聚唾液酸发酵液的特性,构建出一条完整的提取纯化工艺。本论文主要研究内容总结如下:
     (1)对E. coli CCTCC M208088合成聚唾液酸的培养条件(pH和溶氧调控方式)进行了优化。经过pH调控策略的优化,确定了氨水流加控制pH的策略,结果聚唾液酸产量大幅提高了58%,达到3.03 g/L。与此同时,残留磷酸盐浓度从19.31 g/L左右降到1.72 g/L,大大减轻了后续产物提纯和废水处理的难度。在此基础上,进一步考察了搅拌速率和溶氧浓度对聚唾液酸发酵的影响,发现较高的溶氧条件有利于聚唾液酸的合成。通过对不同搅拌速率发酵结果的比较发现:在500-700 r/min范围内,低搅拌速率利于菌体的生长,而高搅拌速率有利于产物的合成。于是引入了分阶段调控策略,在发酵前期(12 h之前)采用低搅拌速率500 r/min,保证菌体的最适生长状态,而在发酵中期开始(12 h之后)采取高搅拌速率700 r/min,结果聚唾液酸产量进一步提高至3.92 g/L。
     (2)对E. coli CCTCC M208088合成聚唾液酸的培养方式进行了优化。考察了分批培养和分批补料培养模式(间歇式流加、恒速流加、变速流加、指数速率流加)对聚唾液酸发酵的影响。结果表明,分批培养有利于聚唾液酸的合成,而分批补料培养有利于菌体的生长。为了整合两种发酵方式的优势,提出分批补料-分批培养组合发酵策略:发酵前期采用分批补料的方式(指数速率流加)使菌体浓度迅速增加,当菌体浓度接近最高水平时(16 h),一次性补入高浓度山梨醇转入分批发酵阶段,结果聚唾液酸产量达到了5.70 g/L。
     (3)研究了添加丙酮酸对E. coli CCTCC M208088代谢网络碳流通量分布的影响。发现添加丙酮酸可以显著加强三羧酸循环,提高菌体细胞的产能效率,同时一定程度上减弱磷酸戊糖途径的碳流通量,弱化菌体生长与产物合成对共用资源的竞争,从而提升了聚唾液酸的合成效率。在此基础上,将丙酮酸添加与组合发酵策略结合起来,聚唾液酸产量提高至6.92 g/L。
     (4)利用生理胁迫和促释放策略强化E. coli CCTCC M208088合成聚唾液酸的效率。考察了不同表面活性剂处理对聚唾液酸释放和合成的影响,发现吐温-60可以在促进聚唾液酸释放的同时强化聚唾液酸的合成效率。与对照相比,12 h添加0.4 g/L吐温-60可提高聚唾液酸产量10.9%。此外,考察了双氧水胁迫策略对聚唾液酸合成的影响,结果发现在发酵过程中4 h添加7.5 mmol/L,8 h添加15 mmol/L,12 h添加15 mmol/L,16 h添加25 mmol/L H2O2的四点添加策略可使聚唾液酸产量比非胁迫情况下提高19.8%。
     (5)为了构建聚唾液酸的提取工艺,对聚唾液酸的稳定性、分离特性以及发酵液中主要杂质的去除方法进行了研究。首先,确定了聚唾液酸保持结构稳定的条件:热处理不超过100℃、酸碱处理在pH 5-10范围内。在此基础上,优化了氯代十六烷基吡啶(CPC)络合沉淀聚唾液酸的反应条件:CPC质量浓度为聚唾液酸3倍,NaCl<0.1 mol/L,pH 6.0-7.0,温度<40℃。此外,确定了乙醇沉淀聚唾液酸的适宜条件,即处理液中添加氯化钠至0.68 mol/L,然后加入3倍体积的乙醇。最后,研究了珍珠岩过滤除杂的适宜的操作条件:处理液pH=10,珍珠岩用量为80 g/L。
     (6)确立了提取和精制聚唾液酸的工艺。为了提取聚唾液酸,发酵液首先经过80℃加热预处理30 min,然后离心去除菌体,得到的上清液用乙醇沉淀,沉淀物用水复溶后,以珍珠岩为助滤剂进行过滤,滤液经过超滤脱盐后再用CPC络合沉淀,形成的CPC-PSA络合沉淀物转移至0.8 mol/L NaCl溶液中复溶解离,然后再次利用乙醇沉淀,沉淀物洗涤后真空干燥即得聚唾液酸。得到的聚唾液酸样品纯度可达95%,总回收率在50-60%之间。为了制备医药级别的产品,聚唾液酸提取样品需要进一步的精制。样品依次经过超滤、离子交换和凝胶过滤层析处理,再经脱盐、浓缩、冷冻干燥,得到最终产品。产品中蛋白未检出,内毒素含量低于100 EU/mg,纯度达到99.9%。精制样品的红外和核磁共振图谱的特征吸收峰与文献报道的α-2, 8糖苷键连接聚唾液酸比对一致。
     (7)优化的聚唾液酸生产工艺进行了500 L规模的中试放大验证,聚唾液酸产量达到5.50 g/L,分离得到的聚唾液酸纯度达到95%。中试的产量、发酵生产强度以及生产规模均为目前报道的最高水平。
Polysialic acid (PSA) is a polymer of sialic acid linked withα-2, 8-and/orα-2, 9-glycosidic (ketosidic) bonds. PSA has many advantages, such as poor immunogenicity, biodegradable and so on, which is considered as the most ideal material used in the control-release drugs and scaffolds in biomedical applications. In addition, various sialo-products have been derivated by means of treating PSA with degradation methods or enzymatic catalysis, and these derivatives can subsequently be used in pharmaceutical, food and health-care industries.
     Bacterial fermentation is the only way to produce PSA up to now, and Escherichia coli CCTCC M208088 was adopted in this study. The aim of this thesis is to efficiently prepare PSA by optimizing processes including fermentation and purification. At first, a series of strategies aiming to strengthen PSA synthesis by Escherichia coli CCTCC M208088 were employed to improve the fermentation profiles by taking several aspects into concern which included cultivation conditions, microbial metabolic characteristics, biological stresses and PSA releasing efficiency. Then, a comprehensive and integrated purification process was established based on properties of the PSA fermentation broth. Outlines of this thesis are shown as follows:
     (1) The cultivation conditions (pH and dissolved oxygen control strategy) for PSA synthesis by E. coli CCTCC M208088 were optimized. Ammonia water was adopted for pH control through optimization, and PSA production were significantly increased from 1.92 g/L to 3.03 g/L. Meanwhile, the residual phosphate in the broth was decreased from 19.31 g/L to 1.72 g/L, which significantly reduced the difficulty of the subsequent PSA purification and wastewater treatment. Besides, the effects of agitation speed and dissolved oxygen level on PSA biosynthesis were investigated in shake flasks and fermentors, which proved that PSA biosynthesis favored high-level dissolved oxygen (DO) environment. Based on the effects of various agitation rates on PSA production, a two-stage strategy for PSA production was carried out: low stirring rate of 500 r/min was conducted during pre-fermentation (before 12 h) and then switching to high stirring speed (700 r/min) from 12 h forwards. With this strategy, PSA production reached 3.92 g/L.
     (2) The fermentation modes for PSA synthesis by E. coli CCTCC M208088 were optimized. The effects of batch fermentation and fed-batch fermentation modes (pulse fed-batch, constant feeding rate fed-batch, variable feeding rate fed-batch and exponential feeding rate fed-batch) on the PSA fermentation were determined. The results showed that batch fermentation could improve PSA synthesis, while fed-batch culture was more preferable to bacterial growth. Therefore, a combination of fed-batch and batch culture was proposed: fed-batch fermentation (exponential feeding rate fed-batch) was carried out to increase cell density rapidly, as the cell density increased nearly its maximum level (16 h), high concentration of sorbitol was added into the fermentor at once, switching to batch fermentation. As a result, PSA production was increased to 5.70 g/L.
     (3) The metabolic characteristics of PSA synthesis by E. coli CCTCC M208088 were investigated, and the effect of pyruvate addition on the metabolic flux distribution in E. coli CCTCC M208088 was studied. The results suggested that the addition of pyruvate can apparently strengthen the tricarboxylic acid cycle, and can improve the productivity of ATP. Meanwhile, the carbon flux of pentose phosphate pathway was reduced to a certain degree, and the competition between cell growth and product synthesis was weakened, thereby, enhanced the efficiency of PSA biosynthesis. Based on these facts, a new strategy combining addition of pyruvate with the optimized combination of fed-batch culture and batch culture fermentation strategy was developed, resulting in PSA production of 6.92 g/L.
     (4) Biological stresses and facilitating releasing strategy were adopted to strengthen PSA synthesis by E. coli CCTCC M208088. The effects of various surfactants on release and biosynthesis of PSA by E. coli CCTCC M208088 were investigated. The results showed that Tween-60 can promote the release of PSA, accordingly, promoting the biosynthesis of PSA. Tween-60 addition strategy was optimized and confirmed in PSA batch fermentation in 7 L fermentor. As a result, PSA yield was increased by 10.9% by adding 0.4 g/L Tween-60 at 12 h. Moreover, the effect of H2O2 stress on PSA biosynthesis was investigated. The results revealed that addition of H2O2 to 7.5 mmol/L at 4 h, 15 mmol/L at 8 h, 15 mmol/L at 12 h and 25 mmol/L at 16 h can maximally increase PSA production. This strategy was confirmed in a 7 L fermentor with batch fermentation, as a result, PSA production increased by 19.8% as compared to the control.
     (5) In order to establish PSA purification process, the stability and separation characteristics of PSA as well as the methods for removing the main impurities from the fermentation broth were studied. The condition for PSA maintaining stability was determined: the heat treatment tempreature <100℃, pH 5-10. Furthermore, the optimal cetyl pyridinium chloride (CPC) precipitation procedure was determined: addition of 3 g CPC/g PSA, pH of 6-7, NaCl of 0.1 mol/L or less and temperature lower than 40℃. The suitable condition for ethanol precipitating PSA was determined: the volume of ethanol added was three times that of treatment solution and 0.68 moL/L NaCl was added. The suitable operating condition for the perlite filtrating and eliminating impurities was determined: the pH of treatment fluid modified to pH 10, simultaneously; 80 g/L perlite should be adopted.
     (6) Separation and refining process for PSA from the fermentation broth was proposed. To separate PSA from the broth, Fermentation broth was pretreated at 80℃for 30 minutes, followed by centrifugation to remove biomass. The supernatant was precipitated with ethanol, and then the precipitate was dissolved in water. The mixture was filtered with perlite filter and the filtrate was then desalted by ultrafiltration. The resultant PSA solution was precipitated by CPC, and the PSA-CPC precipitate was dissolved in 0.8 mol/L NaCl solution. Then PSA was precipitated with ethanol again. Finally, PSA was obtained after vacuum-drying. The purity of PSA product obtained was higher than 95% at 50-60% recovery rate. To obtain pharmaceutical grade PSA, the refining process for the PSA sample was tested: PSA sample was sequently treated by ultrafiltration, ion exchange chromatography and gel filtration, and then through subsequent desalination, condensation, and freeze-drying. In the refined PSA, no protein was detected and endotoxin content was lower than 100 EU/mg. The characteristic IR and NMR spectra of refined PSA were similar to the spectra ofα-2, 8 glycosidic linked polysialic acid reported.
     (7) Pilot production of PSA was verified on 500 L scale. PSA production reached 5.50 g/L, and purity of the obtained PSA reached 95% almost. PSA production, productivity and production scale were the top level reported.
引文
[1] Maru I, Ohnishi J, Ohta Y, et al. Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-Acylglucosamine 2-Epimerase [J]. J Biosci Bioeng, 2002, 93(3): 258-265.
    [2] Inouet Y, Inoue S. Diversity in sialic acid and polysialic acid residues and related enzymes [J]. Pure Appl Chem, 1999, 71(5): 789-800.
    [3] Rode B, Endres C, Ran C, et al. Large-scale production and homogenous purification of long chain polysialic acids from E. coli K1 [J]. J Biotechnol, 2008, 135: 202-209.
    [4] Adriana E M, Herman H H. Intramolecular self-cleavage of polysialic acid [J]. J Biol Chem, 1994, 269(38): 23617-23624.
    [5] Ferrero M A, Rodríguez-Aparicio L. Biosynthesis and production of polysialic acids in bacteria [J]. Appl Microbiol Biotechnol, 2010, 86: 1621-1635.
    [6]金城,张树政.糖生物学与糖工程的兴起与前景[J].生物工程进展, 1995, 15(3): 12-17.
    [7] Varki A. Sialic acids as ligands in recognition phenomena [J]. FASEB J, 1997, 11: 248-255.
    [8] Kleene R, Schachner M. Glycans and neural cell interactions [J]. Nat Rev Neurosci, 2004, 5: 195-208.
    [9] Fierfort N, Samain E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides [J]. J Biotechnol, 2008, 134: 261-265.
    [10] Antoine T, Heyraud A, Bosso C, et al. Highly efficient biosynthesis of the oligosaccharide moiety of the GD3 ganglioside by using metabolically engineered Escherichia coli [J]. Angew Chem Int Ed, 2005, 44: 1350-1352.
    [11] Varki A. Sialic acids in human health and disease [J]. Treens Mol Med, 2006, 14: 351-360.
    [12] Du J, Meledeo M A, Wang Z Y, et al. Metabolic glycoengineering: sialic acid and beyond [J]. Glycobiology, 2009, 19: 1382-1401.
    [13] Ladeby R, Wirenfeldt M, Dalmau I, et al. Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury [J]. Glia, 2005, 50: 121-131.
    [14] Wang B, McVeagh P, Petocz P, et al. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants [J]. Am J Clin Nutr, 2003, 78: 1024-1029.
    [15] Zelmer A, Bowen M, Jokilammi A, et al. Differential expression of the polysialyl capsule during blood-to-brain transit of neuropathogenic Escherichia coli K1 [J]. Microbiol, 2008, 154: 2522-2532.
    [16] Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli [J]. Annu Rev Biochem, 2006, 75: 39-68.
    [17] Bliss J M, Silver R P. Coating the surface: a model for expression of capsular polysialic acid in Escherichia coli K1 [J]. Mol Microbiol, 1996, 21: 221-231.
    [18] Vimr E R, et al. Diversity of microbial sialic acid metabolism [J]. Microbiol Mol Biol Rev, 2004, 68: 132-153.
    [19] Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins [J]. Nature, 2007, 446: 1023-1029.
    [20] Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective [J]. Chem Rev, 2002, 102(2): 439-469.
    [21] Harris J M, Chese R B. Effect of pegylation on pharmaceuticals [J]. Nature, 2003, 2: 214-221.
    [22] Gregoriadis G, McCormacka B, Wang Z. Polysialic acids: potential in drug delivery [J]. FEBS Letters, 1993, 3: 271-276.
    [23] Witczak Z J, Nieforth K A, Carbohydrate in Drugs Design [M]. New York: Marcel Dekker, 1997: 471-493.
    [24] McNicholl I R, McNicholl J J. Neuraminidase inhibitors: zanamivir and oseltamivir [J]. Ann Pharmacother, 2001, 35: 57-70.
    [25]Chen X, Varki A, Advances in the biology and chemistry of sialic acids [J]. ACS Chem Biol, 2010, 5: 163-176.
    [26] Patane J, Trapani V, Villavert J, et al. Preparative production of colominic acid oligomers via a facile microwave hydrolysis [J]. Carbohydr Res, 2009, 344: 820-824.
    [27] Uchida Y, Tsukada Y, Sugimori T. Improved microbial production of colominic acid, a homopolymer nacetylneuraminic acid [J]. Agr Biol Chem, 1973, 37: 2105-2110.
    [28] Juneja L R, Koketsu M, Nishimoto K, et al. Large-scale preparation of sialic acidfrom chalaza and egg-yolk membrane [J]. Carbohydr Res, 1991, 214: 179-186.
    [29] Whitehouse M W, Zilliken F. Isolation and determination of neuraminic (sialic) acids [J]. Meth Biochem Anal, 1960, 8: 199-218.
    [30] Sayama M S, Tokorozawa Y U, Kawagoe I M, et al. Process for manufacturing sialic acids-containing composition [P]. US Patent, 5270462. 1993.
    [31]高剑峰,冯万祥.血液中唾液酸的提取及结晶纯化[J].中国医药工业杂志, 1996, 27(6): 246-247.
    [32] Datta A. Regulatory of adenosine triphosphate on hog kidney n-acetylglucosamine 2-epimerase [J]. Biochemistry, 1970, 17: 3363-3370.
    [33]Datta A. N-Acetylglucosamine 2-epimerase from hog kidney [J]. Method. Enzymol, 1975, 41: 407-412.
    [34] Kim M J, Hennen W J, Sweers H M, et al. Enzyme in carbohydrate synthesis: n-acetylneuraminic acid aldolase catalyzed reactions and preparation of n-acetyl-2-deoxy-D-neuraminic acid derivatives [J]. J Am Chem Soc, 1988, 110: 6481-6486.
    [35] AugéC, David S, Gautheron C. Synthesis with immobilized enzyme of the most important sialic acid [J]. Tetrahedron Lett, 1984, 25: 4663-4664.
    [36] Lin C H, Sugai T, Halcomb R L. Unusual stereoselectivity in sialic acid aldolase-catalyzed aldol condensations: synthesis of both enantiomers of high-carbon monosaccharides [J]. J Am Chem Soc, 1992, 114: 10138-10145.
    [37] Sugai T, Kuboki A, Hiramatsu S, et al. Improved enzymatic procedure for preparativescale synthesis of sialic acid and KDN [J]. Bull Chem Soc Jpn, 1995, 68, 3581-3589.
    [38] Maru I, Ohnishi J, Ohta Y, et al. Simple and large-scale production of n-acetylneuraminic acid from n-acetyl-D-glucosamine and pyruvate using n-acyl-D-glucosamine 2-epimerase and N-acetylneuraminate lyase [J]. Carbohydr Res, 1998, 306: 575-578.
    [39] Kazuhiko T, Satoshi K, Tetsuo E, et al. Production of nacetyl-d-neuraminic acid by coupling bacteria expressing N-acetyld-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid synthetase [J]. Enzyme Microb Technol, 2002, 30: 327-333.
    [40] Lee J O, Yi J K, Lee S G, et al, Production of n-acetylneuraminic acid from n-acetylglucosamine and pyruvate using recombinant human renin binding protein and sialic acid aldolase in one pot [J]. Enzyme and Microb Technol, 2004, 35: 121-125.
    [41] Roy R, Pon R A. Efficient synthesis ofα(2-8)-linked n-acetyl and N-glycolylneuraminic acid disaccharides from colominic acid [J]. Glycoconjugate J, 1990, 7: 3-12.
    [42] Cheng M C, Wang K T, Inoue S, et al. Controlled acid hydrolysis of colominic acid under microwave irradiation [J]. Anal Biochem, 1999, 267: 287-293.
    [43] Boehm G, Stahl B. Oligosaccharides from milk [J]. J Nutr, 2007, 137: 847-849.
    [44] Tsukada Y. Synthesis of sialyllactose from n-acetylneuraminic acid and lactose by a neuraminidase from arthrobacter ureafaciens [J]. Biosci Biotech Biochem, 1992, 56: 1557-1561.
    [45] Ajisaka K, Fujimoto H, Isomura M. Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of galactosidases and sialidases of various origins [J]. Carbohydr. Res., 1994, 259: 103-115.
    [46] Tanaka H, Ito F, Iwasaki T. A system for sialic acid transfer by colominic acid and a sialidase that preferentially hydrolyzes sialylα-2, 8 linkages [J]. Biosci Biotech Biochem, 1995, 59: 638-643.
    [47] Priem B, Gilbert M, Wakarchuk W, et al. A new fermentation process allows large-scaleproduction of human milk oligosaccharides by metabolically engineered bacteria [J]. Glycobiology, 2002, 12: 235-240.
    [48] Masuda M, Kawase Y, Kawase M. Continuous production of sialyllactose from colominic acid using a membrane reactor [J]. J Biosci Bioeng, 2000, 89: 119-125.
    [49] Kittelmann M, Klein T, Kragl U. CMP-N-acetyl neuraminic-acid synthetase from Escherichia coli: fermentative production and application for the preparative synthesis of CMP-neuraminic acid [J]. Appl Microbiol Biotechnol, 1995, 44: 59-67.
    [50] Kittelmann M, Klein T, Kragl U, et al. Preparative enzymatic synthesis of activated neuraminic acid using a microbial enzyme [J]. Ann NY Acad Sci, 1992, 672: 444-450.
    [51] Gregoriadis G, Jain S, Papaioannou I, et al. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids [J]. Int J Pharm, 2005, 300: 125-130.
    [52] Steinhaus S, Stark Y, Bruns S. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration [J]. J Mater Sci: Mater Med, 2010, 21: 1371-1378.
    [53] Veronese F M, Harris J M. Introduction and overview of peptide and protein pegylation [J]. Adv Drug Deliver Rev, 2002, 54: 453-456.
    [54] Pasut G, Veronese F M. PEGylation of proteins as tailored chemistry for optimized bioconjugates [J]. Adv Polym Sci, 2006, 192: 95-134.
    [55] Greenwald R B, Choe Y H, McGuire J, et al. Effective drug delivery by PEGylated drug conjugates [J]. Adv Drug Deliver Rev, 2003, 55: 217-250.
    [56] Sol R J, Rodrguez-Martnez J A, Griebenow K. Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications [J]. Cell Mol Life Sci, 2007, 64: 2133-2152.
    [57] Pasut G, Veronese F M. Polymer-drug conjugation, recent achievements and general strategies [J]. Prog Polym Sci, 2007, 32: 933-961.
    [58] Yang K, Basu A, Wang M, et al. Tailoring structure-function and pharmacokinetic properties of single-chain Fv protein by site-specific PEGylation [J]. Protein Eng, 2003, 16: 761-770.
    [59] Roberts M J, Bentley M D, Harris J M. Chemistry for peptide and protein PEGylation [J]. Adv Drug Deliver Rev, 2002, 54: 459-476.
    [60] Fontana A Spolaore B, Mero A, et al. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase [J]. Adv Drug Deliver Rev, 2008: 13-28.
    [61] Zeuzem S, Welseh C, Herrmann E. Pharmacokinetics of peginterferons [J]. Semin Liver Dis, 2003, 23: 23-28.
    [62] Hinds K D, Kim S W. Effects of PEG conjugation on insulin properties [J]. Adv DrugDeliver Rev, 2002, 54: 505-530.
    [63] Dosio F, Arpicco S, Brusa P. Poly (ethylene-glycol) human serum albumin paelitaxel conjugates [J]. J Control Release, 2001, 76: 107-117.
    [64] Gregoriadis G, Fernandes A, Mital M, et al. Polysialic acids: potential in improving the stability and pharmacokinetics of proteins and other therapeutics [J]. Cell Mol Life Sci, 2000, 57: 1964-1969.
    [65] Srroda K, Rydlewski J, Langner M. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies [J]. Cell Mol Biol Lett, 2005, 10: 37-47.
    [66] Gregoriadis G, McCormacka B, Wang, et al. Polysialic acids: potential in drug delivery [J]. FEBS Lett, 1993, 3: 271-276.
    [67] Fernandes A I, Gregoriadis G. The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics [J]. Int J Pharm, 2001, 217: 215-224.
    [68] Jain S, Hreczuk-Hirst D H, McCormack B. Polysialylated insulin: synthesis, characterization and biological activity in vivo [J]. Biochimica et Biophysica Acta, 2003, 1622: 42-49.
    [69] Hreczuk-Hirst D, Jain S, Genkin D, et al. Preparation and properties of polysialylated interferon-α-2b [C]. AAPS Annual Meeting, Toronto, Canada, 2005.
    [70] Angata K, Fukuda M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule [J]. Biochimie, 2003, 85: 195-206.
    [71] Francischini I, Angata K, Ong E, et al. Polysialyltransferase ST8Sia II (STX) polysialylates all of the major isoforms of NCAM and facilitates neurite outgrowth [J]. Glycobiology, 2001, 11: 231-239.
    [72] Zhang H, Miller R H, Rutishauser U. Polysialic acid is required for optimal growth of axons on a neuronal substrate [J]. J Neurosci, 1992, 12: 3107-3114.
    [73] Lietz M, Ullrich A, Schulte-Eversum C, et al. Physical and biological performance of a novel block copolymer nerve guide [J]. Biotechnol Bioeng, 2005, 93: 99-109.
    [74] Gravvanis A, Karvelas M, Lykoudis E, et al. The use of silicone tubes in end-to-side nerve grafting: an experimental study [J]. Eur J Plast Surg, 2003, 26: 111-115.
    [75] Lundborg G, Rose B, Dahlin L, et al. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study [J]. J Hand Surg, 1997, 22A: 99-106.
    [76] Merle M, Dellon A L, Campbell J N, et al. Complications from silicon-polymer intubulation of nerves [J]. Microsurg, 1989, 10: 130-133.
    [77] Barry G T, Goebel W F. Colominic acid, a substance of bacterial organic related to sialic acid [J]. Nature, 1959, 179: 206-211.
    [78] McGowen M M, Vionnet J, Vann W F. Elongation of alternating alpha 2, 8/2, 9 polysialic acid by the Escherichia coli K92 polysialyltransferase [J]. Glycobiology, 2001, 11: 613-620.
    [79] Bhattacharjee A K, Jennings H J, Kenny C P, et al. Structural determination of the sialic acid polysaccharide antigens of neisseria meningitidis serogroups B and C with 13C nuclear magnetic resonance [J]. J Biol Chem, 1975, 250: 1926-1932.
    [80] Devi S J, Schneerson R, Egan W, et al. Identity between polysaccharide antigens of moraxella nonliquefaciens, group B Neisseria meningitidis, and Escherichia coli K1 (non-O-acetylated) [J]. Infect Immun, 1991, 59: 732-736.
    [81] Adlam C, Knight J M, Mugridge A, et al. Production of colominic acid by Pasteurella haemolytica serotype A2 organisms [J]. FEBS Microbiol Lett, 1987, 42: 23-25.
    [82] Egan W, Liu T Y, Dorow D, et al. Structural studies on the sialic acid polysaccharide antigen of Escherichia coli strain Bos-12 [J]. Biochemistry, 1977, 16: 3687-3692.
    [83] Roberts I S. The biochemistry and genetics of capsular polysaccharide production in bacteria [J]. Annu Rev Microbiol, 1996, 50: 285-315.
    [84] Pearce R, Roberts IS. Cloning and analysis of gene clusters for production of the Escherichia coli K10 and K54 antigens: identification of a new group of serA-linked capsule gene clusters [J]. J Bacteriol, 1995, 177: 3992-3997.
    [85] Fusco P C, Blake M S, Michon F. Meningococcal vaccine development: a novel approach [J]. Expert Opin Investig Drugs, 1998, 7: 245-252.
    [86] Wu J L, Liu J L, Zhan X B, et al. Enhancement of polysialic acid yield by reducing initial phosphate and feeding ammonia water to Escherichia coli CCTCC M208088 [J]. Biotechnol Bioproc Eng, 2010, 15: 657-663.
    [87] Zhan X B, Zhu L, Wu J R, et al. Production of polysialic acid from fed-batch fermentation with pH control [J]. Biochem Eng J, 2002, 11: 201-204.
    [88] Liu J L, Wu J R, Shen F D, et al. A new strategy to enhance polysialic acid production by controlling sorbitol concentration in cultivation of Escherichia coli K235 [J]. Afr J Biotech, 2010, 9: 2422-2426.
    [89] Vimr E R, Aaronson W, Silver R P. Genetic analysis of chromosomal mutations in the polysialic acid gene cluster of Escherichia coli K1 [J]. J Bacteriol, 1989, 171: 1106-1117.
    [90] Rodriguez-Aparicio L, Reglero A, Ortiz A, et al. A protein-sialyl polymer complex involved in colominic acid biosynthesis: effect of tunicamycin [J]. Biochem J, 1988, 252: 589-596.
    [91] Tzeng Y L, Datta A K, Strole C A, et al. Translocation and surface expression of lapidated serogroup B capsular polysaccharide in Neisseria meningitides [J]. Infect Immun, 2005, 73: 1491-1505.
    [92] King M R, Vimr R P, Steenbergen S M, et al. Escherichia coli K1-specific bacteriophage CUS-3 distribution and function in phase-variable capsular polysialic acid O-acetylation [J]. J Bacteriol, 2007, 189: 6447-6456.
    [93] Navasa N, Rodríguez-Aparicio L B, Martínez-Blanco H, et al. Temperature has reciprocal effects on colonic acid and polysialic acid biosythesis in E. coli K92 [J]. Appl Microbiol Biotechnol, 2009, 82: 721-729.
    [94]贾薇.聚唾液酸生产菌的诱变育种及发酵研究[D]: [硕士学位论文].无锡:无锡轻工大学, 1999.
    [95]于军华.聚唾液酸生产菌种的选育及其发酵工艺的研究[D]: [硕士学位论文].无锡:无锡轻工大学, 2000.
    [96] Rodriguez-Aparicio L B, Reglero A, Ortiz A I, et al. Effect of physical and chemical conditions on the production of colominic acid by Escherichia coli in a defined medium [J]. Appl Microbiol Biotechnol, 1988, 27: 474-483.
    [97] Honda H, Nakazeko T, Ogiso K, et al. Colominic acid production from Escherichia coli in a fed-batch culture under the control of ammonium ions using an FIA System [J]. J Ferment Bioeng, 1997, 83: 59-63.
    [98] González-Clemente C, Luengo J M, Rodríguez-Aparicio L B, et al. High production of polysialic acid [Neu5Acα(2-8)-Neu5Acα(2-9)]n by Escherichia coli K92 grown in a chemically defined medium [J]. Biol Chem Hoppe Seyler, 1990, 371: 1101-1106.
    [99] Kapre S V, Shaligram U. Process for the preparation of highly pure polysialic acid of high molecular weights [P]. PCT Int International Patent Application WO 2008035373. 2008.
    [100]Revilla-Nuin B, Rodriguez-Aparicio L B, Ferrero M A, et al. Regulation of capsular polysialic acid biosynthesis by N-acetyl-D-mannosamine,,an intermediate of sialic acid metabolism [J]. FEBS Lett, 1998, 426: 191-195.
    [101]Revilla-Nuin B, Reglero A, Martinez-Blanco H, et al. Transport of N-acetyl-D-mannos- amine and N-aceytl-D-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production [J]. FEBS Lett, 2002, 511: 97-101.
    [102]Ezquerro-Saenz C, Ferrero M A, Revilla-Nuin B, et al. Transport of N-acetyl-D-galacto- samine in Escherichia coli K92: effect of acetyl-amino sugar metabolism and polysialic acid porduction [J]. Biochimie, 2006, 88: 95-102.
    [103]Alsaka K, Igarashi A, Yamaguchi K, et al, Purification, crystallization and characterizati- on of n-acetylneuraminate lyase from Escherichia coli [J]. Biochem J, 1991, 276: 541-546.
    [104]Whitfield C, Roberts I S. Structure, assembly and regulation of expression of capsules in Escherichia coli [J]. Mol Microbiol, 1999, 31: 1307-1319.
    [105]Vimr E R, Troy F A. Regulation of sialic acid metabolism in Escherichia coli: role ofN-acylneuraminate pyruvate-lyase [J]. J Bacteriol, 1985, 164: 854-860.
    [106]Rodriguez-Aparico, L B, Ferrero M A, Reglero A. N-acetyl-Dneuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-D-mannosamine and pyruvate [J]. Biochem J, 1995, 308: 501-505.
    [107]Ferrero M A, Reglero A, Fernandez-Lopez M, et al. N-acetyl-D-neuraminic acid lyase generates the sialic acid for colominic acid biosynthesis in Escherichia coli K1 [J]. Biochem J, 1996, 317: 157-165.
    [108]Ringenberg M, Lichtensteiger C, Vimr E. Redirection of sialic acid metabolism in genetically engineered Escherichia coli [J]. Glycobiology, 2001, 11(7): 533-539.
    [109]Lin S L, Inoue Y, Inoue S. Evaluation of high-performance anion-exchange chromatogr- aphy with pulsed electrochemical and fluorometric detection for extensive application to the analysis of homologous series of oligo- and polysialic acids in bioactive molecules [J]. Glycobiology, 1999, 9(8): 807-814.
    [110]Miyata S, Sato C, Kitamura S. A major flagellum sialoglycoprotein in sea urchin sperm contains a novel polysialic acid, anα2, 9-linked poly-N-acetylneuraminic acid chain, capped by an 8-O-sulfated sialic acid residue [J]. Glycobiology 2004, 14(9): 827-840.
    [111]Ohe M, Wheeler S F, Wuhrer M, et al. Localization and characterization of polysialic acid-containing N-linked glycans from bovine NCAM [J]. Glycobiology, 2002, 12(1): 47-63.
    [112]Liu J L, Zhan X B, Wu J R, et al. An efficient and large-scale preparation process for polysialic acid by Escherichia coli CCTCC M208088 [J]. Biochem Eng J, 2010, 53: 97-103.
    [113]赵慧.聚唾液酸发酵和唾液酸提取的研究[D]: [硕士学位论文].无锡:江南大学, 2005.
    [114]郑志永.聚唾液酸及唾液酸单体的发酵生产研究[D]: [硕士学位论文].无锡:无锡轻工大学, 2000.
    [115]Puente-Polledo L, Reglero A, Gonzalez-Clemente C, et al. Biochemical conditions for the production of polysialic acid by Pasteurella haemolytica A2 [J]. Glycoconjugate J, 1998, 15(9): 855-861.
    [116]Liu L, Du G C, Chen J, st al. Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus [J]. Bioprocess Biosyst Eng, 2005, 32: 755-763.
    [117]Lawford H, Rousseau J. Bioreactor design considerations in the production of high-qual- ity microbial exopolysacchride [J]. Appl Biochem Biotech, 1991, (29): 667-684.
    [118]高海军,陈坚,堵国成.搅拌与混合对兽疫链球菌发酵生产透明质酸的影响[J].化工学报, 2003, 3: 350-356.
    [119]Gao H J., Du G C, Chen J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus Zooepidemicus [J]. World J Microbiol Biotechnol, 2006, 22: 399-408.
    [120]Pesez M, Bartos J. Colorimetric and fluorometric analysis of organic compounds and drugs [C]. New York: Marce Dekker, 1974: 291-328.
    [121]Harwood J E, Huysen D J. Automated analysis of ammonia in water [J]. Water Res, 1970, 4: 695-704.
    [122]Svennerholm L. Quantitative estimation of sialic acids [J]. Biochim Biophys Acta, 1957, 24: 604-611.
    [123]Zhao H. Studies on polysialic acid fermentation and purification of sialic acid [D]. Wuxi, Jiangnan University, 2004: 10-14.
    [124]Nie W, Wei G, Du G, et a1. Enhanced dintrace Uularglutathione synthesis and excretion capability of Candida utilis by using a low pH stress strategy [J]. Lett Appl MicrobioL, 2005, 40(5): 378-384.
    [125]Cleary P P, Larkin A. Hyaluronic acid capsule: strategy for oxygen resistance in group A Streptococci [J]. J Bacteriol, 1979, 140: 1090-1097.
    [126]Li Y, Hugenholtz J, Chen J, et a1. Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy [J]. Appl Microbiol Biotechnol, 2002, 60: 10l-106.
    [127]Wang F, Du G C, Li Y, et a1. Optimization of cultivations conditions for the production of Y-cyclod extrin glucanotransferase by Bacillus macorous [J]. Food Biotechnol, 2004, 18(2): 251-264.
    [128]Fong C B., Blank L M, Mclaughlin R, et al. Microbial hyaluronic acid production [J]. Appl Microbiol Biotechnol, 2005, 66: 341-351.
    [129]Rao Y M, Sureshkumar G K. Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism [J]. Biotechnol Bioeng, 2001, 72(1): 62-68.
    [130]梅乐和,姚善泾,林东强.生化生产工艺学[M].北京:科学出版社, 1999: 186-201.
    [131]Ding S F, Tan T W. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies [J]. Process Biochem, 2006, 41: 1451-1454.
    [132]Ghaly A E, Kamal M, Correia L R. Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production [J]. Bioresour Technol, 2005, 96: 1143-1152.
    [133]Ghaly A E, El-Taweel A A. Effect of lactose concentration on a batch production of ethanol from cheese whey [J]. Transaction ASAE, 1995, 38(4): 1113-1120.
    [134]Tango M S A, Ghaly A E. Kinetic modelling of lactic acid production from batchfermentation of cheese whey [J]. Transaction ASAE, 1999, 42(6): 1791-1800.
    [135]Gaden E L. Fermentation process kinetics [J]. Biotechnol Bioeng, 2000, 67: 629-635.
    [136]Ringenberg M, Lichtensteiger C, Vimr E. Redirection of sialic acid metabolism in genetically engineered Escherichia coli [J]. Glycobiology, 2001, 11: 533-539.
    [137]Liang G B, Liao X Y, Du G C, et al. Optimization of amino acids addition for efficient production of glutathione in Candida utilis [J]. Biochem Eng J, 2008, 41: 234-240.
    [138]王菊芳,吴晖.前体物质对阿维菌素生物合成的影响[J].华南理工大学学报, 2002, 30: 16-18.
    [139]刘沛溢,董函竹,谭天伟.补加前体L-蛋氨酸对高密度发酵生产S-腺苷-L-蛋氨酸的影响[J].生物工程学报, 2002, 22: 268-272.
    [140]申凤丹.强化聚唾液酸合成及单体制备工艺的研究[D]: [硕士学位论文].无锡:江南大学, 2010.
    [141]Sancheza A M, Bennett G N, San K Y. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium [J]. J Biotechnol, 2005: 117, 395-405.
    [142]Varma A, Boesch B W, Palsson B O. Biochemical production capabilities of Escherichia coli [J]. Biotechnol Bioeng, 1993, 42: 59-73.
    [143]李寅.微生物过量合成丙酮酸及代谢网络的分析[D]: [博士学位论文].无锡:无锡轻工大学, 2000.
    [144]Nielsen J. Metabolic engineering: techniques for analysis of targets for genetic manipulations [J]. Biotechnol Bioeng, 1998, 58: 125-132.
    [145]Fong Chong B, Lars M B, Richard M. Microbial hyaluronic acid production [J]. Appl Microbiol Biotechnol, 1999, 30: 125-132.
    [146]Liu L, Du G C, Chen J, et al. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus [J]. Biores Technol, 2009, 100(1): 362-367.
    [147]温琦,刘登如,陈坚,等.添加表面活性剂促进兽疫链球菌高产透明质酸[J].化工进展, 2006, 25: 1089-1094.
    [148]Wang F, Du G C, Li Y, et al. Enhanced-CGTase production by Bacillus macorous with membrane active substances [J]. Food Biotechnol, 2006, 20: 171-181.
    [149]Pinkus R, Weiner L M, Daniel V. Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione-S-transferase gene expression [J]. Biochemistry, 1995, 34: 81-88.
    [150]Maym J, Leaver C J. Oxidative stimulation of glutathione synthesis in a rabid opsis thaliana suspension cultures [J]. J Plant Physiol, 1993, 103: 621-627.
    [151]Bai Z H, Harvey L M, McNeil B. Elevated temperature effects on the oxidant/antioxida-nt balance in submerged batch cultures of the filamentous fungus Aspergillus niger (B1-D) [J]. Biotechnol Bioeng, 2003, 83: 772-779.
    [152]Jamieson D J. Oxidative stress responses of the yeast Saccharomyces cerevisiae [J]. Yeast, 1998, 14: 1511-1527.
    [153]Kreiner M, Harvey L M, McNeil B. Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition [J]. Enzyme Microb Technol, 2002, 30: 346-353.
    [154]Demple B. Redox signalling and gene control in the Escherichia coli soxRS oxidative stress regulon-a review [J]. Gene, 1996, 179: 53-57.
    [155]Emri T, Pocsi I, Szentirmai A. Analysis of the oxidative stress response of Penicillium chrysogenum to menadione [J]. Free Radic Res, 1999, 30: 125-132.
    [156]Witczak Z J, Nieforth K A. Carbohydrate in drugs design [C]. New York: Marcel Dekker, 1997: 82-134.
    [157]Bruns S, Stark Y, Wieland M, et al. Fast and efficient screening system for new biomaterials in tissue engineering: a model for peripheral nerve regeneration [J], J Biomed Mater Res, 2007, 81A: 736-747.
    [158]Stark Y, Bruns S, Stahl F, et al. A study on polysialic acid as a biomaterial for cell culture applications [J]. J Biomed Mater Res, 2007, 85: 1-13.
    [159]Rodriguez-Aparicio L, Reglero A, Ortiz, et al. Effect of physical and chemical conditions on the production of colominic acid by Escherichia coli in a defined medium [J]. Appl Microbiol Biotechnol, 1988, 27(5-6): 474-483.
    [160]Puente-Polledo L, Reglero A, et al. Biochemical conditions for the production of polysialic acid by Pasteurella haemolytica A2 [J]. Glycoconjugate J, 1998, 15 (9): 855-861.
    [161]Rode B, Endres C, et al. Large-scale production and omogenous purification of long chain polysialic acids from E. coli K1 [J]. Biotechnol, 1988, 135x: 202-209.
    [162]Bradford M M. A Rapid and Sensitive Method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    [163]中华人民共和国卫生部药典委员会.中华人民共和国药典, 1995年版[M].北京:化学工业出版社, 1995.
    [164]Shirahama K. The nature of polymer-surfactant interactions [C]. Marcel Dekker, New York, 1998: 143-191.
    [165]Ishiguro M, Tan W F, Koopal L K. Binding of cationic surfactants to humic substances, colloids and surfaces A: physicochem [J]. Eng Aspects, 2007, 306: 29-39.
    [166]Yang F P, Chin M C, Lee K C. Interaction of hyaluronic acid (HA) with organosilicon(Si-QAC) modified magnetite for HA recovery [J]. Sep Sci Technol, 2007, 42: 1747-1760.
    [167]Goddard E D, Hannan R B. Polymer Surfactant Interactions [J]. Am Oil Chem Soc, 1977, 54: 561-566.
    [168]盛瑞堂,谭天伟等.用十六烷基三甲基溴化铵从发酵液中提取透明质酸[J].北京化工大学学报, 2006, 33(3): 33-36.
    [169]Smith I H, Pace G W. Recovery of microbial polysaccharide [J]. Chem Tech Biotechnol, 1982, 32: 119-129.
    [170]王铮,张惠新,戴海平.超滤法去除细菌内毒素[J].卫生研究, 2001, 30(5): 315-316.
    [171]楼福乐,毛伟钢,陆晓峰,等.超滤技术在制药工业中除热原的应用[J].膜科学与技术, 1999, 19(3): 8-12.
    [172]Hotta K, Kurokawa M, Isaka S. Isolation and identification of two sialic acids from the jelly coat of sea urchin eggs [J]. J Biol Chem, 1970, 245(23): 6307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700