用户名: 密码: 验证码:
水力压裂压力动态试井分析与增产效果提高方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂是低渗透油气藏勘探、开发过程中一项十分重要的增产措施,其产生的垂直裂缝在开发过程中能够改变近井筒地带流体的渗流方式、增加泄油面积、提高驱油效率,从而最终影响油井单井产量和采收率。水力压裂施工效果的分析,以及根据分析结果采取针对性的增产效果提高方法,对于保证压裂措施获得较高的成功率和有效率十分关键,本文就是为了解决这一问题而进行了水力压裂压力动态试井分析与增产效果提高方法的研究。
    本文在考虑导流能力沿裂缝方向变化的条件下,在 Laplace 空间对有限导流垂直裂缝压力动态分布进行了详细讨论,同时应用边界元方法进行了数值求解。垂直裂缝井的导流能力在不同位置处是不同的,垂直裂缝变导流能力是一个难以用数学语言准确描述的问题,本文考虑了垂直裂缝变导流能力按直线变化、指数变化和对数变化的三种形式。
     针对影响压裂施工效果的表皮污染、近井污染等主要因素,文中研究了一些创新的增产效果提高方法,同时对可过量加入、提高压裂液破胶效果的胶囊破胶剂,并对囊衣材料的配方组成和合成方法进行实验研究;研究压裂-气举-求产一体化技术,通过采用多级高压气举阀实现压裂液的快速、连续返排,大大提高了压裂液返排速度和返排率;研究了以小分子表面活性剂为稠化剂的 VES-80 清洁压裂液的配方和组成,并对其性能进行了测试评价实验,大大降低的压裂液的二次污染;研究了多脉冲加载压裂技术,可在井筒附近产生 3-8 条径向裂缝,大大降低微粒堵塞产生的压裂效果下降。
    采用本文研究的水力压裂压力动态试井分析与增产效果提高方法,在辽河油田坨 32 井进行了矿场应用,取得了比较理想的效果。
    通过本论文的研究,能够使垂直裂缝的理论和方法的研究达到一个更高的层次,为油气田的水力压裂的矿场实际应用提供更好的理论基础和研究方法。
Hydraulic fracturing is a generally applied technique for enhancing production of wells for low permeability formation in exploration and exploitation. The vertical fractures made can alter flow mode in reservoir along well bores, increase drain area, advance the sweeping oil efficiency, and finally work on production and recovery. The effect analysis of hydraulic fracturing and its approach for increasing production are the key factors for guaranteeing hydraulic fracturing success ratio. A comprehensive study has been made to a comparatively integrated system of vertical fractures’ theory and means based on establishment of basic mathematic models.
    The transient flow of the vertically fractured well has been discussed particularly and derived at Laplace domain about finite & uniform flow & infinite-conductivity vertical fracture considering wall damage and has been numerical solved applying boundary element means. The conductivity of vertical fractured well is very difficult to describe in math methods because of the conductivity varied at different place. The linear, exponential, logistical forms about varying conductivity have been discussed and solved.
    In view of the main factors of skin damage, near wellbore formation pollution and cold damage which affect fracturing effects, some creative stimulation methods are studied; meanwhile, the encapsulated breaker which can be added excessively and used for improving the breaking effects of the fracturing fluid and the formulation and composition of the encapsulated material are experimentally studied; an integrated technology of fracturing-gas lift-production is investigated and rapid and continuous flowback for the fracturing fluid is realized by use of the multistage high-pressure gas lift valve to improve the flowback rate of the fracturing fluid; he formulation and composition of VES-80 clean fracturing fluid with light-molecule surfactant as the viscosifying agent are developed and its performance is evaluated and tested to reduce the secondary pollution of the fracturing fluid significantly.
    Hydraulic fracturing pressure behavior well-testing analysis and stimulation effects improvement method developed in the paper have been applied in Tuo32 of Liaohe Oilfield and good effects have been achieved.
    It is expected that though the study of the paper, the theory and method about the vertical fracture could be improved to a higher level. Thereby, it could present better basis of the theory and method of application for the hydraulic fractured field.
引文
[1] Agarwal,R.G., Carter, R.D., and Pollock, C.B. Evaluation and Performance Prediction of Low-Permeabiliy Gas Reservoir.Holditch, S.A.et al.The Optimization of Well Spacing and Fracture Length in Low Permeability Gas Reservoirs,JPT (Mar.1979)362-72; Trans., AIME,Vlo213:245-249.
    [2] Al-Khalifah,A.A.,et al,“A New Approach to Multiphase Well test Analysis”SPE 16743(Sept.1987).
    [3] Baker,C.O.Effect of Price and Technology on Tight Gas Resources of United States”, Paper 819584 presented at the 1982 ASME Intersociety Energy Conversion Conference, Atlanta, and Aug.9-14
    [4] Bourdet D. and Gringarten,A.C. “Determine of Fissure Volume and Block Size in Fractured Reservoir by Type-Curve Analysis”, (1980), SPE9293.
    [5] Brons,F., and Miller,W.C.A Simple Method for Correcting Spot Pressure Readings,J.Pet.(Aug.1961)803-805;Trans.,AIME,Vol.222
    [6] Cinco and Samaniego. “Transient Pressure Analysis for Fracture Wells”,JPT,(Sep )1981.
    [7] Cinco, L. H. et al. Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertical Fractured Wells, Paper SPE 6014 (Oct. 1977).
    [8] Cinco-Ley and Samaniego:“Transient Pressure Behavior for a Well with Finite-Conductivity Vertical Fractures.”SPEJ, Aug.1978.
    [9] Clark, J.B:“A Hydraulic Process for Increasing the Productivity of Wells”, Petroleum Trans., AIME (Jun, 1949)186:1-8.
    [10] Clark, K.K:“Transient Pressure Testing of Fractured Water Injection Wells”,Paper SPE1821(June,1968)20:639-643.
    [11] Correa,A.C and Ramey,H.J.Jr. A Method for Pressure buildup Analysis of DrillstemTests.SPE16802 presented at the SPE 62nd Annual Technical Conference and Exhibition.Dallas,Texas(Sept,27~30),1987
    
    [12] Crawford,P.B &Landrum,B.L: “ Effect of Unsgnme Trial Vertical Fractures on Production Capacity,Trans AIME(1955)204:251-254.
    [13] Drill and Prod.Prac.API (1958).
    [14] Dyes A.B. Kemp.CE, and Caudle, B.H:“Effect of Fractures of Sweep-out Pattern”,Trans.
    [15] Fatlma M.C and Correa,A.C Drillstem Test Pressure Analysis Considering Several flow Geometry and Reservoir models SPE19844 ,Presented at 64th Annual technical Conference and Exhibition of the Society of Petroleum Engineering, held San Antonio Tx(Oct.8~11)1989
    [16] Gringarten and R.Raghavan.Unsteady-State Pressure Distributions Created by a Well with a Single Infinite-Conductivity Vertical Fracture, SPE4051, (1974)
    [17] Gringarten,A.C. and Harris: “A Directed Finite-Difference Simulation of a Gas Well with a Finite Capacity Vertical Fractures”, (1976), SPE5736.
    [18] Gringarten,A.C. and Ramey H.J.Jr.The Use of Source and Green’s function in Solving Unsteady-Flow Problems in Reservoirs,SPEJ(Oct. 1973)285-96
    [19] Gringarten,A.C.,Ramey and Raghavan: “Pressure Analysis for Fractures Reservoir Properties by Well Testing”, (1975), SPE5346.
    [20] Gringarten,A.C.,Ramey and Raghavan: “Unsteady-State Pressure Distributions by a Well with a Single Infinity Conductivity Vertical Fracture”, SPEJ (Aug, 1974):347-360.
    [21] Gringarten,A.C.:“Reservoir Limit Testing for Fractured Wells”, SPE7452.
    [22] H.Cinco_Ley and H._Z.Meng.Pressure Transient Analysis of Well with Finite Conductivity Vertical Fractures in Double Porosity Reservoirs,SPE18172 (1988)
    [23] Howard.George C. and Fase.C.R. “Optimum Fluid Characteristics for Fracture Extension”
    [24] J. L. Gidley 等著,蒋阗等译.水力压裂技术新进展.北京:石油工业出版社,1995
    [25] Mcguire, W. J. and Sikora V. J.The Effect of Vertical Fractures on Well Productivity. Paper SPE 1618-G (Aug. 1960)
    [26] Muskat.M:“Flow of Homogeneous Fluids Through Porous Media”,Graw Hill Book Co.Inc New York (1937):409.
    [27] Ozkan E. and Raghavan R.New Solutions for Well-Test-Analysis Problems:Part 1-Analytical Considerations.Paper SPEFE (Sept. 1991)
    
    [28] Prats, M. et al. Effect of Vertical Fracture on Reservoir Behavior--compressible Fluid Case, Paper Presented as 36th Annual Fall Meeting of SPE, (Oct. 1961) in Dallas
    [29] Prats, M.Effect of Vertical Fractures on Reservoir Behavior-Incompressible Fluid Case.SPEJ (June 1961)105-18; Trans, AIME, 222
    [30] Prats,M. et al:“Effect of Vertical Fracture on Reservoir Behavior-Incompressible Fluid Case”,Paper Presented as 35th Annual Fall Meeting of SPE,(Oct.1960)in Denver.
    [31] Prats,M. et al:“Effect of Vertical Fracture on Reservoir Behavior-compressible Fluid Case”,Paper Presented as 36th Annual Fall Meeting of SPE,(Oct.1961)in Dallas.
    [32] Raghaven R.、Cady G.V.and Ramey H.L.:“Well-testing Analysis for Vertical Fractured Wells”SPE5496(Jul, 1975):887-893.
    [33] Russell & Truilt:“Transient Pressure Behavior in Vertical Fractured Reservoirs”,JPT(1964):1159-1170.
    [34] Tannich, J.D. and Nierrode, D., E.The Effect of Vertical Fractures on Gas Well Productivity, SPE15902 (1986)
    [35] Tiab D.and Puhigai S.K.:“Pressure-Derivative Type Curves for Vertical Fractures Wells”SPE11082 (1982).
    [36] Tinsley J.M., Williams J.R.:“Well Test Interpretation of Presence of Skin Effect and Wellbore Storage”,JPT Jan, 1969:94-107.
    [37] Tinsley, J. M., Williams J. R., Tiner R. L. and Malone W. T.Vertical Fracture Height--Its Effect on Steady-State Production Increase,Paper SPE 1900 (May 1969)
    [38] Veatch, R.W.Jr.A Brief Survey of the Technology Challenge to Improve Recovery from Tight Gas Reservoirs, Paper 819584 Presented at the 1982 ASME Intersociety Energy Conversion Conference, Atlanta, Aug.9-14
    [39] W-C.Chu and G.D.Shank.A New Model for a Fractured Well in a Radial, Composite Reservoir,SPE20579 (1990)
    [40] Fister, et al. A Practical Guide to Hydralic Fracture Diagnostic Technologies.SPE77442
    [41] Cipolla, et al. Diagnostic Techniques to Understand Hydraulic Fracturing. SPE59735
    [42] 陈勉.松软地层水力压裂缝宽预测.《油气藏改造论文集》. 北京:石油工业出版社,2001
    
    [43] 葛家理编,《油气层渗流力学》.北京.石油工业出版社,1982.
    [44] 孔祥言著,《高等渗流力学》.合肥.中国科学技术大学出版社.1999.7.
    [45] 刘慈群.垂直裂缝地层中流体的渗流.石油勘探与开发,1987,3
    [46] 刘慈群.在双重孔隙介质中有限导流垂直裂缝井的非牛顿流体试井分析方法.石油学报,11(4),1990
    [47] 米卡尔 J .埃克诺米得斯著,张宝平译.油藏增产措施(第三版).2002:475-479
    [48] 万人溥.采油技术手册(九). 北京:石油工业出版社,1998.
    [49] 王鸿勋、张士诚.水力压裂设计数值计算方法.北京:石油工业出版社,1998
    [50] 虞绍永等.DST 垂直裂缝井流动期或段塞流压力分析方法.大庆石油地质与开.1991(3):67~74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700