用户名: 密码: 验证码:
高温非均质砂岩储层变粘胶束酸分流酸化技术及酸岩反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高温非均质砂岩储层酸化时酸液有效置放困难、高温砂岩酸岩反应过程中会出现水合二氧化硅沉淀及二次伤害明显的问题,本文首次提出采用抗高温体系的两性粘弹性表面活性剂研制适用于高温非均质砂岩储层分流酸化的变粘胶束分流酸,成功研制出了在高温砂岩储层中具有自转向功能的芥子酰胺丙基甜菜碱变粘胶束分流酸;首次系统地建立了高温砂岩酸化流体流动与化学反应耦合动力学模型,用计算机程序实现了高温酸岩反应过程的重复再现,量化这种水合二氧化硅和确定了其产生的位置,建立了优化高温砂岩储层酸化设计参数的方法;同时建立了胶束凝胶分流模型和能反映包括分流剂在内的各种工作液工作状况的实时间监测模型,形成了砂岩胶束分流酸酸化技术。论文完成的主要工作有:
     Ⅰ.从表面活性剂结构与性能的关系研究入手,重点分析表面活性剂胶束的形成特点和表面活性剂溶液胶束聚集随pH值变化的特点,从中得出只有两性表面活性剂的胶束溶液的粘弹性具有显著的pH值效应,详细分析了两性表面活性剂分子结构与性能的关系,设计出了具有良好粘弹性行为的两性粘弹性表面活性剂的分子结构,并对其命名为芥子酰胺丙基甜菜碱。
     Ⅱ.通过对两性表面活性剂合成方法的研究,探索出芥子酰胺丙基甜菜碱的合成方法,经过反复多次的合成实验尝试,成功合成出芥子酰胺丙基甜菜碱,测定了反应产物的含量,并通过正交实验优化了合成条件。
     Ⅲ.从芥子酰胺丙基甜菜碱酸液与砂岩矿物反应及其变粘机理研究入手,研制出了适用于砂岩分流酸化的粘弹性表面活性剂酸液体系,并研究了这种酸液体系的粘弹性行为和流变性,以及各种酸液添加剂对其流变性的影响,最后用岩心流动实验对其性能进行了评价。
     Ⅳ.在掌握了高温砂岩酸化酸岩反应机理的基础上,首先推导了自然界中通用的流体流动与化学反应耦合动力学模型,然后建立了高温砂岩酸化流体流动与化学反应耦合动力学模型,并对模型进行了数值解,用计算机程序实现了高温酸岩反应过程的重复再现,通过改变不同的操作条件和操作参数揭示了高温条件下酸岩反应过程中水合二氧化硅的形成特点,在不同的关键的酸化参数下(排量、用酸体积、温度、HCL与HF的比和HF浓度)量化了在不同条件下水合二氧化硅产生的数量,确定了其产生的位置,最后采用二次伤害和溶蚀能力综合诊断图版的方法来优化酸化设计参数。
     Ⅴ.从考虑粘性表皮系数出发,建立了胶束凝胶分流模型和能反映包括分流剂在内的各种工作液工作状况的实时监测模型。从计算结果分析了各小层渗透率差异和表皮系数差异对分流设计的影响,完成了分流酸化时对粘性表皮系数和伤害解除过程中真实表皮系数演变的实时监测,优化了施工过程。
Confront with the problem of effective layout of acid and the problem of second damage of silica gel during reaction of acid with mineral in high temperature heterogeneity sandstone reservoir, this article firstly put forward develop amphoteric viscoelastic surfactant micelle acid used for diversion acid in high temperature heterogeneity sandstone reservoir, successfully developed sinapic amido propyl betaine micelle acid which own the property of self-diverting; systematic established coupling kinetics model of flowing and reaction of acidizing in high temperature reservoir firstly, realized repeat reproduce of the reaction process of reaction of acid with mineral, quantized silica gel and ascertained its location, established optimal design method of acidizing in high temperature heterogeneity sandstone reservoir; In the same time, established micelle gel diversion model and real-time monitoring model which can response the working state of diverter and other working fluid, formed sandstone micelle acid diversion acidizng technology. The main work of this article include:
    I . Originate with the research of the relation of construction and property of surfactant, emphatically analyse the feature of micelle form and the property of micelle aggregating under different pH, draw a conclusion that the viscosity of amphoteric surfactant fluid own significant pH effect, In detail analysed the relation of construction and property of amphoteric surfactant, design out a new amphoteric viscoelastic surfactant molecular structure, denominate sinapic amido propyl betaine.
    II. Through the research of synthesis method of amphoteric surfactant, track out the synthesis method of sinapic amido propyl betaine, successfully synthesized sinapic amido propyl betaine, measured the amount of product, optimized synthesis condition by orthogonal experiment.
    III. Originate with the research of the reaction of sinapic amido propyl betaine acid with sandstone mineral and its viscosity changing mechanism, researched out the viscoelastic surfactant acid system which can be applied in sandstone reservoir, and studied its viscoelastic behaviour and rheology, also the effect of additive on its rheology, finally, evaluated its property by core flow experiment.
    IV. On the basis of mastered the mechanism of reaction of mud acid and sandstone mineral, firstly derived the coupling kinetics model of flowing and reaction in nature, thence established coupling kinetics model of flowing and reaction of acidizing in high temperature reservoir, and solved the model by computer program, repeat reproduce of the reaction process of reaction of acid with mineral by computer program, through changing the operation condition and the operation parameter revealed the feature of silica gel generating,
引文
[1] Phil Rae, Gino di Lullo. Matrix acid stimulation-a review of thestate-of-the-art. SPE 82260, 2003
    [2] Lynn, J. D et al. A core-based comparison of the reaction charateristics of emulsified and in-situ gelled acids in low permeability, high temperature, gas bearing carbonates. SPE65368, 2001
    [3] Scott M. McCarthy, Qi Qu, Dan vollmer. The successful use of polymer-free diverting agents for acid treatments in the Gulf of Mexico. SPE 73704, 2002
    [4] David Alleman, Qi Qu, Richard Kech. The development and successful field use of viscoelastic surfactant-based diverting agents for acid stimulation. SPE 80222
    [5] Smith, C. F. and Hendrickson, A. R.: "Hydrofluric acid stimulation of sandstone reservoirs" JPT. (Feb. 1965)215~222
    [6] Rick D. Gdanski, Chris E. Shucnart. Newly discovered equilibrium controls HF stoichiometry. SPE30456, 1995
    [7] Rick D. Gdanski. Kinetics of primary reaction of HF on alumino-silicates. SPE31076, 1997
    [8] Rick D. Gdanski. Kinetics of secondary reaction of HF on alumino-silicates. SPE31076,1997
    [9] Rick D. Gdanski. Kinetics of tertiary reaction of HF on alumino-silicates. SPE31076, 1996
    [10] Shuchart. C. E, Buster. D. C.. Determination of the chemistry of HF acidizing with the use of 19F NMR spectroscopy. SPE28975, 1995
    [11] Crowe. C. W. Precipitation of hydrated silica from spent hydrofluoric acid: how much of a problem is it? JPT, 1986: 1234~1240
    [12] Walsh. M. P, Lake, L. W, Schechter, R. S. A Description of chemical precipitation mechanisms and their role in formation damage during stimulation by hydrofluoric acid. JPT, 1981: 2097~2117
    [13] E. P. da Mona. Benjamin Plavnik, R. S. Schecter, A. D. Hill. Accounting for silica precipitation in the design of sandstone acidizing. SPE23803, 1993
    [14] R. L. Thomas, H. A. Nasr-El-Din. The impact of HCl to HF ratio on hydrated silica formation during the acidizing of a high temperature sandstone gas reservoir in Saudi Arabia. SPE77370, 2002
    [15] R. L. Thomas, H. A. Nasr-El-Din. Channel vs. matrix sandstone acidizing of a HT/HP reservoir in Saudi Arabia. SPE73702, 2002
    [16] R. L. Thomas, H. A. Nasr-El-Din. Precipitation during the aeidizing of a HT/HP illitic sandstone reservoir in eastern Saudi Arabia: A laboratory study. SPE71690, 2001
    [17] Hans Kr. Kotlar, Arvid O. Hove. Acid stimulation studies in simulated radial flow conditions: Laboratory results compared with field data. SPE83682, 2002
    [18] R. D. Gdanski. Fluosilicate Solubilities Affect HF acid compositions. SPE27404, 1994
    [19] R. L. Hartman, B. Lecerf. Acid sensitive aluminosilicates: Dissolution kinetics and fluid selection for matrix stimulation treatments. SPE82267, 2003
    [20] Murtaza Ziauddin, Oliver Berndt. An improved sandstone acidizing model: The importance of secondary and tertiary reactions. SPE54728,1999
    [21] F. F. Chang et al. Experience in acid diversion in high permeability deep water formations using visco-surfactant. SPE71691, 2001
    [22] Majdi Al-Mutawa et al. Field cases of a zero damaging Stimulation and Diversion Fluid from the Carbonate Formations in North Kuwait. SPE80225, 2003
    [23] Artola et al. Non-damaging viscoelastic surfactant-based fluids used for acid fracturing Treatments in Veracruz Basin, Mexico. SPE86489, 2004
    [24] Frank Chang et al. A novel self-diverting-acid developed for matrix stimulation of carbonate reservoirs. SPE65033, 2001
    [25] David Alleman et al. The development and successful field use of viscoelastic surfactant-based diverting agents for acid stimulation. SPE80222, 2003
    [26] Scott M. McCarthy et al. The successful use of polymer-free diverting agents for acid treatments in the Gulf of Mexico. SPE73704, 2002
    [27] F. F. Chang et al. New material and technique for matrix stimulation in high-water-cut oil wells. SPE64006, 2000
    [28] Chang, F. F et al. Experience in acid diversion in high permeability deep water formations using viscoelastic-surfactant. SPE68919, 2001
    [29] Bemhard Lungwitz et al. Diversion and cleanup studies of viscoelastic surfactant-based self-diverting acid. SPE86504, 2004
    [30] Samuel M, Card R J, Nelson E B, et al. Polymer-free fluid for fracturing, SPE38622, 1997
    [31] 刘伟,刘建权.VES-80清洁压裂液实验研究.钻井液与完井液.2004,21(3):16~18
    [32] 卢拥军,方波,等.粘弹性表面活性剂压裂液VES-70工艺性能研究.油田化学.2004,21(2):120~122
    [33] 江波,张灯,李东平,等.耐温VES压裂液SCF的性能.油田化学,2003,20(4):332~334
    [34] Nasr-El-Din et al. Acid fracturing HT/HP gas wells using a novel surfactant based fluid system. SPE84516, 2003
    [35] Al-Muhareb et al. Acid fracturing of power water injectors-A new field application using polymer-free fluids. SPE82210, 2003
    [36] 郑云川,赵立强,刘平礼.两性表面活性剂的酸液体系在基质酸化及酸压中的应用.天然气工业,2005,25(12):71~73
    [37] F. F. Chang, A. M. Acock, A. Geoghagan. Experience in acid diversion in high permeability deep water formations using visco-elastic-surfactant. SPE68919, 2001
    [38] P. F. Sullivan, B. Gadiyar, R. H. Morales. Optimization of a visco-elastic surfactant (VES) fracturing fluid for application in high-permeability formations. SPE98338, 2006
    [39] Hisham A. Nasr-El-Din. Lessons learned from using viscoelastic surfactants in well stimulation. SPE90838, 2004
    [40] Mohamed Safwat, Hisham A. Nasr-El-Din. Enhancement of stimulation treatment of water injection wells using a new polymer-free diversion system. SPE78588, 2002
    [41] McCune, C. C., et al. A new model of the physical and chemical changes in sandstone during acidizing. SPEJ(Oct. 1975): 361~370
    [42] Lund, K. and Fogler, H. S. Acidization-V: The Prediction of the movement of acid and permeability fronts in sandstone. Chem. Eng. Sci. (1976) 31: 381~392
    [43] Hill, A. D., Lindsay, DoM., Silberberg, I. H., and Schechter, R. S. Theoretical and Experimental Studies of Sandstone Acidizing. SPEJ (1981): 30~42
    [44] Labrid, J. C. Thermodynamic and kinetic aspects of argillaceous sandstone acidizing. SPEJ (Apr. 1975): 117~128
    [45] Bryant, S. L. An improved model of mud acid/ sandstone chemistry. SPE 22855 presented at the 1991 SPE Annual Technical Conference and Exhibition, Dallas, Oct. 6~9
    [46] Williams, B. B. and Whiteley, M. E. Hydrofluoric acid reaction with a porous sandstone. SPEJ (Sept. 1971): 306~314
    [47] Kenneth R. Kunze. Acidizing sandstone formations with fluoboric acid. SPE9387, 1983
    [48] Shaughnessy, Christopher M., Kunze, Kenneth R. Understanding sandstone acidizing leads to improved field practices. SPE9388, 1981
    [49] Li, Y., Fambrough, J. D., and Montgomery, C. T. Mathematical modeling of secondary precipitation from sandstone acidizing, paper SPE 39420 presented at the 1998 SPE International Symposium on Formation Damage Control, Lafayette, Feb. 18~19
    [50] Sevougian, S. D., Lake, L. W., and Schechter, R. S. KGEOFLOW: A new reactive transport simulator for sandstone matrix acidizing. SPE Production & Facilities (1995): 13~19
    [51] Eduardo P. da Motta, J. Altamiro C. M. dos Santos. New Fluosilicic acid system removes deep clay damage. SPE73194, 2001
    [52] Shuchart, Chris E. HF Acidizing returns analyses provide understanding of HF reactions. SPE30099, 1995
    [53] Phil Rae, Gino Di Lullo. Achieving 100 percent success in acid stimulation of sandstone reservoirs. SPE77808, 2002
    [54] Gerrit Nitters, Leo Roodhart, Hans Jongma. Structured approach to advanced candidate selection and treatment design of stimulation treatments. SPE63179, 2000
    [55] Mcleod H. O, Coulter A. W. The stimulation treatment pressure record- An overlooked formation evaluation tool. JPT, 1969, 950~952
    [56] Paccaloni G. New method proves value of stimulation planning. Oil&Gas Journal(Nov, 19, 1979): 155~159
    [57] Paccaloni G. Field History verifies control evaluation. Oil&Gas Journal(Nov, 26, 1979): 61~68
    [58] Paccaloni G., Tambini M. Advances in matrix stimulation technology. JPT, 1993, 256~260
    [59] Provost L. P, Economides M. J. Real-Time evaluation of matrix acidizing treatments. Journal Petroleum Sci&Eng, 1987, 145~152
    [60] Provost L. P, Economides M. J. Applications of real-time matrix acidizing evaluation method. SPE17156, 1989
    [61] Montgomerg C. T. Development of a Matrix-acidizing stimulation treatment evaluation and recording system. SPE26579, 1995
    [62] Ding Zhu, A. Daniel Hill. Field results demonstrate enhanced matrix acidizing through real-time monitoring. SPE35197,1996
    [63] A. D. Hill, SPE, and Ding Zhu. Real-time monitoring of matrix acidizing including the effects of diverting agents. SPE28548, 1996
    [64] Zhu, Ding, Hill, A. D. Field results demonstrate enhanced matrix acidizing through real-time monitodng. SPE52400, 1998
    [65] Taylor, K. C and Nasr-El-Din et al. Coreflood evaluation of in-Situ gelled acids. SPE73707, 2002
    [66] 方云.两性表面活性剂.北京:中国轻工业出版社,2001,28~30
    [67] 肖进兴,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003,118~120
    [68] 赵国玺,朱瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003,122~124
    [69] Hartly G S. Aqueous solution of paraffin chain selts. Paris: Hermarm, 1936
    [70] Shinoda K. Colkoidal surfactants. New York: Aead Press, 1963. Ch1
    [71] Myers D. Surfactant science and technology. 2nd ed. New York: VCH, 1992. p95
    [72] Clint J B. Surfactant aggregation. Glasgow and London: Blackied, 1992
    [73] 沈钟,王果庭.胶体与表面化学(第二版).北京:化学工业出版社,1997:32~38
    [74] H. Pilsl, H. Hofmana, S. Hofmann, J. Kalus, A. W. Kcncono, P. Lidner, and W. Ulbreht, J. Phys, Chem. 97: 2745(1993)
    [75] 朱友益,韩冬,沈平平.表面活性剂结构与性能的关系.北京:石油工业出版社,2003,132~133
    [76] 方云,夏咏梅.两性表面活性剂(一)两性表面活性剂概述.日用化学工业,2000,30(3):53~58
    [77] 满晨,刘庆生.甜菜碱的制备与应用.化工科技市场,2001:21(3):21~26
    [78] 汪祖模,徐玉佩.两性表面活性剂.北京:轻工业出版社,1990:58~65
    [79] Ernst R. Amphoteric surfactants(lst ed.), (Bluestein B. R. and Hilton C. l. eds). New York: Marcel Dekker, 1982. 117
    [80] BeckettA. H. Woodwrd R. J. J. Pharmac., 1963: 15~422
    [81] 方云,夏咏梅.两性表面活性剂(二)两性表面活性剂的表面活性和胶体性质.日用化学工业,2000,30(4)35~39
    [82] 方云.克拉夫特点(KP)与cmc的关系.日用化学工业,1991(1):20~24.
    [83] CjevalierY., GermanaudL., LePercheP. Micellar properties of zwitterionic phosphobetaine amphiphiles in aqueous solution: influence of the intercharge distance. Coll. PolymerSci, 1988, 266~441
    [84] 方云,夏咏梅.两性表面活性剂(八)两性表面活性剂的合成.日用化学工业,2001,31(4):56~60
    [85] GB 1525692: 1978, to Albright & Wilson Ltd
    [86] GB/9104.3~88酸值的测定
    [87] 汪荣鑫.数理统计(第一版).西安交通大学出版社.1986:148~158
    [88] 于世林,李寅蔚.波谱分析法(第二版).重庆大学出版社.1994:35~40
    [89] CatesME. Non liear viscoelastisity of wormlike micelles. JPhyChem, 1989, 94(3): 371~375
    [90] KernF, ZansR. Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium chloride in the presence of sodium chloride. Langmuir, 1991: 1344~1351
    [91] Rehage H, Hoffmann H. Rheological properties of viscoelastic surfaetants ystems. JPhysChem, 1988, 92(8): 4712~4719
    [92] 张为灿,李干佐,李英.表面活性剂蠕虫状胶束缔合体系研究进展.日用化学 工业,1999,23(5):34~40
    [93] 郭拥军,李健.粘弹性表面活性剂溶液及其在油田中的应用潜力.日用化学品科 学,1999,107(4):29~33
    [94] 才程,葛际江.孪连季铵盐表面活性剂.油田化学,2001,18(3):278~290
    [95] Hoffmann H. Viscoelastic surfactant solutions. ACS Symp. Se 1994, 578: 2~31
    [96] Herb C. A., ChenL. B., Sun W. M. Correlation of viscoelast properties with critical packing parameter for mixed surfactant solutions in the L1 Region. ACS Symp. Ser., 1994, 153~156
    [97] 徐军,周其南.磺基甜菜碱的合成、性能及应用.精细石油化工进展.2000,1(2):6~11
    [98] Ernstan R, Miller E. J. Amphoteric surfactant. New York: Marcel Dekker, 1982: 71~173
    [99] 刘俊,郭拥军,刘通义.粘弹性表面活性剂研究进展.钻井液与完井液,2003,20(3):47~50
    [100] Heinz Hoffmann. Fascination phenomena in surfactant chemistry. Elsevier Science Publisher B. V. Amsterdam, 1990: 123~135
    [101] Schipunov Yu A., H. Hoffmann. Growth, branching, and local ordering of Lecithin Polymer-Like micelles. Langmuir, 1998: 6350~6360
    [102] G. -X. Zhao, J. -X. Xiao. Rheological properties of the aqueous mixtures of cationic anionic surfactants Colloid Polym Sci, 1995: 1088~6360
    [103] Abdul Wahab H, Al-Ghamdi et al. Impact of acid additives on the rheological properties of viscoelastic surfactants and their influence on field application. SPE 89418, 2004
    [104] 郑云川,赵立强,刘平礼.新型两性表面活性剂——芥子酰胺丙基甜菜碱的合成及其在酸化中应用研究.钻井液与完井液,2006,23(3):32~37
    [105] 郑云川,赵立强,刘平礼.芥子酰胺丙基甜菜碱变粘酸化液研究.油田化学,2006,23(3):21~24
    [106] 王积涛,胡青眉,张宝申.有机化学.天津:南开大学出版社,2002:432~453
    [107] C. E. Shuchart. Identification of aluminum scale with the aid of synthetically produced basic aluminum fluoride complexes. SPE23812, 1993
    [108] Fogler, H. S. and McCune, C. C. On the extension of the model of matrix acid stimulation to different sandstones. AIChD(1976), 22, 799~805
    [109] Halliburton Modern Completion Practices. Chemical stimulation. 1986, 31~32
    [110] Guichard Ⅲ, J. A., Allison, D., Gdanski, R. D., and Ghalambor, A. An overview of HF acid as applied to the wilcox sand In Reddell field. Southwest Louisiana. SPE 31139, 1996
    [111] Gdanski, Rick. Kinetics of the primary reaction of HF on alumino silicates. SPE37359, 1997
    [112] Gdanski, Rick. Fractional pore volume acidizing flow experiments. SPE30100, 1995
    [113] 金世勋.物理化学.河北:高等教育出版社.1989:285~294
    [114] 中国科学院地球化学研究所编.高等地球化学.北京:科学出版社,1998:140~158
    [115] Zhu D, Hill A D. On-site evaluation of acidizing treatment of a gas reservoir. SPE39421, 1998: 39~44
    [116] Zhu D, Hill A D. Field results demonstrate enhanced matrix acidizing through real-time monitoring. SPE52400, 1998: 279~284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700