用户名: 密码: 验证码:
地震时浅埋地下管线上浮机理及减灾对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震时,浅埋地下管线的破坏主要是由于地基液化引起管线上浮所导致的,研究地震时地下管线上浮机理及减灾对策是岩土工程和生命线工程的重要课题。本文结合国家自然科学基金项目《地震时浅埋地下管线上浮机理及减灾对策研究》(50278009)和《饱和砂砾土的液化特性及变形、强度参数的相关性研究》(50578029),围绕了饱和砂土地基中浅埋地下管线上浮机理及其影响因素、饱和土非线性有限元程序开发、饱和土有效应力分析方法、减轻地下管线震害的工程措施等进行了较为深入的研究。论文的主要研究内容如下:
     (1)通过类比的试验方法,精心设计了一系列的振动台模型试验,着重观察了饱和砂土地基的地震加速度反应、振动孔隙水压力的产生和消散过程,初步探讨了地震时地下管线上浮机理和几种不同排水(或加固)措施对抑制管线上浮的效果。
     (2)利用Windows开发平台,采用面向对象设计方法和Visual C++MFC开发工具开发了饱和土非线性有限元程序GEODYNA及其有限元后处理软件POST2D。GEODYNA引入了多核并行计算、命令式输入等一些先进技术,实现了大量的本构模型和单元类型。通过对饱和土的一维固结问题和动力问题进行数值模拟,验证了GEODYNA计算结果的可靠性。这些程序为进一步深入研究饱和地基中地下管线上浮机理和减灾措施奠定了数值分析基础。
     (3)在广义Biot固结方程的基础上,联合采用等效线性粘弹性模型和Seed建议的孔压模型,建立了饱和砂土地基的动力固结有效应力分析方法。据此,对振动台模型试验的部分工况进行了数值模拟,进一步研究了管线上浮机理,并对抗上浮措施的效果进行了评价。
     (4)基于总应力分析方法,联合采用等效线性粘弹性分析方法和液化流动变形分析方法,对地下管线的上浮反应进行分析,并讨论了管线直径、埋深、地下水位、地基土相对密度等因素对地下管线上浮位移的影响。
     (5) GEODYNA框架中实现了广义Biot固结原理和Pastor-Zienldewicz Mark-Ⅲ广义塑性模型为基础的有效应力分析方法,模拟了饱和砂土地基中地下管线的上浮过程及抗上浮措施的效果,进一步研究了U形碎石排水对液化土中地下管线上浮的减灾效果及机理,并讨论了排水措施竖向排水带宽度、竖向排水带与管线的距离、水平排水带厚度、排水碎石渗透系数等因素对管线上浮位移的影响。
The uplift of pipelines buried at shallow depth in liquefiable soil due to earthquake induced liquefaction may lead to severe damage. The study of uplifting mechanism and mitigation measurement of pipelines is important subject for geotechnical engineering and lifeline engineering. The present research is supported by the National Science Foundation Project-Study on Uplifting Mechanism and Mitigation Measurement of the Pipelines Buried at Shallow Depth during the Earthquake (No. 50278009) and the National Science Foundation Project-Study on Liquefaction and Relationship Between Parameters of Deformation and Strength of Saturated Sand-gravel Composites (No. 50578029). The main contents of the current research are as follows:
     (1) A series of shaking table tests are conducted by analogy method. The acceleration and excess pore water pressure response behaviors of soil foundations are studied. The uplift mechanism of pipeline and the effectiveness of different types of drainage or reinforcement measures are discussed.
     (2) Based on the Windows Operation System and Visual C++ MFC development tools, a saturated soil nonlinear FEM program-GEODYNA and its post-process program-POST2D are implemented by the Object-oriented method. Some advanced techniques are adopted in GEODYNA, such as Multi-Core parallel computing, command line input. A lot of soil models and FEM elements are implemented in GEODYNA. GEODYNA is verified by using analytical solution for one-dimensional saturated porous elastic consolidation and dynamic problem, and it is shown that the accuracy of the numerical solution is comfortably high.
     (3) An effective stress Finite Element Method is implemented for simulating the shake table test on pipelines buried in the saturated sand foundation. This method is based on generalized Biot's equations. The hyperbolic stress and strain relationship is used in the numerical model. Pore pressure generation due to earthquake loading is calculated via the pore pressure model developed by Seed et al. The excess pore water pressure response behaviors of soil foundations, the effectiveness of different types of drainage measures arecompared with the results of tests.
     (4) The floation of pipelines is analyzed by the equivalent linear method and liquefaction flow method. The effects of diameter and depth of pipelines, groundwater level, and relative density of soil on the uplift behavior are studied.
     (5) On the base of generalized Biot theory of consolidation and Pastor-Zienkiewicz Mark-Ill generalized plasticity constitutive model, the effective stress Finite Element Procedure is implemented in the frame of GEODYNA, which is used to study the effectiveness of gravel drainage as mitigation method against the uplift of pipelines buried in liquefiable soil. Some parametric studies are conducted to investigate the influence factors of pipeline floatation, including the width of vertical drainage, the distance between vertical drainage and pipeline, the thickness of horizontal drainage, and the permeability of drainage.
引文
[1]O'Rourke T D,Gowdy T E,Stewart H E and Pease J W.Lifeline and geotechnical aspects of the 1989Loma Prieta earthquake[C]// Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics:University of Missouri-Rolla:MO,1991:1601-1612.
    [2]Hamada,M.,Isoyama,R.,and Wakamatsu,K.(1996)."Liquefaction-Induced ground displacement and its related damage to lifelines." Special Issue of Soils and Foundations,81-97.
    [3]Mohri Y,Yasunaka M,Tani S.Damage to buried pipeline due to liquefaction induced performance at the ground by the Hokkaido-Nansei-Oki Earthquake in 1993[A].Proceedings of First International Conference on Earthquake Geotechnical Engineering[C].Rotterdam:Balkema,1995,31-36.
    [4]Koseki J,Matsuo O,Sasaki T,Saito K,Yamashita M,Damage to sewer pipes during the 1993Kushiro-Oki and the 1994 Hokkaido-Toho-Oki earthquakes[J].Soils and Foundations,2000,40(1):99-111.
    [5]Newmark N M,Hall W J.Pipeline design to resist large fault displacement[A].Proceedings of First US Conference on Earthquake Engineering[C],Ann Arbor,1975,416-425.
    [6]Trautmann C H,O'Rourke T D,Kulhawy F D.Uplift force-displacement response of buried pipe[J].Journal of Geotechnical Engineering,ASCE,1985,111(9):1061-1076.
    [7]Katada,T.and Hakuno,M.Experiment analysis on dynamic behavior of underground structures in the liquefaction process.Proceeding of Japan Society of Civil Engineering,1981,380:1-10
    [8]Sekiguchi,K.and Oishi,H.Experimental Study on the Effectiveness of Stabilizing Techniques of Underground Pipelines against Liquefaction.Proc.ofJSCE,1987,Vol.382/3-7,175-181
    [9]Selvadurai,A.P.S.Enhancement of the uplift capacity of buried pipelines by the use of geogrids.Geotechnical Testing Journal,ASTM,1989,12(3),211-216
    [10]侯忠良,甘文水,肖文虎,加热输油管线地震反应分析,工业建筑,1990,(1):23-27.
    [11]Takahashi,A and Fuchida,K.Anti-seismic reinforcement of pipelines in liquefied ground.Proceeding of 2~(nd) International Conference on Recent Advances in Geotechinical Earthquake Engineering and Soil Dynamics,University of Missouri-Rolla,MO,1991,737-742
    [12]Koseki J,Matsuo,O,and Koga,Y.Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake.Soil and Foundations,1997,37,97-108.
    [13]Koseki J,Matsuo,O,and Yoshida,T.Uplift of sewer manholes during the 1993 Kushiro-Oki Earthquake.Soil and Foundations,1997,37,109-121.
    [14]Towhata I,Vargas-Monge W,Orense R P,and Yao M.Shaking Table Tests on Subgrade Reaction of Pipe Embeded in Sandy Liquefied Subsoil.Soil Dynamics and Earthquake Engineering,1999,18,347-361
    [15]Koseki J,Matsuo O,Sasaki T,Saito K,Yamashita M.Damage to sewer pipes during the 1993kushiro-oki and the 1994 hokkaldo-toho-oki earthquakes[J].SOILS AND FOUNDATIONS,2000,Vol.40(1):99-111
    [16]Mohri Y,Kawabata T.and Ling H I.Experiments on shallowly buried pipelines using shaking table [C]// Proceedings of the 10th Earthquake Engineering Symposium,Tokyo:1998:1913-1916.
    [17]Mohri Y,Kawabata T,and Ling H I.Experimental study on the effects of vertical shaking on the behavior of underground pipelines[C]// Proceedings of Second International Conference on Earthquake Geotechnical Engineering,Lisbon:1999;489-494.
    [18]Ling H I,Mohri Y,Kawabata T,Liu H,Burke C,and Sun L.Centrifugal Modeling of Seismic Behavior of Large-Diameter Pipe in Liquefiable Soil.JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING,ASCE,2003,11:1092-1101
    [19]蔡建厚、刘学杰、侯忠良等,地下管线抗震,计算方法与工程应用,冶金部建筑总院防灾抗震工程研究所,1991,11,147-57.
    [20]K Shimamura,M Hamada,S Yasuda,Experimental and Analytical Study of the Floatation of Buried Gas Steel Pipe Due to Liquefaction,Proc.12 WCEE,2000,1385
    [21]Yeh Y.H,and Wang L R L.Combined Effects of Soil Liquefaction and Ground Displacement to Buried Pipelines,Proc.Of 1985 Pressure Vessels and Piping conference,ASME,PVP-Vol.98-4,1985,43-52
    [22]甘文水,侯忠良,液化土中埋设管线的上浮反应分析,特种结构,1959 6(3):3-7
    [23]Wang L R L,Shim J S,Ishibashi I,and Wang Y.Dynamic response of buried pipelines during a liquefaction process.Soil Dynamics and Earthquake Engineering,1990,9(1),44-50.
    [24]Wang L R L and Zhang H.Hurled Pipeline System in a Liquefaction Environment,Proc.10 WCEE,1992,5529-5534.
    [25]Chua K M,and Scaife R P.Geofabrics as tie-downs for submerged pipes.Geothechnical Fabrical Report,1992,19-26
    [26]Bardet J P,and Davis C A.Seismic analysis of flexible buried structures.Seismic Behavior of Ground and Geotechnical Structures,Seco e Pinto,Ed.,Balkema,1997,163-171.
    [27]林均岐,熊建国.液化场地土中埋设管线的上浮反应分析[J].地震工程与工程振动,2000,20(2):97-100.
    [28]Mayajima M,Kitaura M,Yoshida M.Liquefaction Potential for Lifeline Aseismic Design,in:Pro of 2nd China-Japan-US Trilateral Symp on Lifeline Earthquake Engineering.Xi'an:1994,177-184
    [29]Masaru K,Miyajima M.Large Dynamic Response of Buried Pipelines in Liquefaction Processes,第二届中日美生命线工程会议论文集,1994,75-81.
    [30]高田至郎.地下管线的液化分析,地下管线抗震,学术书刊出版社,1988,59-71.
    [31]Hardin B O,Drnevich V P.Shear modulus and damping in soils:measurement and parameter effects.Journal of the Soil Mechanics and Foundation Engineering Division,1972,98(6):603-624.
    [32]沈珠江.一个计算砂土液化变形的等价粘弹性模型.第四届全国土力学及基础工程学术会议论文集.北京:建筑工业出版社.1986.
    [33]Mroz Z.On the description of anisotropic work hardening.J Mech Physics Soilds,1967,15:612
    [34]Iwan W D.On a class of models for the yielding behaviour and composite systems.J Appl Mech,ASME,1967,34:612
    [35]Mroz Z,Norris V A,Zienkiewicz O C.An anisotropic hardening model for soils and its application to cyclic loading.Int J Number Analyt Methods Geomech,1978,2:203-221
    [36]Prevost J H.Mathematical modelling of monotonic and cyclic undrained clay behaviour.Int J Number Analyt Methods Geomech,1977,1,195-216
    [37]Dafalias Y F,Popov E P.A model of nolinearly hardening materials for complex loading.Acta Mechanica,1975,21:173-192
    [38]Kieg R D.A practical two-surface plasticity theory.J Appl Mech,ASME,1975,42:641-646
    [39]Dafalias Y F,Hermann L R.Bounding surface formulation of soil plasticity.In:Pande G N,Zienkiewicz O C eds.Soil Mechanics-Transient and cyclic loads,New York:Wiley,1982,253-282
    [40]Zienkiewicz O C,Mroz Z.Generalized plasticity formulation and application to geomaterials.In:Desal C S,Gallapher R H eds.Mechanics of Engineering Materials.Wiley,1984,665-679
    [41]Zienkiewicz O C,Chan A H C,Pastor M,Schrefler B A and Shiomi T.Computational geomechanics with special reference to earthquake engineering[M].London:Wiley,1999.
    [42]Pastor M,Zienkiewicz O C,Chan A H C.Generalized plasticity and the modeling of soil behavior[J].International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:151-190.
    [43]Matsuoka H,Sakakibara K.A constitutive model for sands and clays evaluating principal stress rotation.Soils and Foundations,1987,27:73-88
    [44]Aubry D et al.A double memory model with multiple mechanisms for cylic soil behaviour.In:Int Syrup on Numberical Models in Geomech,Zurich,1982
    [45]刘汉龙,丰土根,高玉峰等.砂土多机构边界面模型及其试验验证.岩土力学,2003,24(5):696-700
    [46]张建民,罗刚.考虑可逆与不可逆剪胀的粗粒土动本构模型.岩土工程学报,2005,27(2):178-184
    [47]Seed H B,Idriss I M,Simplified procedure for evaluating soil liquefaction potential.Journal of the Soil Mechanics and Foundations Division,ASCE,1971,97(9):1249-1273.
    [48]Seed H B,Lee K L,Idriss I M.Dynamic analysis of slide in the lower San Femando dam during the earthquake of Feb.9,1971,JGED,1975,101(9):889-912.
    [49]Mejia L H,Seed H B.Three dimensional dynamic response analysis of earth dams.Report EERC-81-15,1987.34-46.
    [50]Firm W D L.State-of-the-art of geotechnical earthquake engineering practice.Soil dynamics and Earthquake Engineering,2000,20(s):1-15.
    [51]周健,徐志英.土(尾矿)坝的三维有效应力动力反应分析.地震工程与工程振动,1984,4(3):60-70
    [52]沈珠江.饱和砂土的动力渗流变形计算.水利学报,1980,(2):14-22
    [53]徐志英,沈珠江.地震液化的有效应力二维分析方法.华东水利学院学报,1981,9(3)
    [54]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动,1985,5(4):52-72
    [55]周健,昊世明,曾国熙.土石坝三维两相动力分析.岩土工程学报,1991,13(5)
    [56]盛虞,卢盛松,姜朴.土工建筑物动力固结的耦合振动分析.水利学报,1989,(12):31-42
    [57]Chan A H C,Famiyesin O O and Muir Wood D.Numerical Prediction for Model No.1,in Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problem,(eds.) Arulanandan K and Scott R F,UC Davis,Vol 1.87-108 Rotterdam:Balkema,1993
    [58]Zienkiewicz O C,HUANG Maosong,Pastor M.Numerical modeling of soil liquefaction and similar phenomena in earthquake engineering[A].Verification of Numerical Procedures for Analysis of Soil Liquefaction Problems[C].Rotterdam:Balkema,1994.1401-1414.
    [59]Zienkiewicz O C,HUANG Maosong,Pastor M.Numerical prediction for model Nos 1,2,3,4a,4b,6,7 and 11[A].Verification of Numerical procedures for Analysis of Soil Liquefaction Problems[C].Rotterdam:Balkema,1993.247 - 258,423 -434,583 - 594,675 - 680,731 - 736,777 -782,873 - 880,997- 1006.
    [60]Zienkiewicz O C,HUANG Maosong,Pastor M.Geotechnical engineering:Computation and verification of dynamic behavior and liquefaction[A].Proc Int Conf on Computational Methods In Structural and Geotechnical Engineering[C].Hong Kong:The University ofHong Kong,1994.21-38.
    [61]Idriss I M,Lysmer J,Hwang R,and Seed H B.QUAD-4:a computer program for evaluating the seismic response of soil structures by variable damping finite element procedures.Rep.No.EERC 73- 16,Uni.of California,Berkeley,1973.
    [62]Hudson,M.,Idriss I.M.and Beikae,M.User manual for Quad4m:A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base:University of California,California,1994.
    [63]Lysmer J,Udaka T,Tsai C.F,Seed H.B.FLUSH:a computer program for approximate 3-d analysis of soil-structure interaction problems.Rep.EERC 75-30,Earthquake Engineering Research Center,University of California,Berkeley,1975.
    [64]Kagawa T et al.TLUSH:A computer program for the three dimensional dynamic analysis of earth dam.Report No.EERC81-14,Earthquake Engineering Research Center,University of California Berkely,USA,1981
    [65]Mejia L H,Seed H B,Lysmer J.Dyanmic analysis of earth dams in three dimension.J Geotech Engng Div,ASCE,1982,108(GT2):1586-1604
    [66]Mejia L H,Seed H B.Comparison 2D and 3D dynamic analyses of earth dams.J Geotech Engng Div,ASCE,1983,109(GT11):1383-1398
    [67]Siddharthan R,Finn W D L.TARA-2:Two dimensional non-linear static and dynamic response analysis.Soil Dynamics Group,Dept of Civil Engineering,University of British Columbia,Canada,1982
    [68]Finn W D L,Yogendrakumar M,Yoshida N.TARA-3:A Program for nonlinear static and dynamic effective stress analysis.Soil Dynamics Group,Dept of Civil Engineering,University of British Columbia,Canada,1986
    [69]Finn W D L,Yogendrakumar M.TARA-3FL:Program for analysis of liquefaction induced flow deformations.Soil dynamic Group,Dept of Civil Engineering,University of British Columbia,Canada,1989
    [70]Finn W D L.State-of-the-art of geotechnical earthquake engineering practice.Soil dynamics and Earthquake Engineering,2000,20(s):1-15.
    [71]Kawai T.Summary report on the development of the computer program DIANA-Dynamic interaction approach and nonlinear analysis.Science University of Tokyo,Tokyo,1985.
    [72]Chan A H C.A unified f'mite element solution to static and cynamic geomechanics problem:(PhD dissertation).Wales:University college of Swansea,1988.
    [73]Chan A H C.User's manual for DIANA-SWANDYNE Ⅱ.Report of Department of Civil Engineering,Glasgow University,1990.
    [74]Prevost J H.DYNEFLOW:a nonlinear transient finite element analysis program.Report of Civil Engineering,Princeton University,1985.
    [75]Muraleetharan K K,Mish K D,Yogachandran C,et al.DYSAC2:Dynamic soil analysis code for 2-dimentsional problems.Department of Civil Engineering,University of California,Davis,California,1988.
    [76]Anandarajah A.HOPDYNE-A finite element computer program for the analysis of static,dynamic and earthquake soil and soil-structure systems.The Johns Hopkins University,Baltimore,Maryland,1990.
    [77]Oka F,Yashima A.User's manual of 2-dimensional liquefaction program,LIQCA.Deparment of Civil Engineering,Gifu University,Japan,1990.
    [78]Li X S,Wang Z L,Shen C K.S UMDES:A nonlinear procedure for response analysis of horizontally-layered sites subjected to multidirectional earthquake loading.Department of Civil Engineering,University of California,Davis,1992.
    [79]Ming H Y,Li X S.SUMDES2D:A two dimensional fully-coupled geotechnical earthquake analysis program.Report to the Department of Civil Engineering,the Hong Kong University of Science and Technology,Hong Kong,2001.
    [80]吴世明等.土动力学[M].北京:中国建筑工业出版社,2000
    [81]Bruce W R F.Object-oriented finite element analysis[J].Computer&Structure,1990,34(3):355-374
    [82]Maclde R I.Object-oriented programming and numerical methods[J].Microcomputer in Civil Engineering,1991,6
    [83]Scholz S P.Elements of an Object-oriented FEM program in C++[J].Computer&Structure,1992,43(3):517-529
    [84]周本宽,曹中清.面向对象有限元程序的类设计[J].计算结构力学及其应用,1996,13(3):269-278
    [85]曹中清,周本宽.面向对象有限元程序几种新的数据类型[J].西南交通大学学报,1996,31(2):119-125
    [86]李会平,曹中清.弹塑性分析的面向对象有限元方法[J].西南交通大学学报,1997,32(1):401-406
    [87]Archer G C.New object-oriented finite element analysis program architecture[J].Computer &Structure,1999,70(1):63-75
    [88]项阳,葛修润.内嵌CAD的面向对象有限元系统的研究与实现[J].计算机应用,2000,20(9):19-21
    [89]项阳,平扬,葛修润.面向对象有限元方法在岩土土程中的应用[J].岩土力学,2000,21(4):346-349
    [90]陈善民,黄博.面向对象方法在Biot固结有限元程序中的应用.岩土力学,2002,23(4):465-469
    [91]韩国城,孔宪京.关于土石坝动力模型试验问题.第二届全国青年岩土力学与工程会议论文集.大连:大连理工大学出版社,1995.82-87
    [92]Biot M A Theory of propagation of elastic waves in a fluid-saturated porous solid,I,low frequency rang.J Acoust Soc Am,1956,28(2):168-178
    [93]Ghaboussi J,Wilson E L.Variational formulation of dynamics of fluid-saturated porous elastic solids.J Engng Mech Div,ASCE,1972,98:947-963
    [94]Zienkiewicz O C,Chang C T,Bettess P.Drained,undrained,consolidating and dynamic behaviour assumptions in soils;Limits of validity.Geotechnique,1980,30:385-395
    [95]Zienkiewicz O C.Basic formulation of static and dynamic behaviour of soil and other porous material [A].Numerical Methods in Geomechanics[C].London:D Riedel,1982.1-12.
    [96]Zienkiewicz O C,Leung K H,Hinton E,et al.Liquefaction and permanent deformation under dynamic conditions2numerical solution and constitutive relations[A].Soil Mechanics2transient and Cyclic Loads[C].Chechester:Wiley,1982.71-103.
    [97]Zienkiewicz O C,Shiomi T.Dynamic behaviour of saturated porous media:The generalised Biot formulation and its numerical solution[J].Int J Numer Analyt Methods Geomech,1984,(8):71-96
    [98]Katona M G,Zienkiewicz O C.A unified set of single step algorithms part 3:the Beta-m method,a generalization of the Newmark scheme[J].Int.J.Num.Eng.,1985,(21):1345-1359.
    [99]王建华,陈一飞等.MFC Visual C++6编程技术内幕.机械工业出版社,2000,北京
    [100]张新宇,杨明.Windows程序员使用指南(二)-Microsoft基本类库.清华大学出版社,1994,北京
    [101]邹德高,孔宪京.GEOtechnical DYnamic Nonlinear Analysis-GEODYNA使用说明[R],大连:大连理工大学,2003
    [102]李宝峰,富弘毅,李韬.多核程序设计技术-通过软件多线程提升性能.电子工业出版社,2007,北京
    [103]龚晓南.土工计算机分析.中国建筑工业出版社,2000,北京
    [104]De Boer R,Ehlers W and Liu Z.One-dimensional transient wave propagation in fluid-saturated impressible porous media.Arch Appl Mech 1993,(63):59-72
    [105]Koseki J,Matsuo O and Tanaka S.Uplift of sewer pipes caused by earthquake-induced liquefaction of surrounding soil[J].Soils and Foundations,1998,38(3):75-87.
    [106]Sun,L X.Centrifugal Testing and Finite Element Analysis of Pipeline Buffed in Liquefiable Soil [D],Ph.D.Thesis,Columbia University.,2001
    [107]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散三维动力分析.地震工程与工程振动,1985,5(4):57-72
    [108]徐志英,周健.奥罗维尔土坝三维排水有效应力分析[J],水利学报,1991,(6):19-27
    [109]Clough R W,Penzien J.Dynamics of Structures,McGraw-Hill,New York,1975
    [110]谢定义,姚仰平,党发宁.高等土力学.高等教育出版社,2008,北京
    [111]Seed H B,Martin P P.Lysmer J.Pore-water pressure changes during soil liquefaction[J].Journal of the Geotechnical Engineering Division,ASCE 1976,102(GT4):323-346.
    [112]Seed H B,Lee K L.Liquefaction of saturation during cyclic loading.Journal of the Soil Mechanics and Foundation Division,ASCE,1966,92(SM6):105-134.
    [113]徐志英,沈珠江.地震液化的有效应力二维动力分析方法.华东水利学院学报,1981,9(3):1-14
    [114]Finn W D L,Lee K W,Martin G R.An effective stress model for liquefaction.JGED,1977,103(6):517-534
    [115]石桥.孔隙水压力上升机理与土的液化.见:地基基础译文集.第1集.北京:中国建筑工业出版社,1979,97-104
    [116]王志良,王余庆,韩靖宇.不规则循环荷载作用下土的粘弹塑性模型.岩土工程学报,1980,2(3):10-20.
    [117]何广呐.砂土振动孔隙水压力的研究.水利学报,1983(8):49-54.
    [118]Ishihara K.Undrained deformation and liquefaction of sand under cyclic stress.Soil and Foundation,1975,15(1):13-28.
    [119]Mardin G R,Finn W D L,Seed H B.Fundamentals of liquefaction under cyclic loading.Journal of the Geotechnical Engineering Division,1975,101(5):423-438.
    [120]Youd T L.Densification and shear of sand during vibration.Proc ASCE,1970,96(SM3):115-134.
    [121]曹亚林,何广呐,林皋.土中振动孔隙水压力升长程度的能量分析法.大连工学院学报,1987,26(3):83-90.
    [122]何广讷.土工的若干新理论研究与应用.北京:水利水电出版社,1994.
    [123]谢定义,张建民.往返荷载下饱和砂土强度变形瞬态变化的机理.土木工程学报,1987,20(3):57-70.
    [124]谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型.土木工程学报,1990,23(2):51-60.
    [125]于洪治.饱和粉土振动孔隙水压力发展规律[A].吴世明.第四届全国土动力学学术会议论文集.杭州:浙江大学出版社,1994,107-110.
    [126]汪闻韶.饱和砂土振动孔隙水压力试验研究.水利学报,1962,(2):36-47.
    [127]Yasuda S,Yoshida N,Masuda T,et al.Stress-strain relationships of liquefied sands[C]//Earthquake Geotechnical Engineering,Rotterdam:Balkema,1995:811-816.
    [128]Yasuda S,Yoshida N,Kiku H,et al.A simplified method to evaluate liquefaction-induced deformation[C]//Earthquake Geotechnicat Engineering,Rotterdam:Balkema,1999:555-560.
    [129]安田進,吉田望,安逹健司等.液状化に伴う流动の简易評価法.土木学会論文集,NO.638/Ⅲ-49:71-89.1999.
    [130]安田進,吉田望,安逹健司等.液状化に伴う地盤の大変形の简易予測方法.土と基礎,1999,47(6):29-32.
    [131]安田進,吉田望,规矩大羲等.液状化に伴う残留変形解析手法の河川堤防への適用.第25回地震工学研究発表会講演概要集,1999,81-384.
    [132]#12
    [133]Yasuda S,Nagase H,Kiku H,Uchida Y.Countermeasures Against the Permanent Ground Displacement due to Liquefaction.Soil Dynamics and Earthquake Engineering,1991,11:341-350.
    [134]Yasuda S,Nagase H,Kiku H,Uchida Y.The mechanism and a simplified prodedure for analysis of permanent ground displacement due to liquefaction,Soils and Foundations,1992,32(1):149-160.
    [135]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2):142-146
    [136]周云东,刘汉龙,高玉峰等.砂土地震液化后大位移室内实验研究探讨.地震工程与工程震动,2002,22(1):152-157.
    [137]张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型[J].岩土工程学报,2004,26(4):546-552
    [138]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报,2006,28(7):835-840
    [139]Yasuda S,Ideno T,Sakurai Y.Analyses for liquefaction-induced settlement of river levees by ALID[C]// Proceeding of the 12th Asian Regional Conference on Soil Mecanics & Geotechnical Engineering,Singapore:World Scientific Publishing.2003:347-350
    [140]ALID 研究会.2次元液化流动解析说明书(Analysis for Liquefaction-Induced Deformation)(M).2005.6
    [141]Yasuda S,Morimoto I,Kiku H,Tanaka T.Reconnaissance report on the damage caused by three Japanese earthquakes in 2003[R]
    [142]Pastor M,Zienkiewicz O C,Chan A H C.Generalized plasticity and the modeling of soil behavior[J].International Journal for Numerical and Analytical Methods in Geomechanics,1990,14:151-190.
    [143]Zienkiewicz O C,Chan A H C,Pastor M,Schrefler B A and Shiomi T.Computational geomechanics with special reference to earthquake engineering[M].London:Wiley,1999.
    [144]刘华北,宋二祥.埋深对地下结构地震液化响应的影响[J].清华大学学报,2005,45(3):301-305
    [145]刘华北,宋二祥.截断墙法降低地下结构地震液化上浮[J].岩土力学,2006,27(7):1049-1055
    [146]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381-386
    [147]刘华北,Ling H I.土工格栅加筋土挡土墙设计参数的弹塑性有限元研究.岩土工程学报[J],2004,26(5):668-673
    [148]刘华北.水平与竖向地震作用下土工格栅加筋土挡墙动力分析.岩土工程学报[J],2006,28(5):594-599
    [149]Nova R,Wood D M.An experimental program to define yield function for sand.Soils and Foundations,1978,18(4):77-86
    [150]Nova R,Wood D M.A constitutive model for sand.IJNAMG,1979,3(3):255-278
    [151]Nova R.Aconstitutive model for soil under monotonic and cyclic loading.SMTCL,1982,343-375
    [152]Zienkiewicz O C and Pande G N.Some useful forms for isotropic yield surfaces for soil and rock mechanics,In Finite Elements in Geomechanics,Gudehus G(Ed.),Wiley,1977,179-190
    [153]Pastor M and Zienkiewicz O C.A generalized plasticity hierarchical model for sand under monotonic and cyclic loading,Proc 2~(nd) Int Corf Numberical Models in Geomachanics,Ghent(Belgium),Pande G N and Van Impe W F(eds),1986,131-150
    [154]Pastor M,Zienkiewicz O C,and Chan A H C.Generalized Plasticity and the modelling of soil behaviour.Int J Num Anal Mech Geomech,1990,(14):151-190
    [155]孔宪京等.南通港洋口港区人工岛一、二期工程岛壁结构物模试验、数模分析及抗震安全评价研究报告.大连理工大学土木水利学院工程抗震研究所,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700