用户名: 密码: 验证码:
尾矿坝非线性系统混沌与安全研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝安全是矿业领域的重要课题。本文在综述国内外尾矿坝研究成果的基础上,首次从非线性动力学及系统科学角度,对尾矿坝安全进行了深入的研究,目的在于揭示尾矿坝的安全机理,提出尾矿坝的安全方法。
     浸润线演化是一项新的研究课题,本文采用关联维及Lyapunov指数两个混沌特征量对德兴铜矿2~#尾矿坝、银山铅锌矿尾矿坝浸润线实测数据进行分析。结果表明,浸润线演化是一个混沌系统,最大Lyapunov指数可以作为评价浸润线状态的指标。这项工作不仅揭示了浸润线的演化本质,还为监测数据的理论分析指出了一条新的途径。浸润线演化可以表现在时间和空间两个方向上。本文在单向耦合映象格子模型基础上,考虑了尾矿坝坡角因素,创造性地建立了浸润线耦合映象格子模型。根据浸润线的初值条件和边界条件,对浸润线耦合映象格子模型进行了非线性动力学分析。结果表明,浸润线演化存在复杂时空混沌行为,且受坡角影响明显。针对浸润线演化出现混沌状态,而混沌又会影响到尾矿坝安全这一问题,根据参数微扰法的思想,提出了一种控制混沌的方法,即对时间序列动力系统叠加一个周期振动,通过分析叠加前后时间序列的最大Lyapunov指数,来判别系统混沌特性的变化,进而实现控制混沌。应用该方法对银山铅锌矿尾矿坝浸润线演化进行了研究;结果表明,叠加周期振动可以抑制系统的混沌,因此,可以通过周期性的工程措施,来控制尾矿坝系统混沌。
     透镜体是反映尾矿堆积坝沉积状况的一个关键指标,它影响着浸润线状态。文中采用盒维数方法,研究了七座尾矿坝的12个工程勘察剖面透镜体的分布规律。结果表明,透镜体分布存在分形特性,透镜体盒维数可以表征堆积坝沉积状况。
     浸润线是尾矿坝的主要监测项目,一般采用测压管进行人工监测。为了探索新的有效监测技术,研究了自动监测技术及浅层折射地震法测试技术;结果表明,这两种技术的监测效果较好。尾矿坝监测获得的数据大多数为非等时序列,为解决其预测问题,本文创造性地提出了时数分离方法,即将时间与数据分开,得出时间序列与数据序列后,分别与提出的阶段序列构成时数模型,进而同步预测。文中进行了时数模型的GM(1,1)分析及残差分析。应用时数模型对德兴铜矿
    
    中南大学博士学位论文
    1’尾矿坝渗流进行了预测;结果表明,该模型预测精度较高。文中还
    进行了灰色理论与混沌的祸合分析。
     防洪渡汛是尾矿坝安全管理的重点。本文根据安全工程学原理,
    建立了汛期尾矿库溃坝事故树,并进行了最小割集、最小径集及结构
    重要度分析。结果表明,科学地决策汛前的排洪措施,是尾矿库防洪
    渡汛的重点。文中创造性地将事故树中的逻辑关系模糊化,提出了一
    种新的适用于尾矿库系统分析的模糊逻辑关系事故树。论文最后提出
    了一种模糊灰色综合评价方法,对尾矿库安全进行评价。
The safety of tailings dam is an important subject in the field of mine. In this dissertation, the safety of tailings dam is researched deeply and thoroughly for the first time in nonlinear dynamics and system science based on the review of researching on tailings dam at home and abroad. The purpose of this work is to reveal safety mechanism and bring forward safety method for tailings dam.
    The evolution of the saturation line is a new research problem. In this dissertation, the largest Lyapunov exponents and the correlation dimension are applied to analyze the monitoring data of the saturation line of tailings dam in Yinshan lead-Zinc Mine and No. 2 tailings dam in Dexing Copper Mine. The results show that the evolution of the saturation line is a chaos system, and the state of the saturation line can be evaluated by the largest Lyapunov exponents. Not only does the work reveal evolution essential of the saturation line but also point out a new way to analyze the monitoring data. The evolution of the saturation line can display in the dimension of both time and space. Considering the slope angle of tailings dam, a coupled map lattices model is proposed creatively to describe the spatiotemporal evolution of the saturation line on the basis of one-way coupled map lattices. Under the given initial-condition and boundary condition of the saturation line, the nonlinear dynamic of the new model is a
    nalyzed. The results indicate that the complex spatiotemporal behavior exists in the evolution of the saturation line which can be influenced remarkably by slope angle.
    According to the fact that the saturation line evolution
    
    
    
    ABSTRACT
    exists chaos state which gives affection to tailings dam safety in turn, a method of controlling chaos is put forward based on OGY method(weak perturbation). The essence of this method is to analyze the largest Lyapunov exponents and use to discriminate the change of chaotic character in time series before and after superposing a periodic vibration, and further realize chaos control. With this method, the monitoring data of the saturation line of tailings dam in Yinshan Lead-Zinc Mine are analyzed. The results show that the chaos can be restrained by superposing a periodic vibration. Therefore, controlling chaos in tailings dam system can be realized by the engineering measure of periodic control.
    The tailings lenticle which is a key factor reflecting the sedimentation state of tailings dam, has great influence on the state of saturation line. In order to disclose the regularities of distribution of tailings lenticles, twelve geological explorative cross-sections which belong to seven tailings dams are analyzed with box dimension. The results make clear that the distribution of tailings lenticles has fractal character, and the values of lenticles box dimension reflect the sedimentation state of tailings dam.
    The saturation line monitoring, which is done by manual usually with piezometric tube, is the main investigation item in tailings dam. In order to monitor the saturation line, an automatic monitoring technique and a shallow refractive seismic method are studied. Both of them have better effect on monitoring.
    To solve the prediction problem of unequal interval sequence which appears usually in monitoring data of tailings dam, the Time and Data Separation Approach is put forward creatively in such a way that lets the time be separated from the data to gain the time sequence and data sequence, and then combines both time sequence and data sequence respectively with the interval sequence for constituting Time and Data Model, and finally
    IV
    
    synchronously makes prediction. According to the method, GM(1, 1) and Error Model of Time and Data are analyzed. For example, the trend of the seepage flow is analyzed in No. 1 tailings dam of Dexing Copper Mine, and the results indicate that the model can predict effectively. The Grey theory is also used in chaos analysis in this dissertation.
    Flood prevention is emphasized in the safety management of tailings dam. According to the principle of
引文
[1]Anon. A review of tailings dam failures. International Water Power and Dam Construction, 2001,53(5):40-42
    [2]李作章,徐日升,穆鲁生等.尾矿库安全技术.北京:航空工业出版社,1996
    [3]祝玉学,戚国庆.尾矿库工程分析与管理.北京:冶金工业出版社,1999
    [4]贺怀建,白世伟,陈健.岩土工程专家系统中的推理及其应用.岩石力学与工程学报,2002,21(8):1239-1242
    [5]Dobry R, Alvaze L. Seismic Failures of Chilean Tailings Dams. Journal of Soil Mechanics and Foundation, 1967,93(4):237-260
    [6]Oksua S, Anma S. Slope Failures and Tailing Dams Damage in the 1978 Izu-Oshima-Kinkai Earthquake. Engineering Geology, 1980:195-224
    [7]速宝玉,赵坚.影响上游法尾矿坝渗流场的诸因素分析.河海大学学报,1991,19(6):57-63
    [8]陈守义.浅议上游法细粒尾矿堆坝问题.岩土力学,1995,16(3):70-76
    [9]张隆伟,王柏纯,郑争广.峨口铁矿尾矿筑坝的主要技术措施.金属矿山,1995,(8):45-47
    [10]柳厚祥,王开治.旋流器与分散管联合堆筑尾矿坝地震反应分析.岩土工程学报,1999,21(2):171-176
    [11]陈守义.尾矿坝细粒泥层内超静孔隙水压力的近似估算方法.岩土力学,1991,12(1):45-55
    [12]速宝玉,赵坚,张祝添等.正置模型在尾矿坝空间渗流场电模拟试验中的应用.金属矿山,1994,(3):27-29
    [13]尚全夫,王少军.尾矿坝用沟或井列降低浸润线时的渗流计算.金属矿山,1989,(4):50-54
    [14]潘惠芬,栾永超.上游法筑坝时放矿水对浸润线位置的影响.工业建筑,1990,(9):36-40
    [15]段其福、毛卫东、罗德洲等.尾矿坝浸润线降深自流排渗技术及应用.金属矿山,1997,(8):14-16
    [16]沈献林.水平排渗技术在钟山铁矿尾矿坝上的应用.金属矿山,1998,(12):38-39
    [17]孔丽丽,陈守义.武山尾矿坝无纺土工织物滤层化学淤堵问题初探.
    
    岩土工程学报,1999,2 1(4):444-449
    [18]王勇升.尾矿坝排渗设施中土工织物选用的渗透性准则.金属矿山,1995,(2):43-45,51
    [19]王世夏.高尾矿坝塔式进口竖井排洪道的泄流能力.金属矿山,1994,(5):36-39,47
    [20]王余庆,王治平,辛鸿博等.大石河尾矿坝1976年唐山大地震震害及有关强震观测记录.工业建筑,1994,(7):38-42
    [21]王余庆,高艳平,辛鸿博.大石河尾矿坝基岩输入地震动的确定.工业建筑,1994,(8):41-46
    [22]李万升,高建生,王治平.大石河尾矿砂的力学特性试验研究.工业建筑,1995,25(1):43-47,57
    [23]辛鸿博,王余庆.大石河尾矿粘性土的动力变形和强度特征.工业建筑,1995,25(2):38-42
    [24]高艳平,王余庆,辛鸿博。尾矿坝地震液化简化判别法.岩土工程学报,1995,17(5):72-79
    [25]王余庆,辛鸿博.用稳态理论评价大石河尾矿坝的液化与稳定.工业建筑,1995,25(5):49-52
    [26]辛鸿博,Liam F W D.1976年大石河尾矿坝地震反应分析.岩土工程学报,1996,18(4):48-56
    [27]阎金安,王武林.尾矿砂的动力特性研究.岩土力学,1990,11(4):69-74
    [28]Babaeyan-Koopaei K, Valentine E M, Ervine D A. Case study on hydraulic performance of brent reservoir siphon spillway. Journal of Hydraulic Engineering, 2002,128(6):562-567
    [29]McDermott R K, Sibley J M. Aznalcollar railings dam accident-a case study. Mineral Resources Engineering, 2000,9(1):101-118
    [30]Kemper T, Sommer S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science and Technology, 2002,36(12): 2742-2747
    [31]Blight G E. Destructive mudflows as a consequence of tailings dyke failures. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1997,125(1):9-18
    [32]Chandler R J, Tosatti G. Stava tailings dams failure, Italy, July 1985.Proceedings of the Institution of Civil Engineers Geotechnical
    
    Engineering, 1995,113(2):67-79
    [33]Fourie A B, Blight G E, Papageorgiou G. Static liquefaction as a possible explanation for the Merriespruit tailings dam failure. Canadian Geotechnical Journal, 2001,38(4):707-719
    [34]Vick S G. Tailings dam failure at Omai in Guyana. Mining Engineering, 1996,48(11):34-37
    [35]Harder L F J, Stewart J P. Failure of Tapo Canyon railings dam. Journal of Performance of Constructed Facilities, 1996,10(3):109-114
    [36]Marcus W A, Meyer G A, Nimmo D R. Geomorphic control of persistent mine impacts in a Yellowstone Park stream and implications for the recovery of fluvial systems. Geology, 2001,29(4):355-358
    [37]Harper T G, Mcleod H N, Davies M P. Seismic assessment of tailings dams. Civil Engineering, 1992,62(12):64-66
    [38]陈青生,孙建华.矿山尾矿库溃坝砂流的计算模拟.河海大学学报,1995,23(5):99-105
    [39]Moxon S. Failing again. International Water Power and Dam Construction, 1999,51(5):16-21
    [40]Shakesby R A, Whitlow J. Richard. Failure of a mine waste dump in Zimbabwe:Causes and consequences. Environmental 6eology and Water Sciences, 1991,18(2):143-153
    [41]Strachan C. Tailings dam performance from USCOD incident-survey data. Mining Engineering, 2001,53, (3):49-53
    [42]祝玉学.关于尾矿库工程中几个问题的讨论.金属矿山,1998,(10):7-10
    [43]Hughes H E. Warm Springs Ponds: Superfound success. Mining Engineering, 1996,48(11):27-30
    [44]Scott M D, Lo R C. Optimal railings management at Highland Valley Copper. CIM Bulletin, 1992,85(962):85-88
    [45]李社红,郑宝山,朱建明等.金矿尾矿渣及其污染土壤中氰化物的分布及自然降解.环境科学,2001,22(3):126-128
    [46]Marisol M, Carlos A, Cristina D, et al. The impact of the Aznalc ?llar mine tailing spill on groundwater. The Science of the Total Environment, 1999,242:189-209
    [47]Hudson-Edwards K A, Macklin M G, Miller J R, at el. Sources,
    
    distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. Journal of Geochemical Exploration, 2001,72(3):229-250
    [48]Di G F, Massoli-Novelli R. Geological impact of some tailings dams in Sardinia, Italy. Environmental Geology and Water Sciences, 1992,19(3):147-153
    [49]Wayne D M, Warwick J J, Lechler P J, et al. Mercury contamination in the Carson River, Nevada: A preliminary study of the impact of mining wastes. Water, Air and Soil Pollution, 1996,92(3-4):391-408
    [50]Sorrell S. The value of good observation. International Water Power and Dam Construction, 2000,52(5):15-19
    [51]Buselli G, Lu K. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics, 2001,48(1):11-13
    [52]Blight G E. Measuring evaporation from soil surfaces for environmental and geotechnical purposes. Water SA, 2002,28(4):381-394
    [53]Sharma R S, AL-Busaidi T S. Groundwater pollution due to a tailings dam. Engineering Geology, 2001,60(1-4)
    [54]Ghomshei M M, Allen D M. Hydrochemical and stable isotope assessment of tailings pond leakage, Nickel Plate Mine, British Columbia. Environmental Geology, 2000,39(8):937-944
    [55]Martin P, Akber R A. Radium isotopes as indicators of adsorption-desorption interactions and barite formation in groundwater. Journal of Environmental Radioactivity, 1999,46:271-286
    [56]Fernandes H M, Franklin M R, Veiga L H S, et al. Management of uranium mill tailing: geochemical processes and radiological risk assessment. Journal of Environmental Radioactivity[J]. 1996,30(1):69-95
    [57]Groudev S N, Bratcova S G, Komnitsas K. Treatment of waters polluted with radioactive elements and heavy metals by means of a laboratory passive system. Minerals Engineering, 1999,12(3):261-270
    [58]Wilson H R. Tailings management in the Canadian arctic Echo Bay' s lupin mine. Mining Engineering, 1991,43(2):213-214,215-219
    [59]林奕宗,林华,邓承亮等.铁笼尾矿坝净化废水的研究.环境科学与技术,1995,(3):24-27
    [60]Paulson A J. Transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and
    
    SO_4 in a groundwater plume and in the Coeurd' Alene Mining District, Idaho, U.S.A.. Applied Geochemistry, 1997,12(4):447-464
    [61]Langedal M. Dispersion of railings in the Knabeana-Kvina drainage basin, Norway, 2: Mobility of Cu and Mo in tailings-derived fluvial sediments. Journal of Geochemical Exploration, 1997,58(2-3):173-183
    [62]Peters G P, Smith D W. Solute transport through a deforming porous medium. International Journal for Numerical and Analytical Methods in Geomechanics, 2002,26(7):683-717
    [63]Rykaart M, Fredlund M, Stianson J. Modeling tailings dam flux boundary conditions with 3D seepage software. Ground Engineering, 2002,35(7):28-30
    [64]Bravo R, Nawrot J R. Slurry discharge management-beach profile prediction. International Journal of Surface Mining, Reclamation and Environment, 1996,10(2):69-71
    [65]Yang Z Y, Yuan J G, Xin G R, et al. Germination, growth, and nodulation of Sesbania rostrata grown in Pb/Zn mine tailings. Environmental Management, 1997,21(4):617-622
    [66]黄志全.边坡演化的非线性机制及滑坡预测预报研究:[博士学位论文].北京:中国科学院地质研究所,1999
    [67]黄志全,张长存,姜彤等.滑坡预报的协同—分岔模型及其应用,岩石力学与工程学报,2002,21(4):498-501
    [68]Darve F, Laouafa F. Instabilities in granular materials and application to landslides. Mechanics of Cohesive-Frictional Materials,2000, 5(8):627-652
    [69]Chau K T. Landslides modeled as bifurcations of creeping slopes with nonlinear friction law. International Journal of Solids and Structures, 1995,32(23):3451-3464
    [70]刘军,秦四清,张倬元.边坡岩体系统的非线性演化和分岔研究.成都理工学院学报,2000,27(4):379-382
    [71]孙树林,侯玉宾.边坡水平卸荷裂隙的突变理论模型.河海大学学报,1997,25(6):4-7
    [72]Qin S, Jiao J J, Wang S, et al. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of
    
    its evolutionary process. International Journal of Solids and Structures, 2001,38(44-45):8093-8109
    [73]Qin S, Jiao J J, Wang S. A cusp catastrophe model of instability of slip-buckling slope. Rock Mechanics and Rock Engineering,2001,34(2):119-134
    [74]许强.广义系统科学理论及其工程地质应用研究:[博士学位论文].成都:成都理工学院,1997
    [75]李静辉,黄祖洽,王存玉.岩板顺层斜坡和直坡演化过程中的随机共振及混沌.物理学报,1998,47(3):382—390
    [76]曾开华、陆兆溱.边坡变形破坏预测的混沌与分形研究.河海大学学报,1995,27(3):9-13
    [77]Lombardi G. On the limits of structural analysis of dams. International Journal on Hydropower & Dams, 1996,3(5):50-56
    [78]Krinitzsky E L. Earthquake probability in engineering.Engineering Geology, 1993,36(1-2):1-52
    [79]吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用.水利学报,1996,(4):78-82
    [80]李亮,傅鹤林.岩体节理裂隙特征的分形研究.铁道学报,2000,22(2):77-81
    [81]Pelletier J D, Malamud B D, Blodgett T, et al. Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Engineering Geology, 1997,48(3-4):255-268
    [82]Seidel J P, Haberfield C M. Laboratory testing of concrete-rock joints in constant normal stiffness direct shear. Geotechnical Testing Journal, 2002,25(4):391-404
    [83]Xiao Y X, Lee C F, Wang S J. Particle-size distribution of interlayer shear zone material and its implications in geological processes-A case study in China. Engineering Geology, 2002,66(3-4): 221-232
    [84]吴中如,潘卫平.应用Lyapunov指数研究岩土边坡的稳定判据.岩石力学与工程学报,1997,16(3):217-223
    [85]陈益峰,吕金虎,周创兵.基于Lyapunov指数改进算法的边坡位移预测.2001,20(5):671-675
    [86]刘小丽,周德培.岩土边坡系统稳定性评价初探.岩石力学与工程学
    
    报,2002,21(9):1378-1382
    [87]李建林,哈秋舲.岩土工程中的系统工程问题.三峡大学学报,2002,24(3):198-201
    [88]陈有亮.岩体高边坡滑移与失稳的力学分析.煤炭学报,2000,25(6):598-601
    [89]Ercanoglu M, Gokceoglu C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 2002, 41(6):720-730
    [90]Liu X L, Wang S G, Zhang X B. Influence of geologic factors on landslides in Zhaotong, Yunnan Province, China. Environmental Geology and Water Sciences, 1992, 19(1):17-20
    [91]黄铭,葛修润,王浩.灰色模型在岩体线法变形测量中的应用.岩石力学与工程学报,2001,20(2):235-238
    [92]姜树海.大坝防洪安全的评估和校核.水利学报,1998(1):18-24
    [93]姜树海.防洪设计标准和大坝的防洪安全.水利学报,1999(5):19-25
    [94]Cheng S T, Yen B C, Tang W H. Stochastic risk modeling of dam overtopping. Reliability and Uncertainty Analyses in Hydraulic Design, 1993:123-132
    [95]Zhang Q. New approximate method to calculate the time-specific unreliability of a repairable system. Reliability Engineering & System Safety, 1991,31(i):39-56
    [96]Hasebe M, Nagayama Y. Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Advances in Engineering Software, 2002,33(5):245-260
    [97]Moxon S. Tail end of an era. International Water Power and Dam Construction, 1997,49(11):30-31
    [98]Jung S J, Kousick B. Review of current high density paste fill and its technology. :Mineral Resources Engineering, 2002,11(2):165-182
    [99]Lorenz EN. Deterministic nonperiodic flow. J. Atoms Sci. 20,1963
    [100]Li T Y, Yorke J A. Period three implies chaos. Amer. Math.Monthly, 82,1975
    [101]May R. Simple mathematical models with very complicated dynamics. Nature, 261, 1976
    
    
    [102]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19(1), 1978
    [103]Feigenbaum M J. The universal metric properties of nonlinear transformations. J. Star. Phys., 21(6), 1979
    [104]Landsberg P T, Schoell E, Shukla P. Simple model for the origin of chaos in semiconductors. Physica D, 1988,30(1,2):235-243
    [105]Kida S, Yamada M, Ohkitani K. Route to chaos and turbulence. Physica D, 1989,37(1-3):116-125
    [106]Bhatia N P, Egerland W O. On the existence of Li-Yorke points in the theory of chaos. Nonlinear Analysis, Theory, Methods & Applications, 1986,10(6):541-545
    [107]Linsay P S, Cumming A W. Three-frequency quasiperiodicity, phase locking, and the onset of chaos. Physica D, 1989,40(2):196-217
    [108]郑伟谋,郝柏林.实用符号动力学.上海:上海科技教育出版社,1994
    [109]Mandelbrot B B. The fractal geometry of nature. San Francisco:W. H. Freeman and Co., 1982
    [110]Grassberger P. Generalized dimension of strange attractors, Phs.Lett., 97, 1987
    [111]Engbert R, Drepper F R. Chance and chaos in population biology-models of recurrent epidemics and food chain dynamics. Chaos, Solitons and Fractals, 1994,4(7):1147-1169
    [112]Ablowitz M J, Herbst B M, Schober C M. Computational chaos in the nonlinear Schrodinger equation without homoclinic crossings. Physica A, 1996,228(1-4):212-235
    [113]Freeman W J. Chaos in the brain: possible roles in biological intelligence.International Journal of Intelligent Systems. 1995,10(1):71-88
    [114]Lee J S, Chang K S. Applications of chaos and fractals in process systems engineering. Journal of Process Control, 1996,6(2-3):71-87
    [115]傅军,丁晶,邓育仁.洪水混沌特性初步研究.水科学进展,1996,7(3):226-230
    [116]Giovanna V. On the chaotic structure of tide elevation in the lagoon of Venice. Proceedings of the Coastal Engineering Conference, 1992-1993,2
    
    
    [117]黄润生,周家斌,张仁涛等.武汉地区雨强分维数随时间变化初探.武汉大学学报(自然科学版),1995,41(1):109-115
    [118]黄润生.混沌及其应用.武汉:武汉大学出版社,2000
    [119]Wolf A, Swift J, Swinney H, et al. Determining lyapunov exponents from a time series. Physica D, 1985,16:285-317
    [120]田野,徐平.用岩体蠕变数据计算Lyapunov指数.长江科学院院报,1994,11(2):49-66
    [121]林振山.长期预报的相空间理论和模式.北京:气象出版社,1993
    [122]盛昭瀚,马军海.非线性动力系统分析引论.北京:科学出版社,2001
    [123]刘秉正.非线性动力学与混沌基础.沈阳:东北师范大学出版社,1994
    [124]李后强,程光钺.分形与分维.成都:四川教育出版社,1990
    [125]Falconer K J. Fractal Geometry: Mathematical Foundation and Application, Wiley, NewYork, 1990
    [126]Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series[J]. Phys. Rev. Lett., 1980,45(9):712-716
    [127]Takens F. Detecting strange attractors in fluid turbulence. In: Rand D, Young L S. Dynamical systems and a turbulence, eds. Berlin:Springer, 1981.
    [128]马军海,陈予恕,刘曾荣.动力系统实测数据的Lyapunov指数的矩阵算法.应用数学和力学,1999,20(9):919-927
    [129]王武林,杨春和,阎金安.某铅锌矿尾矿坝工程勘察与稳定性分析.岩石力学与工程学报,1992,11(4):332-344
    [130]於崇文.揭示地质现象的本质与核心—地质作用与时-空结构.地学前缘,2000,7(1):2-12
    [131]Bohr T, Van H M, Mikkelsen R. Breakdown of universality in transitions to spatiotemporal chaos. Physical Review Letters,2001,86(24):5482-5485
    [132]Kaneko K. Pattern dynamics in spatiotemporal chaos, Pattern selection, diffusion of defect and pattern competition intermittency.Physica D, 1989,34:1-41.
    [133]Kaneko K. Spatiotemporal chaos in one-and two-dimensional coupled map lattices. Physica D, 1989,37(1-3):60-82
    [134]Martins L C, Brunnet L G. Multi-state coupled map lattices.
    
    Physica A, 2001,296(1-2):119-130
    [135]Qin W X, Qian D B. Chaotic patterns in coupled map lattices. Chaos, Solitons and Fractals, 2000,11(14):2305-2311
    [136]He G W, Lambert A, Lima R. Wavelike patterns in one-dimensional coupled map lattices. Physica D, 1997,103(1-4):404-411
    [137]Bunimovich L A. Coupled map lattices: some topological and ergodic properties. Physica D, 1997,103(1-4):1-17
    [138]张旭,沈柯.耦合映象格子中时空混沌的控制.物理学报,2001,50(4):624-627
    [139]Zhu K E, Chert T. Controlling spatiotemporal chaos in coupled map lattices. Physical Review E, 2001,63(6):067201/1-067201/4
    [140]Chert J Y, Wong K W, Zheng H Y et al. Intermittent phase synchronization of coupled spatiotemporal chaotic systems. Physical Review E, 2001,64(1):016212/1-016212/7
    [141]Yin X H, Ren Y, Shah X M. Synchronization of discrete spatiotemporal chaos by using variable structure control. Chaos, Solitons and Fractals, 2002,14(7):1077-1082
    [142]Liu Z C. Coupled map lattices(CMLs) models and the nonlinearity of turbulence. Applied Mathematics and Mechanics(English Edition), 1998,19(9):881-887
    [143]Abramson G, Vega J L. Extremal coupled map lattices. The European Physical Journal B, 1999,9:361-364
    [144]Bottin S, Chat? H. Statistical analysis of the transition to turbulence in plane Couette flow. The European Physical Journal B, 1998,6:143-155
    [145]Lind P G, Corte-Real J, Gallas J A C. Modeling velocity in gradient flows with coupled-map lattices with advection. Physical Review E, 2002,66(1):1-6
    [146]Platt N, Hammel S M. Pattern formation in driven coupled map lattices. Physica A, 1997,239(1-3):296-303
    [147]Willeboordse F H, Kaneko K. Pattern dynamics of a coupled map lattices for open flow. Physica D, 1995,86:428-455
    [148]Willeboordse F H, Kaneko K. Bifurcations and spatial chaos in an open flow model. Physical Review Letters, 1994,73(4):533-536
    
    
    [149]Willeboordse F H. Selection of windows, attractors and self-similar patterns in a coupled map lattice. 1992,2(6):609-634
    [150]Kaneko K, Kokame H. Decentralized delayed-feedback control of a one-way coupled ring map lattices. Physica D, 1999,127(1):1-12
    [151]Carretero-Gonzalez R, Arrowsmith D K, Vivaldi F. Mode-locking in coupled mad lattices. Physica D, 1997,103:381-403
    [152]He G W, Cao L Y, Li J C. Convective coupled map for simulating spatiotemporal chaos in flows. Chinese Journal of Biomedical Engineering, 1995,14(1):1-7
    [153]杨世平,田钢,屈进禄等.单向耦合双稳映象格子从时空准周期过渡到混沌,中国科学(A辑),1998,28(11):1025-1029
    [154]Yang J Z, Liu W J, Hu G. Spatial period-doubling bifurcations in one-dimensional one way coupled map system. Journal of Beijing Normal University(Natural Science),1997,33(3):381-384
    [155]Smolentsev S, Abdou M, Morley N, et al. Application of the "K-ε" model to open channel flows in a magnetic field. International Journal of Engineering Science, 2002,40:693-711
    [156]杨维明.时空混沌和耦合映象格子.上海:上海科技教育出版社,1994
    [157]Zhang Y, Dai M, Hua Y M, et al. Digital communication by active-passive-decomposition synchronization in hyperchaotic systems. Physical Review E, 1998,58(3):3022-3027
    [158]陈立群,刘延柱.控制混沌的研究现状与展望.上海交通大学学报,1998,32(1):108-114
    [159]张辉,吴淇泰.混沌运动的控制.力学进展,1995,25(3):392—400
    [160]罗晓曙,孔令江,屈万里.用数字有限脉冲响应滤波器控制混沌.物理学报,1998,47(7):1078-1083
    [161]Carroll T L, Pecora L M. Synchronizing nonautonomous chaotic circuits. IEEE Transactions on Circuits and Systems, 1993,40(10):646-650
    [162]Rulkov N F. Regularization of synchronized chaotic bursts. Physical Review Letters, 2001,86(1):183-186
    [163]Barrett M D. Continuous control of chaos. Physica D,1996,91:340-348
    [164]Kazuyuki Y, Moriyoshi K. External feedback control of chaos using approximate periodic orbits. Physical Review E, 2002,65(2):
    
    262041-262047
    [165]Baroni L, Livi R. Transition to stochastic synchronization in spatially extended systems Physical Review E. 2001,63(3):362261-3622610
    [166]袁晓铭,孙锐.饱和砂土透镜体液化对建筑物地震反应的影响.地震工程与工程振动,2000,20(1):69-74
    [167]Homstrom H, Ohlander B. Layers rich in Fe- and Mn-oxyhydroxides formed at the railings-pond water interface, a possible trap for trace metals in flooded mine railings. Journal of Geochemical Exploration, 2001,74(1-3):189-203
    [168]Gary P, Chris P, Kelin X W, et al. Alluvial fans formed by channelized fluvial and sheet flow. Journal of Hydraulic Engineering, 1998,124(10):996-1004
    [169]Blight G E. Master profile for hydraulic fill railings eaches. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 1994,107(1):27-40
    [170]Skoglund T W. Hydrologic and sedimentation characteristics of closed system tailing Basins .Water Science and Technology, 1980-1981,2:1147-1154
    [171]Riveros P A, Dutrizac J E, Spencer P. Arsenic disposal practices in the metallurgical industry. :Canadian Metallurgical Quarterly, 2001,40(4):395-420
    [172]Lawrence G A, Ward P R B, Mackinnon M D. Wind-wave-induced suspension of mine railings in disposal ponds. A case study. Canadian Journal of Civil Engineering, 1991,18(6):1047-1053
    [173]Consoli N C. Comparison of the measured and predicted performance of tailings sedimentation. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 1997,125(3):179-187
    [174]曹净,龚宪伟,李鸿翔等.攀钢马家田尾矿化学固结机理初探.桂林工学院学报,2000,20(2):147-150
    [175]Robinson C S, Robinson C H. Engineering geology of the Miner Flat dam, Navajo County, Arizona. Engineering Geology, 1992,32(3):185-201
    [176]谢和平,陈忠辉,段法兵等.综放顶煤爆破能量的分形研究.力学与实践,2000,22(1):16-18
    
    
    [177]易顺民,唐辉明.滑坡分维特征及其预测意义.工程地质学报,1994,2(2):48-53
    [178]李后强,汪富泉.分形理论及其在分子科学中的应用.北京:科学出版社,1993
    [179]谢和平,薛秀谦.分形应用中的数学基础与方法.北京:科学出版社,1997
    [180]Soong T, Koerner R M. Seepage induced slope instability. Geotextiles and Geomembranes, 1996, 14(7-8):425-445
    [181]吕刚.大坝安全监测技术及自动化监测仪器、系统的发展.大坝观测与土工测试,2001,25(3):1-4
    [182]裴刚,陆伟良.葛洲坝水利枢纽二江泄水闸安全监测自动化系统研制.南京建筑工程学院学报,1997,4:55-60
    [183]Anesa F, Azzoni A, Vergani M, et al. Automatic system for monitoring dam displacements. International Journal on Hydropower & Dams,1995, 2 (2):71-74
    [184]Goguel B, Ozanam O. Software for integrated dam monitoring systems. International Water Power and Dam Construction, 1989, 41(11): 16-19
    [185]Myers B K, Marilley J M. Automated monitoring at Tolt Dam. Civil Engineering (New York), 1997, 67(3):44-46
    [186]Finch J W. Monitoring small dams in semi-arid regions using remote sensing and GIS. Journal of Hydrology, 1997, 195(1-4):335-351
    [187]Radkevich D B, Kheifits V Z. Automated systems for checking the state of dams. Hydrotechnical Construction, 1991, 25(1):21-25
    [188]Deloach S R. Continuous deformation monitoring with GPS. Journal of Surveying Engineering, 1989, 115(1):93-110
    [189]陈绍裘.反射系数(K)法在红层地下水探测中的应用.中南工业大学学报,1996,27(5):516-519
    [190]刘洪.利用天然电磁场高分辨探测地下油气水的可能性.地球物理学报,1994,37(6):828-835
    [191]陈家璋,陈维惠,周厚昌.地学层析成像(CT)新技术在水利水电工程中的应用.水利水电技术,1999,30(9):52-54
    [192]Kantelhardt J, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series.
    
    Physica A, 2002, 316(1-4) "87-114
    [193]安鸿志,陈兆国,杜金观等.时间序列分析及其应用.北京:科学出版社,1983
    [194]陈敏,安鸿志.时间序列中条件异方差性的检验.中国科学(A辑),1998,28(11):961-971
    [195]邓聚龙.灰色控制系统.华中理工大学出版社,1993,9
    [196]刘思峰,郭天榜,党耀国等.灰色系统理论及其应用.科学出版社,1999,10
    [197]陈业华.非等差时序灰色系统及其应用.荆州师范学院学报,1999,10:30-32
    [198]蒋刚,林鲁生,刘祖德.边坡变形的灰色预测模型.岩土力学,2000,9(3):244-251
    [199]胡斌,曾学贵.不等时距灰色预测模型.北方交通大学学报,1998,2(1):34-38
    [200]韩汝才,李亮,傅鹤林.利用灰色理论对地基沉降进行不等时距预测.探矿工程,2000,2:4-5
    [201]雷学文,白世伟,孟庆山.灰色预测在软土地基沉降分析中的应用.岩土力学,2000,3(2):145-147
    [202]王在泉.泥化夹层长期强度的灰色预测.金属矿山,1998,2:16-20
    [203]周慧.GM(1,1)残差模型群与酸雨预测.辽宁大学学报(自然科学报),1997,24(2):64-68
    [204]姜忠军.GM(1,1)模型及其残差修正技术在土地承载力研究中的应用.系统工程理论与实践,1995,(5):72-78
    [205]李朝甫,徐迎,谭跃虎等.灰色系统理论在滑坡位移信息分析中的应用.系统工程理论与实践,2001,(2):129-132
    [206]戴文战.具有残差校正的,2次累加灰色模型.系统工程理论与实践,1997,(12):121-124
    [207]李希灿,李丽.时序残差GM(1,1)模型.系统工程理论与实践,1998,(10):59-63
    [208]陈庆吉,王殿选.GM(1,1)模型的动态特性分析.系统工程理论与实践,1997,12:129-133
    [209]王文平,邓聚龙.灰色系统中GM(1,1)模型的混沌特性研究.系统工程,1997,15(2):13-16
    [210]孙静春,寿纪麟.一类长期经济增长模型的混沌问题.工程数学学报.
    
    1992, 9(2):75-82
    [211]沈斐敏.安全系统工程基础与实践.北京:煤炭工业出版社,1991
    [212]Singer D. A Fuzzy Set Approach to Fault Tree and Reliability Analysis. Fuzzy Sets and Systems, 1990,34:145~155
    [213]Singer D. Fault Tree Analysis Based on Fuzzy Logic. Computers Chemical Engineering, 1991, (3):259~266
    [214]闫善郁.事故树的模糊分析方法研究.大连铁道学院学报.1997,18(1):94-98
    [215]康正发,黄培清.基于可能性分布的模糊事故树分析.系统工程理论方法应用.1999,8(2):65-70
    [216]冯肇瑞,崔国璋.安全系统工程.北京:冶金工业出版社,1987
    [217]杨伦标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社.1998
    [218]Vick S G. Tailings dam safety—Implications for the dam safety community. Proceedings Tailings Dams, 2000, (3):1-20
    [219]陈守煜.工程模糊集理论与应用.北京:国防工业出版社,1998,11
    [220]徐维祥,张全寿.一种基于灰色理论和模糊数学的综合集成算法.系统工程理论与实践,2001,21(4):114-119
    [221]梁杰,侯志伟.AHP法专家调查法与神经网络相结合的综合定权方法.系统工程理论与实践,2001,21(3):59-63
    [222]高彦春,惠泱河.汉中盆地平坝区水资源分析评价.西北大学学报,1996,26(1):64-67
    [223]张歧山.灰朦胧集的差异信息理论:[博士学位论文].武汉:华中理工大学,1996
    [224]Xu Jiuping. On a Kind of Information Grey Number. The Journal of Grey System, 1995,7(2):111-130
    [225]Deng Julong. Grey Information Space. The Journal of Grey System, 1989,1(2):103-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700