用户名: 密码: 验证码:
垃圾填埋场流体产生与地球化学迁移转化过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场稳定化过程中不断释放出渗滤液与填埋气体(LFG),能够产生一系列的资源与环境问题。从生活垃圾填埋流体无害化处置与资源化开发并重的高度去研究垃圾填埋场流体的产生与地球化学迁移转化行为,进而探索新型的生物反应器填埋技术与工艺,可为生活垃圾的无害化与资源化处理提供科学的理论依据与实践方法。
     论文以理论分析为基础,自主设计的不同规模、不同相似性尺度的模拟填埋装置为实验平台,室内模拟填埋实验为主要研究方法,结合填埋场现场调研及数学建模等辅助手段,从生活垃圾填埋处理无害化与资源化相统一的新视角研究了填埋垃圾降解流体产生与地球化学迁移转化过程。构建了填埋场碳元素生物地球化学迁移转化模式,揭示了填埋体系固、液、气三相演化特征及三相间演化的定量关系,探明了各因素影响下的填埋垃圾降解流体产生规律、建立了垃圾生物气人工诱导理论,探讨了填埋场水分运移对生物化学作用的影响及其机理,提出了一种新的精控型间歇式厌氧生物反应器填埋工艺,并构建了精控型间歇式厌氧生物反应器填埋场的结构及运行模式。
     论文研究表明:
     ①垃圾生物质的不断损失是造成填埋场二次污染及LFG资源化水平不高的根本原因,减少垃圾生物质损失量的同时提高其气相转化率,是进行人工干预、实现城市生活垃圾填埋无害化与资源化处理的理论关键。
     ②较高的反应温度及产甲烷菌代谢能力能够促进固相生物质的快速水解;水解发酵菌长期的水解酸化主导作用导致垃圾生物质累计损失量不断增加,而产甲烷菌的代谢活动则可减小垃圾生物质的累计损失量。使填埋体系快速进入稳定的产气阶段,并促进不产甲烷菌与产甲烷菌的协同代谢,成为减少垃圾生物质损失、提高垃圾生物质气相转化率的重要措施。
     ③渗滤液定期排放情况下,填埋垃圾厌氧降解渗滤液及LFG产生速率变化分别符合指数型函数Y=A0*e-kt及Y’=V0*e-k’t。渗滤液产生潜力(A0/k)主要受反应温度的影响,LFG产生潜力(V0/k′)受垃圾含水率、反应温度、微生物接种、垃圾粒径多种因素的共同影响;渗滤液产生速率衰减常数k、渗滤液最大日产率转化系数η及η/k对填埋场渗滤液产生速率预测结果影响显著。
     ④在垃圾填埋降解过程中,提高固相生物质的水解速率、减少液相生物质的损失、促进产甲烷菌对液相生物质的快速消耗,并形成不产甲烷菌与产甲烷菌之间稳定的协同代谢是进行人工诱导产气的机理;多方式综合人工干预诱导是实现垃圾生物气资源化的有效途径。
     ⑤渗滤液定期排放情况下,难以形成产甲烷菌适宜的生物地球化学环境条件,不利于产甲烷菌对水解发酵产物的快速消耗,严重抑制了填埋垃圾的降解。模拟降雨入渗情况下,入渗水持续的冲刷作用促进了固相有机质的快速水解,但CODCr累计净溶出量明显增加,不利于填埋场渗滤液污染控制。渗滤液全量回灌情况下,产甲烷菌适宜的生物地球化学环境形成相对较快,有利于不产甲烷菌与产甲烷菌的协同代谢,加快了填埋垃圾固相有机质的溶出与去除。
     ⑥精控型间歇式厌氧生物反应器填埋可快速形成产甲烷菌适宜的生物地球化学环境条件,促进了填埋垃圾固相有机质快速水解与分解消耗,不仅显著缩短了填埋场稳定化周期、提高了渗滤液水质,而且填埋体系LFG/CH4累计产生量、LFG/CH4产生速率稳定性、LFG中CH4浓度也都有了大幅度提高。此外,精控型间歇式厌氧生物反应器填埋处理方式下,填埋垃圾生物质气相转化率明显提高、损失率显著下降,这对提高垃圾填埋场LFG资源化潜力、减少填埋场对周围环境的二次污染都具有重要的意义。
Leachate and landfill gas (LFG) are released continually in the process of landfill stabilization, which causes a series of resources and environment problems. It can provide theoretical basis and practical methods for municipal solid waste (MSW) harmlessness and resource that fluid production and geochemistry migration and transformation are researched by paying equal attention to MSW harmless disposal and resource development, that new bioreactor landfill technology and process are further explored.
     This dissertation was based on theoretical analysis, took simulation landfill device of different type and different similar scale as the experiment platform, took indoor simulated landfill experiments as main research methods, combined with on-site survey and mathematical modeling, researched fluid production and geochemistry migration and transformation in the process of landfill MSW degradation from the new viewpoint of unified harmless disposal and resource. In the dissertation, biogeochemistry migration and transformation mode of carbon element was constructed, quantitative relationship and characteristics among solid, liquid and gas evolution in the landfill were revealed, fluid production rule of landfill MSW degradation influenced by various factors was found out, artifcial induction theory of biomass was established, the effects of water migration on biogeochemistry activities and its mechanism were studied, eventually new technology of precision controlled anaerobic batch bioreactor landfill was put forward, and structure and operation mode of precision controlled anaerobic batch bioreactor landfill was constructed. By the research of this dissertation, main conclusions were drawn as follows:
     ①Biomass loss is the basic reason of landfill secondary pollution and low LFG resource level. The key theory of manual intervention and MSW harmlessness and resource are the decrease of biomass loss and the increase of biomass gas transformation rate.
     ②High reaction temperation and methanogens metabolism ability can promote rapid hydrolysis of solid biomass. The long-term leading role of hydrolysis acidification leads to increase of cumulative biomass loss; however, metabolic activity of methanogens can decrease it. Landfill system entering stable gas production stage rapidly, promoting cooperative metabolism between methanogens and non- methanogens are important measures of biomass loss decrease and biomass gas transformation rate increase.
     ③In the case of regular leachate emission, the production rate of leachate and LFG are in line with the exponential function Y=A0*e-kt and Y’=V0*e-k’t respectively. The potential of leachate production (A0/k) is mainly influenced by reaction temperature, the potential of LFG production (V0/k′) is influenced by water content, reaction temperature, microbial inoculation and MSW particle size. The attenuation constant of leachate production rate (k), the maximum day production rate coefficient of leachate (ηandη/k) have a significant effect on prediction results of leachate production rate.
     ④In the process of MSW degradation, the mechanism of artificial induction gas production includes improving hydrolysis rate of solid biomass, decreasing loss of liquid biomass, promoting rapid consumption of methanogens on liquid biomass, and forming stable cooperative metabolism between non-methanogens and methanogens. Integrated multi-mode artificial induction is the effective way for implementing resource utilization of biomass.
     ⑤It is difficult to form suitable biogeochemistry environment for methanogens in the case of regular leachate emission, which makes against rapid consumption of methanogens on hydrolysis acidification products, inhibits MSW degradation seriously. In the case of rainfall infiltration simulation, continuous washing of infiltrating water makes solid organic matter hydrolyze rapidly, meanwhile cumulative net leaching amount of CODCr increases significantly, which makes against the pollution control of leachate in landfill. In the case of leachate total recirculation, it is easy to form suitable biogeochemistry environment for methanogens, which is benefical to cooperative metabolism between non-methanogens and methanogens, accelerates leaching and removal of solid organic matter.
     ⑥Precision controlled anaerobic batch bioreactor landfill can form suitable biogeochemistry environment for methanogens rapidly, promote hydrolysis and decomposition of solid organic matter, shorten landfill stabilization period, improve leachate quality, increase cumulative production and production rate stability of LFG and CH4, and CH4 concentration in LFG greatly. Besides, in this mode, biomass gas transformation rate increases obviously, loss rate decreases significantly, which are very important to improve potential of LFG resource and reduce landfill secondary pollution.
引文
[1]建设部,国家环保总局,科技部.城市生活垃圾处理及污染防治技术政策[Z],2000.
    [2]国家统计局.中国统计年鉴[Z].北京:中国统计出版社,1996-2008.
    [3]聂永丰.三废处理工程技术手册(固体废物卷)[M].北京:化学工业出版社,2000.
    [4] Hongtao Wang, Yongfeng Nie. Municipal solid waste characteristics and management in China[J]. Journal of the Air & Waste Management Association, 2001, 51: 250-263.
    [5] B. Marticorena, A. Attal, P. Camacho, et al. Prediction rules for biogas valorization in municipal solid waste landfills[J]. Water Science Technology, 1993, 27(2): 235-241.
    [6]王伟,韩飞,袁光钰,等.垃圾填埋场气体产量的预测[J].中国沼气,2001,19(2):20-24.
    [7] H. Belevi, P. Baccini. Long-term behavior of municipal solid waste landfills[J]. Waste Management & Research. 1989, 7: 43-56.
    [8] Cecilia Oman, Per-Ake Hynning. Indentification of organic compounds in municipal landfill leachate[J]. Environmental Pollution, 1993, 80: 265-271.
    [9] Morris, N. C. Vasuki, J. A. Baker, et al. Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation[J]. Waste Management, 2003, 23: 653-666.
    [10]刘文兵,颜丽,方国渊,等.城市垃圾处理概况及主要处理方式[J].中国沼气,1998,16(1):29-32.
    [11]国家环境保护总局污染控制司.城市固体处理处置技术[M].北京:中国石化出版社,2000.
    [12] Reinhart D., Mccreanor P. T., Townsend T. The bioreactor landfill: its status and future[J]. Waste Management and Research, 2002, 20: 172-186.
    [13] Barlaz M A, Reinhart D. Bioreactor landfills: process continues[J]. Waste Management, 2004, 24(9): 859-860.
    [14]刘长礼,张云,王秀艳.城市垃圾地质填埋场址的优选方法[J].地球学报,1998,19(4):438-442.
    [15] Kavabalqq, Kamil. Engineering geological aspects of replacing a solid waste disposal site with a sanitary landfill[J]. Engineering Geology, 1996: 44(1-4): 203-212.
    [16] Turkmen Sedat, Taga Hidayet. Engineering geological assessment of the Diyarbakir solid waste landfill site[J]. Bulletin of Engineering Geology and the Environment, 2005, 64(4): 433-440.
    [17] Knight MJ, Leonard JG, Whiteley RJ. Lucas heights solid waste landfill and downstream leachate transport—a case study in environmental geology[J]. Bulletin of the International Association of Engineering Geology, 1978, 18: 45-64.
    [18] Zuquette LV, Palma JB, Peion OJ. Environmental assessment of an uncontrolled sanitary landfill, Pocos de Caldas, Brazil[J]. Bulletin of Engineering Geology and the Environment, 2005, 64(3):257-271.
    [19] Zuena AJ. Hydrogeologic aspects of landfill sitting and design[J]. Journal of the New England Water Pollution Control Association, 1985, 19(2): 110-118.
    [20] Heron G, Bjerg PL, Gravesen P, et al. Geology and sediment geochemistry of a landfill leachate contaminated aquifer (Gridsted, Denmark)[J]. Journal of Contaminant Hydrology, 1998, 29(4): 301-317.
    [21] Atekwana EA, Krishnamurthy RV. Investigating landfill-impacted groundwater seepage into headwater streams using stable carbon isotopes[J]. Hydrological Processes, 2004, 18(10): 1915-1926.
    [22] Rapti-Caputo Dimitra, Sdao Francesco, Masi Salvatore. Pollution risk assessment based on hydrogeological data and management of solid waste landfills[J]. Geoenvironmental Engineering, 2006, 85(1-2): 122-131.
    [23]沈东升.生活垃圾填埋生物处理技术[M].北京:化学工业出版社,2003.
    [24] Visscher A D, Cleemput O V. Simulation model for gas diffusion and methane oxidation in landfill cover soils [J]. Waste Management, 2003, 23 (7): 581-591.
    [25] Veziroglu T N. Hydrogen: its comparison with fossil fuels and its potential as a universal fuel. The future of energy gases[M]. US Geological Survey Professional Paper, 1993.
    [26]美国环境保护署.垃圾填埋场甲烷回收利用机会[R].甲烷市场化合作计划,2008.
    [27]何毅.从垃圾股到绩优股——浅谈CDM对中国垃圾填埋气项目发展的推动[J].环境保护,2007,(6):67-70.
    [28]陈家军.垃圾填埋气(LFG)的净化及利用前景[J].新材料产业,2007,(5):41-44.
    [29] Komilis, Ham.R K, Stegmann.R, et al. Effect of landfill design and operation practices on waste degradation behavior: A review[J]. Waste Management and Research, 1999, 17(1): 20-26.
    [30] Gorge tehobanogous. Integrated solid waste management engineering: solid waste landfill[J], Water Science Technology, 1993, 27(2): 235-241.
    [31]孙亚敏,唐萍.城市生活垃圾卫生填埋场环境影响评价[J].合肥工业大学学报(自然科学版),2007,30(2):196-199.
    [32]赵由才,郭兴民,朱琳楠.垃圾填埋场稳定化研究[J].重庆环境科学,1994,16(5):8-12.
    [33]唐翔宇,俞觊觎,Runyuzi Sylvester.模拟垃圾填埋场稳定化过程研究[J].上海环境科学,2000,19(7):345-348.
    [34]王罗春,赵由才,陆雍森.垃圾填埋场稳定化及其研究现状[J].城市环境与城市生态,2000,13(5):36-39.
    [35] GB16889-2008,生活垃圾填埋场污染控制标准[S].
    [36] Eric Senior. Microbiology of landfill sites[M]. USA : CRC. Press, Inc., 1990.
    [37] Robert J. Fairweather, Morton A. Barlaz. Hydrogen sulfide production during decomposition of landfill inputs[J]. Journal of Environmental Engineering, 1996, 124(4): 353-361.
    [38]刘富强,唐薇,聂永丰.城市生活垃圾填埋场气体的产生、控制及利用综述[J].重庆环境科学,2000,22(6):72-76.
    [39] B. Marticorena, A. Attal, P. Camacho, et al. Prediction rules for biogas valorization in municipal solid waste landfills [J]. Water Science Technology, 1993, 27(2): 235-241.
    [40] Jean E Bogner, Kurt A Spokas, Elezabeth A Burton. Kinetics of methane oxidation in a landfill cover soil: temporal variations, a whole-landfill oxidation experiment, and modeling of net CH4 emissions[J]. Environment Science Technology, 1997, 37: 2504-2514.
    [41]王里奥,王敏,王赟.垃圾填埋场沼气控制与利用的方案评选法[J].重庆大学学报(自然科学版),2001,24(1):122-125.
    [42] Manas Ranjan Ray, Sanghita Roychoudhury, Gopeshwar Mukherjee, et al. Respiratory and general health impairments of workers employed in a municipal solid waste disposal at an open landfill site in Delhi[J]. International Journal of Hygiene and Environmental Health, 2005, 208(4), 255-262.
    [43] Kun Yang, Xiao-Nong Zhou, Wei-An Yan, et al. Landfills in Jiangsu province, China, and potential threats for public health: leachate appraisal and spatial analysis using geographic information system and remote sensing[J]. Waste Management, 2008, 28(12): 2750-2757.
    [44] Eschenroeder A Q,Wolff S,Taylor A,et al. Air and Waste management Associate Annual Meeting[C]. Pittsburgh: PA, 1990.
    [45] Fielder H M P. Report on health of residents living near the Nant-Y-Gwydddon landfill site using routingly available dada[R]. Cardiff, Wales: Welsh Combined Centres for Public Health, 1997.
    [46] Ragle N., Kissel J., Ongerth J E., et al. Composition and variability of leachate from recent and aged areas within a municipal landfill[J]. Water Environment Research, 1995, 67(2): 238-243.
    [47] Amalendu B. Design of landfills and integrated solid waste management[M]. New York: John Wiley & Sons, Inc., 2004.
    [48]赵由才,朱青山.城市生活垃圾卫生填埋场技术与管理手册[M].北京:化学工业出版社,1999.
    [49]刘兆昌,张兰生.地下水系统的污染与控制[M].北京:中国环境科学社,1991:23-69.
    [50] Zhao Youcai, Chen Zhugen, Shi Qingwen, et al. Monitoring and long-term predicition of refuse compositions and settlement in large-scale landfill [J]. Waste Mangement & Research, 2001, 19(2): 160-168.
    [51]赵由才.可持续生活垃圾处理与处置[M].北京:化学工业出版社,2007,109-132.
    [52]程云环,桑树勋,曹丽文,等.模拟成藏地质填埋及诱导填埋有机质生气的理论初探[J].环境污染与防治,2007,29(5):325-329.
    [53] Booker T J, Asce A. M., Ham R. K. Stabilization of solid waste in landfills[J]. Journal of Environmental Engineering Division ASCE, 1982, 108(EE4): 629-638.
    [54]朱青山,赵由才,徐迪民.垃圾填埋场中垃圾降解与稳定化模拟试验[J].同济大学学报,1996,24(5):596-600.
    [55] Reinhart D R, Al-Yousfi A B. The impact of leachate recirculation on municipal solid waste landfill operating characteristics[J]. Waste Management & Research, 1996, 14(4): 337-346.
    [56]李启彬.基于渗滤液回灌的厌氧型生物反应器填埋场快速稳定研究[D].成都:西南交通大学,2004.
    [57] M. A. Barlaz, M. W. Milke, R. K. Ham. Gas producition parameters in sanitary landfill simulators[J]. Waste Management & Research, 1987, 5(1): 27-39.
    [58] M. A. Barlaz, D. M. Schaeffer, R. K. Ham. Inhibition of methane formation from municipal refuse in laboratory scale lysimeters[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 181-205.
    [59] Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components[J]. Bioresource Technology, 1999, 69(3): 249-254.
    [60] El-Mashad H M, Zeeman G, Wilko K P, et al. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure[J], Bioresource Technology, 2004, 95: 191-201.
    [61]李启彬,刘丹,欧阳峰.生物反应器填埋场固相垃圾的水解速率[J].西南交通大学学报,2005,40(1):126-130.
    [62]吴满昌,孙可伟,李如燕,等.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程,2005,(9):28-30.
    [63]杨军,黄涛,张西华.温度对填埋垃圾渗滤液特征的影响[J].生态环境,2007,16(2):799-801.
    [64]张波,史红钻,张丽丽,等.pH对厨余废物两相厌氧消化过程中水解和酸化过程的影响[J].环境科学学报,2005,25(5):665-669.
    [65]张波,蔡伟民,何品晶.PH调节方法对处于垃圾两相厌氧消化中水解和酸化过程的影响[J].环境科学学报,2006,26(1):45-49.
    [66]吕凡,何品晶,邵立明,等.pH值对易腐有机垃圾厌氧发酵产物分布的影响[J].环境科学,2006,27(5):991-997.
    [67]陈家军,王浩,张娜,等.厨余垃圾填埋产气过程实验模拟研究[J].中国沼气,2008,26(3):31-52.
    [68] Kasali G B. Optimization and Control of Methanogenesis in refuse fractions[D]. Glasgow: University of Strathciyde, 1986.
    [69] Bogner J E. Anaerobic Burial of refuse in landfills: Increase atmospheric methane and implications for increased carbon storage[J]. Ecol. Bull., 1992, 20: 601-605.
    [70]乔玮.城市垃圾厌氧消化处理技术研究[D].长沙:湖南大学,2004.
    [71]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2005.
    [72] Lu J C S, Morrison R D, Steams R J. Leachate production and management from municipal landfills: summary and assessment [A]. Proceedings of the 7th annual SHWRD Research Symposium [C]. Cincinnati, Ohio, 1987: 1-17.
    [73]张振营,吴世明,陈云敏.天子岭垃圾填埋场有机物降解规律的研究[J].岩土力学,2002,23(1):60-62.
    [74]王罗春.城市生活垃圾填埋场稳定化进程研究[D].上海:同济大学,1999.
    [75]方云飞.城市生活垃圾(MSW)有机物降解和变形规律研究[D].南京:河海大学,2005.
    [76]刘疆鹰,徐迪民,赵由才,等.城市垃圾填埋场的沉降研究[J].土壤与环境,2002,11(2):111-115.
    [77] O’Leary P, Tansel B. Landfill and long-term Care[J]. Waste Age, 1986, 17(10): 53-54.
    [78] Anders Bjarngard, Lenis Edgers. Settlement of municipal solid waste landfills[C], 13th Annual Madison Waste Conference on Municipal & Industrial Waste. 1990: 19-20.
    [79] Merz R C, Stone R. Landfill settlement rates[J]. Pubic Works, 1962, 93(9): 103-106.
    [80] Morris D V, Woods C E. Settlement and engineering considerations in landfill final cover design[A]. Geotechnics of Waste Fulls-Theory and Practice: ASTM STP1070[C]. Philadelphia: ASTM, 1990: 9-21.
    [81] Dean K Wall, Chris Zeiss. Municipal landfill biodegradation and settlement[J]. Journal of Environmental Engineering, 1996, 121(3): 214-224.
    [82]袁光钰,匡胜利,曹丽云.我国城市垃圾填埋场降解速率的分析[J].新疆环境保护,2000,22(1):11-15.
    [83]王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究[J].环境污染治理技术与设备,2001,2(4):15-17.
    [84] Todd J. Bookter, A.M. ASCE, Robert K. Ham. Stabilization of solid waste in landfills[J]. Journal of Environmental Engineering Division ASCE, 1982, 108(EE4): 629-638.
    [85] Robert K. Ham, Michele Robbins Norman, Paul R. Fritschel. Chemical characterization of freshkills landfill refuse and extracts [J]. Journal of Environmental Engineering, 1993, 119(6): 1176-1195.
    [86] O. Castagnoli, L. Musmeci, E. Zavattiero, et al. Humic substances and humification rate in a municipal refuse disposed of in a landfill [J]. Water, Air, & Soil Pollution, 1990, 53:1-12.
    [87] Filip Z., Pecher W., Berthelin J. Microbial utilization and transformation of humic acid-like substances extracted from a mixture of municipal refuse and sewage sludge disposed of in a landfill[J]. Environmental Pollution, 2000, 109(1): 83-89.
    [88] Kang K.H., Shin H S., Parka H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Resources, 2002, 36(16): 4023-4032.
    [89] Lguirati A., Baddi G., Mousadik A., et al. Analysis of humic acids from aerated and non-aerated urban landfill composts[J]. International Biodeterioration & Biodegradation, 2005, 56(1): 8-16.
    [90]联邦德国环境保护局编.生活垃圾特性分析指南[M].甄金环译.北京:中国环境科学出版社,1990.
    [91]赵由才,黄仁华,赵爱华,等.大型填埋场垃圾降解规律研究[J].环境科学学报,2000,20(6):736-740.
    [92] Zhao Y C, Chen Z G, Shi Q W, et al. Monitoring and long-term prediction of refuse compositions and settlement in large-scale landfill[J]. Waste Management & Research, 2001, 19(2): 160-168.
    [93]瞿贤,何品晶,邵立明,等.生物反应器填埋条件下垃圾生物质组分的初期降解规律[J].环境科学学报,2005,25(9):1219-1225.
    [94]杨玉江,赵由才.填埋垃圾腐殖质组成在填埋场稳定度表征中的应用[J].环境污染与防治,2007,29(2):108-114.
    [95]杨玉江,赵由才.生活垃圾填埋场垃圾腐殖质组成和变化规律的表征[J].环境科学学报,2007,27(1):92-95.
    [96] Attal. A, Akunna. J, Camacho. P, et al. Anaerobic degradation of municipal wastes in landfill[J]. Water Science and Technology,1992,25(7): 243-253.
    [97]蒋建国,梁顺文,陈石,等.深圳下坪填埋场渗滤液产生量预测研究[J].新疆环境保护,2002,24(3):1-4.
    [98] J. P. Y. Jokela, R. H. Kettunen, K. M. Sormunen, et al. Biological nitrogen removal from municipal landfill leachate: Low-cost nitrification in biofilters and laboratory scale in-situ denitrfication[J]. Water Research, 2002, 36: 4079-4087.
    [99] Zong-ping Wang, Zhe Zhang, Yue-juan Lin, et al. Landfill leachate treatment by a coagulation-photooxidation process[J]. Journal of Hazardous Materials, 2002, 95(1-2): 153-159.
    [100]许玉东,聂永丰,岳东北.垃圾填埋场渗滤液的蒸发处理工艺[J].环境污染治理技术与设备,2005,6(1):68-72.
    [101] James C. S., Lu Bert Eichemberger, Robert J. Steams. Leachate from Municipal landfill: Production and management[M]. Calscience Research Inc., 1985.
    [102]赵勇胜,苏玉明,王翊红.城市垃圾填埋场地下水污染的模拟与控制[J].环境科学,2002,23(S):83-88.
    [103]刘会虎,桑树勋,周效志,等.模拟雨水浸泡生活垃圾重金属浸出特征研究[J].地球化学,2008,37(6):587-594.
    [104]庄颖,生旭.垃圾填埋场渗滤液产生量的估算[J].环境卫生工程,2005,13(1):53-56.
    [105] Schroeder P. R., Gibson A. C., Smolen M. D. The hydrologic evaluation of landfill performance (HELP) Model: documentation for version[J]. Environmental Protection Agency, Washington. D. C., 1984b: 54-63.
    [106] Hatfield Kirk, Miller W. Lamar. Hydrologic Management Models for Operating Sanitary Landfills, Florida Center for Solid and Hazardous Waste Mangement[R]. Gainesville, Fl., November, 30, 1994.
    [107] Reza M. Khanbilvardi, Shabbir Ahmed, Phillp J. Gieason. Flow investigation for landfill leachate (FILL) [J]. Journal of Environmental Engineering, 1995: 121(1): 45-57.
    [108]金龙,赵由才.计算机与数学模型在固体废弃物处理与资源化中的应用[M].北京:化学工业出版社,2006.
    [109] J.W.F. Morris, N.C. Vasuki, J.A. Baker, et al. Findings form long-term monitoring studies at MSW landfill facilities with leachate recirculation[J]. Waste Management, 2003, 23: 653-666.
    [110] Bestamin Ozkaya, Ahmet Demir, M. Sinan Bilgili. Mathematical simulation and long-term monitoring of leachate components from two different landfill cells[J]. Journal of Hazardous Materials, 2006, A135: 32-39.
    [111] M.S. Rao, S.P. Singh, A.K. Singh, et al. Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage[J]. Applied Energy, 2000, 66: 75-87.
    [112]邵立明,何品晶,瞿贤.回灌渗滤液pH和VFA浓度对填埋层初期甲烷化的影响[J].环境科学学报,2006,26(9):1451-1457.
    [113]杨国栋,蒋建国,黄云峰,等.渗滤液回灌负荷对填埋场垃圾产气效能的影响[J].环境科学,2006,27(10):2129-2134.
    [114]程云环,桑树勋,张兴.生活垃圾模拟填埋条件下水解酶活力及产气研究[J].东北林业大学学报,2007,35(5):70-73.
    [115] Bogner J. Landfill CH4: rates, fates and role in global carbon cycle[J]. Chemosphere, 1993, 26(1): 369-386.
    [116] Koteswara R. Gurijala, Ping Sa, Joseph A. Robinson. Statistical modeling of Methane Production from Landfill Samples[J]. Applied and Environmental Microbiology, 1997, 63(10): 3797-3803.
    [117]程云环,桑树勋,周效志,等.填埋垃圾有机质生物气地球化学研究进展[J].环境卫生工程,2007,15(1):7-11.
    [118] Hartz K E, Ham R K, Klink R E. Temperature effects: methane generation from landfill samples[J]. Journal of Environmental Engineering Division, 1982, 108(4): 629-638.
    [119] Lane G. Laboratory scale anaerobic digestion of fruit and vegetable solid waste. Biomass, 1984, 5: 245-259.
    [120] Bartha MI. High solids anaerobic fermentation for biogas and compost production. Biomass, 1988, 16: 173-182.
    [121] Sharma SK, Saini JS, Mishra IM, et al. Mirabilis leaves– a potential source of methane. Biomass, 1987, 13: 13-24.
    [122]焦学军,卲军.城市生活垃圾填埋产气规模研究[J].上海环境科学,1996,15(9):30-34.
    [123] IPCC. Guidelines for national greenhouse gas inventories[R]. printed in France, 1995.
    [124]刘春华.固体废物填埋场气体产生过程及模型研究[D].北京:清华大学,1995.
    [125] Rotenberg E, Y. Mamane. Mathematical model to estimate emissions of volatile organic compounds from municipal landfills[J]. Journal of Solid Waste Technology & Management, 1998, 25(2): 69-76.
    [126] Schumacher M M. Landfill methane recovery[M]. New Jersey, USA, 1983.
    [127] Gendebien A. Landfill gas—From environment to energy[R]. Report of the Commission of theEuropean Communities, EUR14017/1 EN, 1992.
    [128] Christensen T H, Cossu R, Stegmann, R. Landfilling of waste: biogas[M]. London: E&FN, 1996.
    [129] EMCON. Methane generation and recovery from landfills[R], EMCON Associates, san jose, CA, Ann arbor, 1980.
    [130] N. Gardner, S. D. Probert. Forecasting Landfill-Gas Yields[J]. Applied Energy, 1993, 44: 131-163.
    [131] McCreanor P T, Reinhart D R. Mathematical modeling of leachate routing in a leachate recirculating landfill[J]. Water Research , 2000 , 34 (4): 1285-1295.
    [132]王洪涛,殷勇.渗滤液回灌条件下生化反应器填埋场水分运移数值模拟[J].环境科学,2003,24(2):66-72.
    [133] Oweis I S, Smith D A, Allwood R B, et al. Hydraulic characteristics of municipal refuse[J]. Journal of Geotechnical Engineering, ASCE, 1990, 116(4): 539-553.
    [134]陈云敏,柯瀚.城市固体废弃物的工程特性及填埋技术[A].第一届全国岩土工程与土工合成材料技术研讨会论文集[C].杭州:浙江大学出版社,2002:47-60.
    [135] T. G. Townsend, W. L. Miller, J. F. K Earle. Leachate recycle infiltration ponds[J]. Journal of Environmental Engineering, 1995, 121(6): 465-471.
    [136] N. Grace. An evaluation of the anaerobic biodegradability and hydraulic conductivity of shredded solid waste generated on the campus of the University Florida[D]. University of Florida, USA, 1989.
    [137] G. P. Korfiatis, A. C. Demetracopoblos, E. G. Nawy. Moisture transport in a solid waste column[J]. Journal of Environmental Engineering, 1984, 110(4): 780-796.
    [138] T. H. Chen, D. P. Chynoweth. Hydraulic conductivity of compacted municipal solid waste[J]. Bioresource Technology, 1995, 51: 205-212.
    [139]冉龙.城市生活垃圾的压缩和渗透特性及填埋场水力特性研究[D].杭州:浙江大学,2005.
    [140]介玉新,旦增顿珠,魏弋峰.垃圾土的渗透特性试验[J].岩土工程技术,2005,19(6):307-310.
    [141]瞿贤,何品晶,邵立明,等.城市生活垃圾渗透系数测试研究[J].环境污染治理技术与设备,2005,6(12):13-17.
    [142]陈扬.固体废弃物填埋场渗流数学模型研究[D].南京:河海大学, 2004.
    [143]殷勇,王洪涛,张相锋.垃圾填埋场水分迁移模型的应用研究[J].环境污染治理技术与设备,2002,3(10):36-40.
    [144]高太忠,黄群贤,刘野,等.有机污染物在包气带中迁移转化试验研究[J].环境污染治理技术与设备,2004,5(2):42-45.
    [145]曹丽文,姜振泉,张静,等.垃圾填埋场排水层渗透性变化特征实验研究[J].中国矿业大学学报,2007,36(4):467-472.
    [146]刘建国,聂永丰,王洪涛.填埋场水分运移模拟实验研究[J].清华大学学报(自然科学版),2001,41(4-5):244-247.
    [147]曹国强,梁冰,包明宇.温度作用下填埋垃圾气体运移规律的研究[J].辽宁工程技术大学学报,2004,23(1):47-48.
    [148]陈家军,王红旗,王金生,等.填埋场释放气体运移数值模型及应用[J].环境科学学报,2000,20(3):327-331.
    [149]薛强,梁冰,刘晓丽.填埋场中气体运移的非稳定耦合渗流数学模型[J].岩土力学,2002,23(2):191-195.
    [150]梁冰,薛强,刘晓丽.MATLAB在垃圾填埋气体运移数值可视化中的应用[J].安全与环境学报,2002,2(6):37-38.
    [151]易富,梁冰.基于模糊渗流理论的垃圾填埋气运移数学模型研究[J].地下空间与工程学报,2005,1(6):892-894.
    [152]彭绪亚.垃圾填埋气产生及迁移过程模拟研究[D].重庆:重庆大学,2004.
    [153]廖利,陈朱蕾,李道圣,等.垃圾填埋气体横向迁移测试研究[J].武汉城市建设学院学报,1999,16(2):15-19.
    [154]洪燕峰,潘顺昌,邵强.垃圾卫生填埋场卫生防护距离标准研究[J].重庆环境科学,1994,16(4):22-25.
    [155]陈家军,聂永丰,王红旗,等.用于填埋场释放气体运移数学模拟的土柱导气实验研究[J].环境科学学报,2000,20(1):59-63.
    [156] Massmann J W. Applying groundwater flow models in vapor extraction system design [J]. Journal of Environmental Engineering, 1989, 115(1): 129-149.
    [157] Young A. Mathematical model of landfill gas extraction[J]. Journal of Environmental Engineering, 1989, 115(6):1073-1089.
    [158] Straub W A,Lynch D R. Models of landfill leaching: Organic strength[J]. Journal of Environmental Engineering, 1982, 108(2): 251-268.
    [159] Reinhart D. R., T. G. Townsend. Landfill Bioreactor Design & Operation[M]. Lewis Publishers, 1998.
    [160] Bendz D, V P Singh, M Akesson. Accumulation of water and generation of leachate in a young landfill[J]. Journal of Hydrology, 1997, 203: 1-10.
    [161] Pohland F G, A Al-Yousfi. Design and operation of landfills for optimum stabilization and biogas production[J]. Water Science and Technology, 1995, 30(12): 117-124.
    [162] Wall D K, C Zeiss. Municipal landfill biodegradation and settlement[J]. Journal of Environment Engineer, ASCE, 1995, 121(3): 214-224.
    [163] Chugh S, Clarke W, Pullammanappallil P, et al. Effect of recirculated leachate volume on MSW degradation[J]. Waste Management & Resource, 1998, 16(6): 564-573.
    [164] Koerner R M, T Y Soong. Leachate in landfills: the stability issues[J]. Geotextiles and Geo-membranes, 2000, 18(5): 293-309.
    [165]罗春泳,胡亚元,陈云敏,等.垃圾填埋场渗滤液回灌效果的理论研究[J].中国给水排水,2003,19(2):5-8.
    [166]孙英杰,楚贤峰,孙晓杰,等.回灌运行参数对新鲜垃圾渗滤液的影响研究[J].环境工程,2007,25(1):24-26.
    [167]赵庆良,刘雪雁,刘志刚,等.寒冷地区垃圾渗滤液的回灌处理[J].中国给水排水,2004,20(10):6-9.
    [168]荣波,卫潘明,李彦富,等.北京生活垃圾成分分析及对应处理方式对策研究[J].环境保护,2004,10:30-33.
    [169]黄毅,何强.我国垃圾填埋气的产生和利用现状研究[J].四川理工学院学报(自然科学版),2008,121(1):117-120.
    [170] Silva A C, Dezotti M, Sant’Anna G L. Treatment and detoxification of a sanitary landfill leachate [J]. Chemosphere, 2004, 55 (2): 207-214.
    [171]黄晓文,吴三达.填埋气体的综合利用[J].环境卫生工程,2006,14(4):9-11.
    [172]王玉波.填埋气发电项目建设的可行性探讨[J].环境卫生工程,2005,13(3):18-20.
    [173]何若,沈东升,朱荫湄.生物反应器填埋场处理生活垃圾的研究进展[J].浙江大学学报(农业与生命科学版),2004,30(3):252-258.
    [174]夏北成.环境污染物生物降解[M].北京:化学工业出版社,2002.
    [175] Barlaz M A, Schaefer D M, Ham R K. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill[J]. Applied and Environment Microbiology, 1989, 55(1): 55-65.
    [176]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [177]郭蔚,刘成,邹少兰,等.同型乙酸菌研究进展及应用前景[J].应用与环境生物学报,2006,12(6):874-877.
    [178]李国学.固体废物处理与资源化[M].北京:中国环境科学出版社,2005.
    [179] Mata-Alvarez J, MacéS, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives[J] . Bioresource Technology, 2000, 74 (1): 3-16.
    [180] Mata-Alvarez J. Biomethanization of the organic fraction of municipal solid wastes[M]. London: IWA Publishing, 2003: 1-90.
    [181] Ress J F. The fate of carbon compounds in the landfill disposal of organic matter[J]. Journal of Chemical Technology & Biotechnology, 1980, 30 (1): 161-175.
    [182] Kasali G B. Optimization and control of methanogenesis in refuse fractions[R]. University of Strathclyde, Glasgow, U. K, 1986.
    [183]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [184]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2000.
    [185]祝优珍,仇玉兰,袁涛.环境卫生生物学与监测技术[M].北京:化学工业出版社,2007.
    [186] Shen D. S., He R, Ren G. P., et al. Effect of leachate recycle and inoculation on microbial characteristics of municipal refuse in landfill bioreactors[J]. Journal of Environmental Sciences, 2002,14(3): 406-412.
    [187] Pavlostathis, Giraldo-gomes E. Kinetics of anaerobic treatment[J]. Water Science, 1991, 24(8): 35-59.
    [188] Kelleher B P, Leahy J J, Henihan A M. Advances in poultry litter disposal technology-a review[J]. Bioresource Technology, 2000, 83: 27-36.
    [189]邹庐泉,何品晶,卲立明,等.利用填埋层内生物代谢控制生活垃圾填埋场渗滤液污染[J].环境污染治理技术与设备,2003,4(6):70-73.
    [190]郑曼英,李丽桃.垃圾渗液中有机污染物初探[J].重庆环境科学,1996,18(4):41-43.
    [191]杨红艳,马溪平,李清华.城市生活垃圾填埋场渗滤液水质特征及污染控制技术[A].中国环境保护优秀论文集(2005)(下册)[C],2005.
    [192]郑曼英,李丽桃,刑益和,等.垃圾渗滤液的污染特性及其控制[J].环境卫生工程,1997,(2):7-11.
    [193] George Tchobanoglous, Hillary Theisen, Samuel A Vigil. Integrated Solid Waste Management: Engineering Principles and Management Issues [M]. New York: McGraw-Hill Science Engineering, 1993.
    [194]袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001,21(3):223-232.
    [195]周效志,桑树勋,曹丽文,等.垃圾渗滤液氨态氮与挥发性脂肪酸馏出规律研究[J].环境监测管理与技术,2008,20(6):59-61.
    [196]李国刚.固体废弃物试验与监测分析方法[M].北京:化学工业出版社,2003.
    [197]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,(8):40-41.
    [198]丛峰松.生物化学实验[M].上海:上海交通大学出版社,2005.
    [199]焦立为.重量法测定黄腐植酸含量[J].理化检验-化学分册,2004,40(5):297.
    [200]戴丽明.腐植酸含量测定的新方法[J].河北化工,2005,(1):60-61.
    [201]陈钧辉,陶力,李俊,等.生物化学实验[M].北京:科学出版社,2003.
    [202]杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究[J].生物技术,2004,14(5):46-48.
    [203]何品晶,潘修疆,吕凡,等.pH值对有机垃圾厌氧水解和酸化速率的影响[J].中国环境科学,2006,26(1):57-61.
    [204] Vavilin V A, Rytov S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter[J]. Bioresource Technology, 1996, 56(2): 229-237.
    [205] Vavilin V A, Rytov S V, Lokshina L Y, et al. Distributed model of solid waste anaerobic digestion: effects of leachate recirculation and pH adjustment[J]. Biotechnology and Bioengineering, 2003, 81(1): 66-73.
    [206]吴满昌,孙可伟.温度波动对城市有机生活垃圾高温厌氧消化工艺影响[J].环境科学,2006,27(4):805-809.
    [207] Raghid Lepisto, Jukka Rintala. Extreme thermophilic(70 deg C), VFA-Fed UASB reactor performance, temperature response, load potential and comparison with 35 and 55 deg C UASB reactors[J]. Water Research, 1999, 33(14): 3162-3170.
    [208]董春娟,吕炳南,贾名准.降低废水厌氧处理所需碱度的有效途径[J].环境污染治理技术与设备,2003,4(4):88-91.
    [209]黄仁华,赵由才.大型垃圾填埋场表面沉降研究[J].上海环境科学,2000,19(8):399-401.
    [210] Antonietta Fieretto, Carmelina Di Nardo, Stefania Papa, et al. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem[J]. Soil Biology and Biochemistry, 2005, 37(6): 1083-1091.
    [211] Veeken A, Kalyuzhnyi S, Scharff H, et al. Effect of pH and VFA on hydrolysis of organic solid waste [J]. Journal of Environmental Engineering, 2000, 126(12): 1076-1081.
    [212] Horiuchi J, Shimizu T, Tada K, et al. Selective production of organic acids in anaerobic acid reactor by pH control[J]. Bioresource Technology, 2002, 82(3): 209-213.
    [213] Babel S, Fukushi K, Sitanrassamee B. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester[J]. Water Resource, 2004, 38(9): 2416-2422.
    [214]潘修疆,何品晶,吕凡,等.pH值与乙酸对易腐有机垃圾水解过程的抑制[J].环境化学,2006,25(4):449-453.
    [215]赵由才,石磊,孙英杰,等.渗滤液的同质与异质回灌技术[J].环境科学学报,2006,26(2):241-245.
    [216]曹丽文.渗滤液影响衬垫系统土工性状研究[D].徐州:中国矿业大学,2007.
    [217]徐文龙,卢英方,Rudoif Walder.城市生活垃圾管理与处理技术[M].北京:中国建筑工业出版社,2006.
    [218]马磊,王德汉,杨文杰,等.餐厨垃圾高温厌氧消化接种物的驯化研究[J].农业工程学报,2007,23(6):203-207.
    [219]吴文伟,王伟.城市生活垃圾可转化特性研究[J].城市管理与科技,2002,4(4):13-15.
    [220]夏北成,Zhou J,Tiedje J M.土壤细菌类克隆群落及其结构的生态学特征[J].生态学报,2001,21(4):574-578.
    [221]何若,沈东升.生物反应器填埋场处理渗滤液的试验[J].环境科学,2001,22(6):99-102.
    [222] San I,Onay T T. Impact of various leachate recirculation regimes on municipal solid waste degradation[J]. Journal of Hazardous Materials, 2001, 87: 259-271.
    [223]张希衡,王宝泉,刘新荣,等.废水处理工程[M].北京:中国环境出版社,1996.
    [224] Chiampo F, Conti R, Cometto C. Mophological characterization of MSW landfills[J]. Resources, Conservation and Recycling , 1996, 17: 37-45.
    [225] Santosh Y, Sreekrishan T R, Kohil S, et al. Enhancement of biogas production from solid substratesusing different techniques—a review[J]. Bioresource Technology, 2004 (95): 1-10.
    [226] Geeta G S, Jagadeesh K S, Reddyt K R. Nickel as an accelerator of biogas produciton in water hyacinth (Eichorniacrassipes Solns.) [J]. Biomass, 1990, 21: 157-161.
    [227] Bardiya N, Gaur A C. Effects of carbon and nitrogen ratio on rice straw biomethanation [J]. Rural Energy, 1997, 4 (1-4): 1-16.
    [228] Pender Sean, Toomey Margaret, Carton Micheal, et al. Long term effects of operating temperature and sulphate addition on the metanogenic community structure of anaerobic hyric reactors [J]. Water Research, 2004, 38: 619-630.
    [229] Neves L, Oliveria R, Alves M M. Influence of inoculums activity on the biomethanization of a kitchen waste under different waste/inoculum ratios[J]. Process Biochemistry, 2004, 39: 2019-2024.
    [230] Lopes W S, Leite V D, Prasad S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste [J]. Bioresource Technology, 2004, 94: 261-266.
    [231]李亚新,董春娟,徐明德.厌氧消化过程中Fe、Co、Ni对NH4+-N的拮抗作用[J].城市环境与城市生态,2000,13(4):11-12.
    [232]龙焰,沈东升,劳慧敏,等.填埋场中垃圾降解微生物机理研究进展[J].浙江大学学报(农业与生命科学版),2006,32(1):9-13.
    [233] Narihiro Takashi, Sekiquchi Yuji. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update[J]. Current Opinion in Biotechnology, 2007, 18(3): 273-278.
    [234]涂帆,钱学德,崔广强,等.城市固体废弃物持水率的研究[J].岩石力学与工程学报,2008,27(S2):3305-3311.
    [235] Fungaroli A A, Steiner R L. Investigation of sanitary landfill behavior[R]. Cincinnati, Ohio, U.S.: Enivronmental Protection Agency, 1979.
    [236] Chian E S K, DeWalle F B. Characterization of soluble organic matter in leachate[J]. Environment Science Technology, 1977, 11(2): 158-163.
    [237] Klink R. E., Ham R. K. Effects of moisture movement on methane production in solid waste landfill samples. Resources and Conservation, 1982, 8(1): 29-41
    [238] Rees J. F. The fate of carbon compounds in the landfill disposal of organic matter[J]. Journal of Chemical Technology & Biotechnology, 1980, 30(1): 161-175.
    [239]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [240]曹江英,黄涛,张西华,等.垃圾填埋场室内模拟试验注水量确定方法及其应用[J].环境监测管理与技术,2007, 19(3):39-42.
    [241]杨青,廖利,王松林.填埋场渗滤液水力学研究进展[J].环境卫生工程,2003,11(3):119-122.
    [242] Noble J J, Arnold A E. Experimental and mathematical modeling of moisture transport in landfills[J]. Chemical Engineering Comm. 1991, 100: 95-111.
    [243] Van Genuchten MTh. A comparison of numerical solutions of the one-dimensional displace unsaturated saturated flow and mass transport equations[J]. Advancement of Water. Resources, 1982, 5: 47-55.
    [244] Pohland Frederick, Harper Stephen, Chang Ker-Chi, et al. Leachate generation and control at landfill disposal sites [J]. Water Pollution Research Journal of Canada, 1985, 20(3): 10-24.
    [245]邹庐泉,何品晶,卲立明.垃圾填埋初期渗滤液循环对其产生量的影响[J].上海交通大学学报,2003,37(11):1784-1787.
    [246]卢成洪,徐迪民.垃圾填埋场渗滤液水质影响因素的研究[J].给水排水,1999,25(2):20-23.
    [247] Ding A, Zhang Z, Fu J, et al. Biological control of leachate from municipal landfills[J]. Chemosphere, 2001, 44(1): 1-8.
    [248]刘宏远,沈东升,朱荫湄.渗滤液回灌型填埋场的水质变化规律[J].浙江工业大学学报,2005,33(1):1-3.
    [249] Zhao Qinglang, Liu Xueyan, Qi, Xudong, et al. Landfill leachate production, quality and recirculation treatment in northeast China [J]. Journal of Environmental Science, 2006, 18(4): 625-628.
    [250] Li Ye, Wang Lina, Zheng Shizhong, et al. Removal of pollutants of landfill leachate by recirculation[J]. Journal Wuhan University of Technology, Material Science Edition, 2008, 23(2): 281-284.
    [251] F. A. O. Otieno. Stabilization of solid waste through leachate recycling[J]. Waste Management & Research, 1994, 12(1): 93-100.
    [252] Delia Teresa Sponza, Osman Nuri. Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors[J]. Process Biochemistry, 2004, 39(12): 2157-2165.
    [253]黄启飞,王琪,董路,等.垃圾填埋场渗滤液回流处理技术研究进展[J].生态环境,2004,13(1):95-97.
    [254]邓舟,蒋建国,杨国栋,等.渗滤液回灌量对其特性及填埋场稳定化的影响[J].环境科学,2006,27(1):184-188.
    [255]贺晓蕾,曹杨.2000~2004年徐州市区酸雨监测[J].江苏环境科技,2005,18(S):92-93.
    [256] Townsend T G, Miller W L, Lee Hyung-Jib, et al. Acceleration of landfill stabilization using leachate recycle[J]. Journal of Environmental Engineering, 1996, 122(4): 263-268.
    [257] Wang Z, Banks C J, Accelerated hydrolysis and acidification of municipal solid waste (MSW) in a flushing anaerobic bio-reactor using treated leachate recirculation[J]. Waste Management and Research, 2000, 18(3): 215-223.
    [258] Lopez Torres, Espinosa Llorens, Ma del C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes[J]. Waste Management, 2008, 28(11): 2229-2234.
    [259] He Shijun, Wang Jianlong, Zhao Xuan. Effect of ammonium concentration on the methanogenic activity of anaerobic granular sludge[J]. Journal of Tsinghua University, 2005, 45(9): 1294-1296.
    [260]于芳芳,伍健东.氨氮对厌氧颗粒污泥产甲烷菌的毒性研究[J].化学与生物工程,2008,25(4):75-78.
    [261]卲立明,何品晶,瞿贤.回灌渗滤液pH和VFA浓度对填埋层初期甲烷化的影响[J].环境科学学报,2006,26(9):1451-1457.
    [262]邹庐泉,何品晶,邵立明,等.回灌对垃圾填埋初期渗滤液化学需氧量的影响[J].环境污染与防治,2004,26(4):241-243.
    [262]王罗春,赵由才,陆雍森.垃圾填埋场稳定化评价[J].环境卫生工程,2001,9(4):157-166.
    [263]蒋建国,张唱,黄云峰,等.垃圾填埋场稳定化评价参数的中试实验研究[J].中国环境科学,2008,28(1):58-62.
    [264] Raveh Ariela, Avnimelech Yoram. Leaching of pollutants from sanitary landfill models[J]. Journal Water Pollution Control Federation, 1979, 51(11): 2705-2716.
    [265] Horisawa Sakae, Sakuma Yoh, Tamai Yutaka, et al. Effect of environmental temperature on a small-scale biodegradation system for organic solid waste[J]. Journal of Wood Science, 2001, 47(2): 154-158.
    [266]胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算[J].土木工程学报,2001,34(6):88-92.
    [267] Dácil Nolasco, R NoemíLima, Pedro A. Hernández, et al. Non-controlled biogenic emissions to the atmosphere from Lazaretto landfill, Tenerife, Canary Islands[J]. Environmental Science and Pollution Research, 2008, 15(1): 51-60.
    [268] Abdelatif Mukhtar Ahmed, Wan Norazmin Sulaiman. Evaluation of Groundwater and Soil Pollution in a Landfill Area Using Electrical Resistivity Imaging Survey[J]. Environmental Management, 2001, 28(5): 655-663.
    [269] Don Augenstein. The greenhouse effect and US landfill methane[J]. Global Environmental Change, 1992, 2(4): 311-328.
    [270] Suman Mor, Khaiwal Ravindra, R P Dahiya, et al. Leachate Characterization and Assessment of Groundwater Pollution Near Municipal Solid Waste Landfill Site[J], Environmental Monitoring and Assessment, 2006, 118(1-3): 435-456.
    [271] Lidia Lombardi, Ennio Canevale, Andrea Corti. Greenhouse effect reduction and energy recovery from waste landfill[J]. Energy, 2006, 31(15): 3208-3219.
    [272]何若,沈东升,方程冉.生物反应器填埋场系统的特性研究[J].环境科学学报,2001,21(6):763-767.
    [273]李秀金.生物反应器型垃圾填埋场技术特点和应用前景[J].农业工程学报,2002,18(1):111-114.
    [274] Soutaro H. The Current state and future of landfill management in Japan[J]. International Environmetal Planning Center, 1993, 3: 9-14.
    [275]王琪,杨玉飞,黄启飞,等.填埋结构对渗滤液水质变化影响研究[J].环境工程,2005,23(4):69-71.
    [276]熊学文.垃圾处理中准好氧填埋的技术研究[J].有色冶金设计与研究,2008,29(6):51-53.
    [277] Michihiro S. A road to sanitary landfill from open dump to sanitary landfill advantages of the Fukuora Method and its application[C]. Journal of the Waste Society of Japan, 1991, 10(6): 117-145.
    [278]杨玉飞,黄启飞,王琪,等.准好氧填埋渗滤液水质变化特性研究[J].应用生态学报,2005,16(11):2168-2172.
    [279]刘玉强,黄启飞,王琪,等.生活垃圾填埋场不同填埋方式填埋气特性研究[J].环境污染与防治,2005,27(5):333-337.
    [280] Matsufuji Y, Tachifuji A, Hanashima M. Improvement technology for sanitary landfills by semi-aerobic landfill concept[R]. Japan: JSWME, 2000.
    [281] Onay T T, Poholand F G. In site nitrogen management in controlled bioreactor landfills[J]. Water Resource, 1998, 32(5): 1383-1392.
    [282]董路,刘玉强,黄启飞,等.准好氧填埋结构CH4含量分布变化研究[J].环境科学研究,2005,18(3):20-23.
    [283]张正安,黄启飞,屈明,等.准好氧填埋工艺氧气浓度对甲烷与二氧化碳浓度的影响研究[J].环境科学研究,2006,19(6):81-85.
    [284]李兵,董志颖,赵勇胜,等.2种MSW好氧生物反应器型填埋方式的对比实验[J].环境科学,2005,26(3):180-185.
    [285] Tohn Bowders, Mark hudgings, Ehet Mclaughlin, et al. Proceedings of the Session: Bioreactor Landfills[J]. Bioreator Landfills Session Summary, 2000, 7: 17-18.
    [286]王蕾,赵勇胜,董军.城市固体废弃物好氧填埋的可行性研究[J].吉林大学学报(地球科学版),2003,33(3):335-339.
    [287] Pohland F G. Sanitary landfill stabilization with leachate recycle and residual treatment[J]. U. S. Environmental Protection Agency, Cincinnati Ohio, 1975, EPA-600/2-75-043.
    [288] Robioson H D. The treatment of leachate from domestic wastes in landfill-leaerobic biological treatment of a medium strength leachate[J]. Water Research, 1983, 17: 1537-1548.
    [289] Barlaz M A, Ham R K, Schaefer D M. Microbial chemical and methane production characteristics anaerobically decomposed refuse with and without leachate recycling[J]. Waste Management & Research, 1992, 10: 257-267.
    [290]郑平,冯孝善.废物生物处理理论和技术[M].杭州:浙江教育出版社,1997.
    [291] O’Keefe D M, Chynoweth D P. Influence of phase separation leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells[J]. Bioresource Technology,2000,72(1): 55-56.
    [292]刘宏远,沈东升,朱荫湄.两相型生物反应器填埋场系统对渗滤液水质的稳定化作用研究[J].农业环境科学学报,2004,23(1):107-109.
    [293] Chynoweth D P, Owens J, O’Keefe, et al. Sequential batch anaerobic composting of the organic fraction of municipal solid waste[J]. Water Science and Technology, 1992, 25(7): 327-339.
    [294] Chugh S, Chynoweth D P, Clarke W P, et al. Degradation of Unsorted municipal solid waste by a leach-bed process[J]. Bioresource Technology, 1999, 69(1): 103-115.
    [295] Chugh S, Clarke W, Nopharatana A, et al. Degradation of unsorted MSW by sequential batch anaerobic reactor[C]. Fifth International Landfill Symposium, Cagliari, Italy, 1995: 67–77.
    [296]杨茂,程水源.序批式生物反应器填埋场特性的研究[J].贵州环保科技,2006,12(2):41-45.
    [297] Mostafa Warith. Bioreactor landfills: experimental and field results[J]. Waste Management, 2002, 22(1): 7-17.
    [298] Mertoglu Bulent, Calli Baris, Guler Nuray, et al. Effects of insufficient air injection on methanogenic Archaea in landfill bioreactor[J]. Journal of Hyzardous Materials, 2007, 132(1-2): 258-265.
    [299]岳秀萍,付梅红,李亚新,等.进水碱度对厌氧序批式活性污泥法工艺的影响[J].化工学报,2008,59(5):1257-1263.
    [300]何仕均,王建龙,赵璇.氨氮对厌氧颗粒污泥产甲烷活性的影响[J].清华大学学报(自然科学版),2005,45(9):1294-1296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700