用户名: 密码: 验证码:
煤层变形与瓦斯运移耦合系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是煤矿安全生产的重大隐患,其突出机理是目前采矿学界研究的热点问题,同时也是一直没有解决的问题。研究煤层变形与瓦斯在煤层中运移之间的耦合作用、探索耦合运动计算方法以及分析系统的结构稳定性和运动稳定性,对于解释突出机理、预防和治理煤与瓦斯突出灾害具有重要的意义。
     煤炭资源的开采破坏了煤层及其围岩的原始平衡,开采后煤层及其围岩的变形状态与瓦斯的运移形式发生急剧变化,并可能导致运动失稳或结构失稳。瓦斯在煤层中的运动(吸附/解吸、扩散、渗流)受到煤层变形状态的影响,反过来瓦斯含量、压力的变化引起煤层孔隙度、变形状态、位移、速度、加速度、应变率、应变和应力的变化,因此,煤层的变形运动与瓦斯的运移之间存在着复杂的耦合作用。
     本文从时变边界系统动力学的角度,综合利用理论分析、试验和数值计算等手段研究煤层变形与瓦斯运移耦合系统的动力学行为,得到以下主要创新性结论:
     (1)对低瓦斯矿、高瓦斯非突出矿和高瓦斯且突出矿的煤样进行的应力-应变全程的非Darcy流渗透特性试验,结果表明,低瓦斯矿煤样的渗透率在峰后随应变单调增加;高瓦斯非突出矿煤样在峰后的渗透率变化幅度很小;高瓦斯且突出矿煤样的渗透率在ε=1.4%处出现谷值、在ε=2.7%处剧增,其他点起伏不大;在相同应变下,低瓦斯矿煤样的渗透率大于高瓦斯非突出矿煤样的渗透率,高瓦斯非突出矿煤样的渗透率大于高瓦斯且突出矿煤样的渗透率;煤样的非Darcy流β因子和加速度系数随应变的变化趋势与渗透率相反;破碎煤样渗透试验结果表明,渗透率、非Darcy流β因子与孔隙度的关系可以用幂函数来拟合。
     (2)在讨论了煤层的破坏形式和变形状态、剪切屈服和拉伸破坏后的流动法则及变形状态的转换条件、瓦斯压力对D-P准则和Lagrange准则材料常数的影响的基础上构建了煤层的本构关系。
     (3)以煤层孔隙度和瓦斯压力为桥梁建立煤层变形运动与瓦斯在煤层中运移之间的耦合关系,构建了一种煤层变形与瓦斯运移耦合动力学模型,该模型考虑了煤层变形的三种变形状态(弹性变形、剪切屈服和拉伸破坏)和瓦斯的三种运移形式(吸附/解吸、扩散、渗流)。
     (4)采用显式快速Lagrange算法构造了煤层变形与瓦斯运移耦合动力学响应的计算方法。其中,瓦斯压力、扩散速度和煤层孔隙度在节点和单元上都要定义。
     (5)基于显式快速Lagrange算法,利用Fortran语言编制了煤层变形与瓦斯运移耦合动力学响应计算程序,以大兴矿、崔家沟矿和祁南矿煤层及瓦斯的力学性质为控制参量分别计算了三类煤层(低瓦斯煤层、高瓦斯非突出煤层和高瓦斯且突出煤层)开采后的动力学响应,给出了煤层变形状态、渗透率、非Darcy流β因子、加速度系数的曲面图和瓦斯涌出量的时间历程曲线,以及煤层变形状态的转换。
     该论文有图71幅,表10个,参考文献133篇。
Coal and gas outburst is one of the serious hidden dangers in coal mining. The outburst mechanism is a popular issue in the mining field, and peoples have not made a thorough study about it. It is of great importance to study the interaction between coal seam deformation and gas migration in coal seam, to explore effective computational method of coal seam deformation and gas migration coupling system, and to analyze the structural stability and Lyapunov’s stability of the system.
     The initial state of coal seam and its surrounding rock was disturbed by mining, and violent change in both the deformation state of coal seam and the motion state of gas migration follows. At the same time, Lyapunov’s instability or structural instability would occur. Gas migration (adsorption/desorption, diffusion and seepage) is effected by the deformation state of coal seam; and the change of porosity, deformation state, displacement, velocity, acceleration, strain and stress of coal seam were effected by the change of gas content and gas pressure. So the interaction between coal seam deformation and gas migration in coal seam is of extreme complication.
     The behaviors of dynamic system were researched by using theory, experiments and numerical calculation from the point of view of Dynamics of Systems with Variable Boundaries (DSVB). The main innovative results are listed as follows
     (1) Permeability parameters of coal samples in complete stress-strain process were obtained by experiments, those samples came from a low gas mine, a high gas mine and an outburst mine, respectively. The result shows that the permeability of coal sample from low gas mine monotonously increase with strain after failure. The permeability of coal sample from high gas mine does not fluctuate drastically after failure. The permeability of coal sample from outburst mine has a valley atε=1.4%, and leaps fromε=2.7%. The permeability of sample from low gas coal mine is larger than that of sample from high gas mine, and the later is higher than that of sample from outburst mine under a same strain. The non-Darcy-flowβfactor and acceleration coefficient change in a contrary manner to permeability.Permeability parameters of granular coal sampled from a low gas mine, a high gas mine and an outburst mine are obtained by test, respectively. The test results show that the permeability, non-Darcy-flowβfactor and acceleration coefficient can all be expressed by power function of porosity.
     (2) The failure modes and deformation states of coal seam were discussed, flow rules after both shear yielding and tensile failure were studied, the conversion condition of deformation states were presented, and the effect of gas pressure on material constants in both D-P criterion and Lagrange criterion was considered. Based on all these, the constitutive relation of coal seam was constructed.
     (3) The relationship between coal seam deformation and gas migration is connected by porosity and gas pressure. A dynamic system, coal seam deformation and gas migration coupling system, was modeled. In the establishment of dynamic model, three deformation state (elastic deformation, shear yielding, tensile failure) and three gas migration (adsorption/desorption, diffusion and seepage) were involved.
     (4) A numerical method for calculation of the response of the dynamic system is constructed by Fast Explicit Finite Difference Method based on Lagrangian description. Gas pressure, diffusion velocity and porosity of coal seam need to be defined on both nodes and elements.
     (5) A algorithm program for calculation of response of the dynamic system was programmed by Fortran. The mechanical properties of Daxing Coal Mine, Cuijiagou Coal Mine, and Qinan Coal Mine are used as control parameters to calculate the dynamic response of low gas coal seam, high gas coal seam and outburst coal seam, respectively. The deformation state of coal seam, permeability, non-Darcy-flowβfactor and acceleration coefficient are given by surface. The time history plot of gas emission was also given, and the state transition of deformation was obtained.
引文
[1] Daniels J., Moore L. D.. The Ultimate Strength of Coal[J], The Eng. And Mining, 1907, 10:263-268.
    [2] Bunting D.. Chamber Pillars in Deep Anthracite Mine[J], Trams. AIME 1911, 42: 236-245.
    [3] Gaddy F. L.. A study of the Ultimate Strength of Coal as Related to the Absolute Size of Cubical Specimens[J],Tested West Virginia Polytechnic Bulletin, 1956, 112: 1-27.
    [4] Holland C. T., Gaddy F. L.. Some Aspects of Permanent support of Overburden on coalbeds[M], Proceedings of the West Virginia Coal Mining Institute, 1956.
    [5] Hirt A. M., Shakoor A.. Determination of Unconfined Compressive strength of Coal for Pillar Design[J],Mining Engineering, 1992, (8): 1037-1041.
    [6] B. B. Huoduote.煤与瓦斯突出[M].北京:中国工业出版社, 1966.
    [7] Medhurst T. P., Brown E. T. A study of the Mechanical Behavior of coal for Pillar Design[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1087-1104.
    [8]刘宝琛,詹哲明,崔志莲.煤受压变形及破坏的试验研究[J].煤炭学报, 1983, 7(2): 51-61.
    [9]刘宝深,张家生,杜奇中,等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报, 1998, 17 (6): 611-614.
    [10]孙重旭,黄同华.煤岩试样声发射活动的实验室研究——单轴压缩过程中声发射的测试与分析[J].煤矿安全, 1993, 24(2): 4-9.
    [11]杨永杰,陈绍杰,韩国栋.煤样压缩破坏过程中的声发射试验[J].煤炭学报, 2006, 31(5): 562-565.
    [12] White J. M.. Mode of deformation of Rosebud Coal, Colstrip, Montana[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1980, 17(2): 129-130.
    [13]姚宇平.含瓦斯煤的力学性质[D].徐州:中国矿业大学, 1987.
    [14]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报, 1993, 16(5): 42-47.
    [15]靳钟铭,宋选民.顶煤压裂的实验研究[J].煤炭学报, 1999, 24 (1): 29-33, 13.
    [16]氏平增之.瓦斯突出机理与防治[R].抚顺煤炭研究所讲学材料. 1986, 7.
    [17]后藤研,等.三轴应力下煤的渗透率变化[R].九州大学生产科学研究报告.第85号,1985.
    [18] A.Г.艾鲁尼、B.A.鲍宾、A.A.高尔曼洛夫.煤体中CH4与CO2平衡吸附实验数据分析[J].矿业安全与环保, 1988, 15(5): 43-48, 59.
    [19] A.Г.艾鲁尼、B.A.鲍宾、A.A.高尔曼洛夫.饱含瓦斯煤体微结构发展机理[J].矿业安全与环保, 1987, 14(6): 46-49.
    [20]王佑安,等.在瓦斯介质中煤的强度减低及其变形的初步研究[R], 1964.
    [21]焦作矿业学院瓦斯地质课题组.瓦斯突出煤层的煤体结构特征[J].煤田地质与勘探, 1983, 11(3): 22-25, 13.
    [22]林伯泉.含瓦斯煤体变形和渗透特性的实验研究[D].徐州:中国矿业学院, 1986.
    [23]孙传显,龙荣生,王瑛,等.南桐煤矿结构的差异性及对瓦斯突出的影响[J].西安矿业学院学报, 1989, 9(2): 25-30.
    [24]王轩,吴泽源.应力对煤岩渗透率的影响[J].重庆大学学报, 1990, 13(3): 60-65.
    [25]孟召平,张孝文.煤材料变形力学特性分析[J].焦作工学院学报, 1996, 15(4): 29-34.
    [26]孟召平,彭苏萍,凌灿标.不同侧压下沉积岩石变形与强度特征[J].煤炭学报, 2000, 25(1): 15-18.
    [27]王宏图,鲜学福,贺建民.层状复合煤岩的三轴力学特性研究[J].矿山压力与顶板管理, 1999 16(1): 81-83.
    [28]李中成.关于煤巷掘进工作面煤与瓦斯突出机理的研究[R]. 1982, 12.
    [29]卢平.煤瓦斯共采与突出防治机理及应用研究[D].合肥:中国科学技术大学, 2002.
    [30]游木润.甲烷对煤的变形特征和应力状态的影响[D].徐州:中国矿业学院, 1984.
    [31]何学秋,刘明举,李增华.含孔隙气体煤岩破坏的电磁辐射实验研究[A].第二届国际岩石力学会议论文集[C],沈阳:东北大学, 1994.
    [32]王佑安等.煤矿安全手册[M].北京:煤炭工业出版社, 1994.
    [33]丁晓良,俞善炳,丁雁生,等.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学A辑, 1989, 20(6): 600-607.
    [34]孟祥跃,丁雁生,朱怀球,等.软煤拉伸应力-应变关系的实验研究[J].力学学报, 1997, 29(5): 582-589.
    [35]谈庆明,俞善炳,朱怀球,等.含瓦斯煤在突然卸压下的开裂破坏[J].煤炭学报, 1997, 22(5): 514-518.
    [36]狄军贞,殷志祥,刘建军.基于Femlab的煤层气瞬态非平衡吸附的数值模拟[J].黑龙江科技学院学报, 2007, 17(3): 193-195, 198.
    [37]江山,王新海,郑爱玲.煤层气开采的二维非平衡吸附模型江[J].天然气工业, 2005, 25(5): 81-82, 86.
    [38]许广明,武强,张燕君.非平衡吸附模型在煤层气数值模拟中的应用[J].煤炭学报, 2003, 28(4): 380-384.
    [39]李斌.煤层气非平衡吸附的数学模型和数值模拟[J].石油学报, 1996, 17(4): 42-47.
    [40]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报, 1986, 8(3): 87-93.
    [41]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报, 2001, 30(1): 1-4.
    [42]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保, 2000, 27(5): 14-16.
    [43]姜文忠.采空冒落区瓦斯扩散-通风对流模型建立及计算方法初探[J].煤矿安全, 2008, 39(8): 81-83, 88.
    [44]王继仁,梁栋,都文会,等.瓦斯在井巷风流中的运移规律[J].阜新矿业学院学报, 1991, 10(3): 24-28.
    [45]梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报, 2000, 19(1): 1-5.
    [46]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报, 1965, 2(1): 24-36.
    [47]郭勇义,周世宁.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报, 1984, 2(2): 19-28.
    [48]谭学术,袁静.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报, 1986, 8(1): 106-112.
    [49]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报, 1987, 12(4): 74-82.
    [50]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探, 1993, 21(5): 61-62.
    [51]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程研究[J].重庆大学学报, 1989, 12(5): 1-9.
    [52]孙培德,杨东全,陈弈柏.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社, 2007.
    [53]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报, 1991, 20(3): 36-42.
    [54] Somerton W. H., et al. Effect of stress on permeability of coal[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1975, 12(2): 151-158.
    [55] Harpalani S, Mopherson M J. The effect of gas evacation on coal permeability test specimens[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1984, 21(2): 361-364.
    [56] Harpalani S. Gas flow through stressed coal[D]. University of California Berkeley, 1985.
    [57] Gawuga J. Flow of gas through stressed carboniferous strata[D]. University of Nottingham, Ph. D. thesis, 1979.
    [58]赵阳升.煤体-瓦斯耦合数学模型与数值解法[J].岩石力学与工程学报, 1994, 13(3): 229-239.
    [59] Zhao Yang-Sheng, Qing Hui-Zheng, Bai Qi-Zen. Mathematical model for solid-gas coupled problems on the methane flowing in coal scam[J]. Acta Mechanica Solida Sinica, 1993, 6(4): 459.
    [60]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报, 2003, 28(1): 41-45.
    [61]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报, 1996, 15(2): 135-142.
    [62]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报, 1999, 18(6): 397-401.
    [63]刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报, 2002, 34(5): 779-784.
    [64] Liu Jian-Jun. Simulation of methane and water two-phase fluid-solid coupling flow. In: Frontiers of Rock Mechanics and sustainable development in the 21st century. Sijing, Binjun band Zhongkui(eds.). Swets & Zeitlinger B V., Lisse, The Netherlands, 2001: 347-349.
    [65]赵国景,步道远.煤与瓦斯突出的流-固两相介质力学理论及数值分析[J].工程力学, 1995, 12(2): 1-7.
    [66]丁继辉,麻玉鹏,赵国景,等.煤与瓦斯突出的固-流耦合失稳理论及数值分析[J].工程力学, 1999, 16(4): 47-56.
    [67]孙培德. Sun模型及其应用——煤层气越流固气耦合模型及可视化模拟[M].杭州:浙江大学出版社, 2002.
    [68]郑颖人,沈珠江,龚晓南.岩土塑性力学原理:广义塑性力学[M].北京:中国建筑工业出版社, 2002.
    [69]周志军.低渗透储层流固耦合渗流理论及应用研究[D].大庆:大庆石油学院, 2003.
    [70] Terzaghi K. Theoretical soil mechanics[M]. Tiho Wiley, New York, 1943.
    [71] Biot M A. General theory of three dimensional consolidation[J]. J. Appl. Phys. 1941, 12(5): 155-164.
    [72] Biot M A. General solution of the equation of elasticity and consolidation for a porous material[J]. J. Appl. Phys. 1956, 27(3): 91-96.
    [73] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. J. Appl. Phys. 1955, 26(2): 182-191.
    [74] Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena[J]. J. Appl. Phys. 1955, 26(2): 182-191.
    [75] Lubinski A. Theory of elasticity for porous bodies displaying a strong pore structure[C]. Proc. 2nd U. S. National Congress of Applied Mechanics. 1954: 247-256.
    [76] Geertama J. A remark on the analogy between themo-elasticity and the elasticity of saturated porous media[J]. J. Mech. Phys. Solids. 1957, 6: 13-16.
    [77] Savage W Z, Braddock W A. A model for hydrostatic consolidation of pierre shale[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991, 28: 345-354.
    [78] Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media: the generalizedBiot formulation and its numerical solution[J]. Int. J. Num. Sci. and Analy. Mech. 1984, 8: 71-96.
    [79] Verruijt A. Elastic storage of aquuifers[J]. In: Flow Through Porous Media[C]. De wiest R J M, 1969.
    [80] Mctigue D F. Thermoelastic response of fluid-saturated porous rock[J]. J. Geophys. Res. 1986, 91: 9533-9542.
    [81]李锡夔,朴光虎,邓子辰.考虑固结效应的结构-土壤相互作用分析及其有限元解[J].计算结构力学及其应用. 1990, 7(3): 1-11.
    [82]张洪武,钟万勰,钱令希.土体固结分析的一种有效算法[J].计算结构力学及其应用. 1991, 8(4): 389-395.
    [83]张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究[J].力学与实践. 1993, 15(1): 20-22.
    [84]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报. 1994, 13(4): 299-308.
    [85]黎水泉,徐秉业.双重介质裂缝型油气藏油水两相流动与固体变形耦合数学模型[J].天然气工业. 1999, 19(4): 43-45.
    [86]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报. 2000, 16(1): 1-5.
    [87]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报. 1999, 16(1): 24-31.
    [88]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报. 1998, 19(1): 64-70.
    [89]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-数学模型[J].地震地质. 1999, 21(3): 243-252.
    [90]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-方程解耦与有限元公式[J].地震地质. 1999, 21(3): 253-260.
    [91]范学平,李秀生,张士诚,等.低渗透气藏整体压裂流固耦合数学模拟[J].石油勘探与开发. 2000, 27(1): 76-79, 83.
    [92]范学平,李秀生,张士诚,等.低渗透变形介质油气藏渗流流固耦合研究[J].新疆石油地质. 2001, 22(1): 76-78.
    [93] Detournay E, Cheng A H D. Poroelastic response of a borehole in a non-hydrostatic stress field[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1988, 25 (3): 171-182.
    [94] Kojic M, Cheatham J B. Theory of plasticity of porous media with fluid flow[J]. SPEJ. 1974, 14: 263.
    [95] Risnes R, et al. Sand stresses around a wellbore[J]. SPEJ. 1982, 22: 883-898.
    [96] Wang Y, Dusseault M B. Borehole yield and hydraulic fracture initiation in a poorly consolidated rock strata[J]. Interational Journal Rock Mechanics Mining. Science. & Geomech. Abstr. 1991, 28: 247-260.
    [97]徐曾和,徐小荷.广义平面应力条件下径向渗流的液固耦合[J].地质力学学报. 1999, 5(3): 12-16.
    [98]董平川.油气储层流固耦合理论、数值模拟及应用[D].沈阳:东北大学, 1998.
    [99]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J],中国矿业大学学报. 1986, 15(3): 9-16. 103.
    [100]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J],岩土工程学报. 1995, 17(5): 12-18.
    [101]刘建军,梁冰,章梦涛.煤与瓦斯突出过程中瓦斯作用机理的研究[J],中国安全科学学报. 2000, 10(3): 66-69.
    [102]姚宇平.吸附瓦斯对煤的变形及强度的影响[J],煤矿安全. 1988, 19(12): 37-41.
    [103]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报, 2001, 31(6): 686-693.
    [104]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社, 2004.
    [105]刘玉庆,李玉寿,孙明贵.岩石散体渗透试验新方法[J].矿山压力与顶板管理, 2002, 19(4): 108-110.
    [106] Langmuir I. The constitution and fundamental properties of solids and liquids[J]. J. Amer. Chem. Sot., 1916, 38: 2221-2295.
    [107] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J. Amer. Chem. Sot., 1918, 40: 1361-1403.
    [108]国家发展和改革委员会.中华人民共和国煤炭工业行业标准(2004-2005)[M].北京:煤炭工业出版社, 2004.
    [109]桑树勋,朱炎铭,张井,等.煤吸附气体的固气作用机理Ⅱ——煤吸附气体的物理过程和理论模型[J],天然气工业, 2005, 25(1): 16-18.
    [110]张时音.煤储层固-液-气相间作用机理研究——以沁水盆地南部煤储层为例[D].徐州:中国矿业大学, 2005.
    [111]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].抚顺:辽宁工程技术大学, 2004.
    [112]林柏泉.煤层瓦斯含量及煤与瓦斯突出机理探讨[J],辽宁工程技术大学学报. 1988, 10(4): 31-40.
    [113]李祥春.煤层瓦斯渗流过程中流固耦合问题研究[D].太原:太原理工大学, 2005.
    [114]张力,邢平伟.煤体瓦斯吸附和解吸特性的研究[J],江苏煤炭. 2000, 22(4): 18-20.
    [115] H. F.雅纳斯.煤样的瓦斯解吸过程[J],矿业安全与环保. 1992, 19(2): 52-56.
    [116] King G R, Ertekin T M. A Survey of Mathematical Models Related to Methane Production from Coal Seams [J], Part I: Empirical & Equilibrium Sorption Models [C]. Proceedings of the 1989 Coalbed Methane Symposium, 1989. 125-138.
    [117] King G R, Ertekin T, Schwerer F C. Numerical simulation of the transient behavior of coal-seam degasification wells [J].SPE (Society of Petroleum Engineer) Formation Evaluation, 1986. 165~183.
    [118] Kolesar J E, Ertekin T, Qbut S T. The unsteady- state nature of sorption and diffusion phenomena in the micropore structure of coal [J]. SPE (Society of Petroleum Engineer) Formation Evaluation, 1990, 5(1): 81-97.
    [119]渡边伊温,辛文.关于煤的瓦斯解吸特征的几点考察[J]. 1985, 16(4): 52-60.
    [120]毕业武.保护层开采对煤层渗透特性影响规律的研究[D].抚顺:辽宁工程技术大学, 2005.
    [121]邵军.关于煤屑瓦斯解吸经验公式的探讨[J],矿业安全与环保. 1989, 16(3): 21-27.
    [122]孙维吉.不同孔径下瓦斯流动理论及模型研究[D].抚顺:辽宁工程技术大学, 2007.
    [123]聂百胜,郭勇义,吴世跃,等.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报, 2001, 30(1): 19-22.
    [124]聂百胜,王恩元,郭勇义,等.煤粒瓦斯扩散的数学物理模型[J].辽宁工程技术大学学报(自然科学版), 1999, 18(6): 582-585.
    [125]段三明,聂百胜.煤层瓦斯扩散-渗流规律的初步研究[J].太原理工大学学报, 1998, 29(4): 413-416, 421.
    [126]周世宁,林伯泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社, 2007.
    [127]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].徐州:中国矿业大学, 2008.
    [128]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究.岩土工程学报, 1995, 17(3): 26-31.
    [129]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究[J].矿业安全与环保, 1999, 26(2): 16-18.
    [130]武清玺.动力学基础[M].南京:河海大学出版社, 2001.
    [131]唐辉明.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社, 2001.
    [132]杨丽萍,吴野.拉格朗日元法及其应用软件FLAC在边坡稳定分析中的应用[J].露天采矿技术, 2007, 23(2): 21-23.
    [133]刘波,韩彦辉. FLAC原理实例与应用指南[M].北京:人民交通出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700