用户名: 密码: 验证码:
CaO-SiO_2-Al_2O_3-MgO-Fe_tO渣系热力学性能的研究—温度和气氛的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了向熔融还原法铁浴反应器中获得高质量铁水提供理论依据和完善CaO-SiO_2-Al_2O_3-MgO-Fe_tO五元渣系Fe_tO活度、硫容量和磷容量等热力学数据,应用先进的试验手段,用化学平衡法系统地研究了该渣系中Fe_tO活度、硫容量和磷容量。
     采用固体电解质电池测定了该渣系中的Fe_tO活度,用纯铁坩埚作为渣金反应容器,用CO-CO2-Ar混合气体提供体系的氧分压,分析了温度和气氛对渣的Fe_tO活度的影响。得出当只通入氩气,温度由1673K增加到1785K时,渣中Fe_tO活度变化不明显,即温度对该渣系中Fe_tO活度的影响不明显;当通入混合气体,并固定配气比,随着温度的升高,混合气体中氧分压由8.0×10~(-4)Pa增大到110×10~(-4)Pa时,Fe_tO活度呈增加的趋势;当通入混合气体,进气配比变化,温度在1673K恒定,气氛中氧分压由0.14×10~(-4)Pa增大到110×10~(-4)Pa时,该渣系中Fe_tO活度随着氧分压的增大而增大。
     用气—渣平衡法测定了该渣系的硫容量,用铂坩埚作为气渣反应容器,用CO-CO2-SO2-Ar混合气体提供体系的氧分压和硫分压,分析了渣的温度和气氛与硫容量之间的关系。得出体系CO、CO2、SO2、Ar进气量一定,温度由1673K增加到1823K时,引起硫分压的降低,使该渣系中硫容量随着温度的升高而减少;温度在1723K恒定,当气氛中氧分压由0.36×10~(-4)Pa增大到7.2×10~(-4)Pa时,引起硫分压的较大增加,使该渣系中硫容量随着氧分压的增大而增大。
     用气—渣—金平衡法测定了该渣系的磷容量,用钼坩埚作为反应容器,Ag-0.2%P合金作为气—渣—金平衡的熔剂,CO-CO2-Ar混合气体提供体系的氧分压,分析了温度和气氛与渣中磷容量之间的关系。得出体系CO、CO2、Ar进气配比一定,温度由1723K增加到1823K时,该渣系中磷容量随着温度的升高而减少,即低温有利于去磷;温度在1773K恒定,当气氛中氧分压由0.36×10~(-4)Pa增大到7.2×10~(-4)Pa时,该渣系中磷容量随着氧分压的增大而增大。
     综上所述,在试验条件下,低温有利于CaO-SiO_2-Al_2O_3-MgO-Fe_tO五元渣系中Fe_tO活度的减少和硫容量及磷容量的增加;提高氧分压有利于该渣系中Fe_tO活度、硫容量及磷容量的增加。
Abstract In order to improve the thermodynamics data such as Fe_tO activity, sulphur and phosphorus capacity in CaO-SiO_2-Al_2O_3-MgO-Fe_tO slags, and provide theoretics thereunder for the fusing and reduction reactor to get high quality molten iron, the Fe_tO activity and sulphur and phosphorus capacity were studied with chemical equity by advanced experimental method.
     A solid-electrolyte cell was used to measure the activity of Fe_tO in the slags. Utilizing pure iron crucible as a reaction vessel, the slag was equilibrated with a mixture gas of CO, CO2 and Ar to provide the oxygen partial pressure. It was analysed that the impaction of slags temperature and gas condition to the aFe_tO in the slags.It was found that the alteration of aFe_tO was very small when the temperature of slags changed from 1673K to 1785K with only injecting Ar. From this, It was concluded that the impaction of the slags temperature to the aFe_tO was small. It was also concluded that aFe_tO in the slags increased when gas was injected with fixed gas mixture ratio and the oxygen pressure increased from 8.0×10~(-4)Pa to 110×10~(-4)Pa with increasing the temperature of slags. It was also concluded that aFe_tO in the slags increased with raising the oxygen pressure from 0.14×10~(-4)Pa to 110×10~(-4)Pa when gas was injected with gas mixture ratio altering and the temperature was fixed at 1673K.
     The sulphide capacity of the slags was studied using gas-slag equilibrium techniques. Utilizing Pt crucible as a reaction vessel, the slag was equilibrated with a mixture gas of CO, CO2, SO2 and Ar to provide the oxygen and sulphur partial pressure. It was analysed that the impaction of slags temperature and gas condition to the sulphide capacity in the slags.It was found that the sulphide capacity of the slags decreased when gas was injected with fixed CO、CO2、SO2、Ar mixture ratio and the temperature of slags changed from 1673K to 1823K;It was also concluded that the sulphide capacity of the slags increased with raising the oxygen pressure from 2.21×10~(-4)Pa to 83.14×10~(-4)Pa and the temperature was fixed at 1723K.
     The phosphorus capacity of the slags was measured using gas-slag-metal equilibrium techniques. An molybdenum crucible was used as reaction vessel, and Ag-0.2%P alloy as a flux was equilibrated with slags at a constant flow of CO-CO2–Ar gas mixture to provide oxygen partial pressure. It was analysed that the impaction of slags temperature and gas condition to the phosphorus capacity in the slags. It was found that the phosphorus capacity of the slags decreased when gas was injected with fixed CO、CO_2、Ar mixture ratio and the temperature of slags changed from 1723K to 1823K,so the low-temperature is good for dephosphorus;It was also concluded that the phosphorus capacity of the slags increased with raising the oxygen pressure from 0.36×10~(-4)Pa to 7.2×10~(-4)Pa and the temperature was fixed at 1773K.
     At experiment condition, low teperiture was propitious to reduce the FetO activity in CaO-SiO_2-Al_2O_3-MgO-Fe_tO slags and increased sulphur and phosphorus capacity; high oxygen pressure was propitious to increase the FetO activity in CaO-SiO_2-Al_2O_3-MgO-Fe_tO slags and increased sulphur and phosphorus capacity
引文
[1] 徐矩良. 走向 21 世纪的炼铁技术[J]. 钢铁,2000,30(5):69~74.
    [2] Seung-Cheol LEE,Myung-Kyan SHIN,Sanghoon Joo ed. The Effect of Operational Parameters on the Transport Phenomena in COREX Melter-Gasifier[J]. ISIJ International,2000,40(11):1073~1079.
    [3] 吕庆,蒋武锋,吕长星等. 熔融气化炉内硫的反应机理与分配[J]. 金属学报,1997,33(9):952~957.
    [4] H.M.W.Delport. The COREX Process [J]. Ironmaking and Steelmaking.1992,19(3):183.
    [5] 杜鹤桂. 浦项钢铁公司的炼铁生产[J]. 国外钢铁.1996,(5):1~6.
    [6] M. Lemperce,W. Maschlake,D. voest-Alpin. COREX 法的现在和未来[J]. 国外钢铁,1994,(5):7~14.
    [7] 吕庆,段振瀛,陈炳庆. COREX 熔融气化炉热模拟研究[J]. 钢铁,1998,33(8):3.
    [8] Minyyong Cho. Behavior of alkalis in the shaft and hearth of a blast furnace (Inst of Ferrous Metallurgy). ICST/Ironmaking,Conference Proceedings.1998,(5):1211.
    [9] S.Joo. Monitoring the condition of the slag crust in blast furnaces. ICST/Ironmaking,Conference Proceedings.1998,(3):1223.
    [10] 张淑会. CaO+SiO2+Al2O3+MgO+FeO 五元渣系的热力学性能的研究[D]. 唐山:河北理工大学,2003.
    [11] 黄希祜. 钢铁冶金原理[M]. 北京:冶金工业出版社,1997.
    [12] R.Schuhmann. Ferrous Oxide Activity in FetO-SiO2 System[J]. Trans.AIME.1951(191):401.
    [13] Mamdouh M. EISSA,Kamal A. EL-FAWAKHRY,Wafia TAYOR,ed.Ferrous Oxide Activity in FetO-TiO2-CaO-Al2O3 System[J]. ISIJ International,1996,36 (5):512~516.
    [14] Kenji MATSUZAKI , Yasutoshi HIGANO , Kenta KATSUMATA , ed. Activity Measurement of FetO-SiO2-TiO2-(CaO,MgO,Al2O3)Melts in equilibrium with Solid Iron[J]. ISIJ International,1998,38(10):1147~1149.
    [15] C.R.Taylor and J.Chipman. Blast furnace process optimization by alkali and slag condition control. Trans.AIME,1943,15(4):228.
    [16] Yoshinori TANIGUCHI,Kazuki MORITA,and Nobuo SANO. Activities of FetO in CaO-Al2O3-SiO2-FetO and CaO-Al2O3-CaF2-FetO Slags. ISIJ International,1997,37(10):956~961.
    [17] KWANG RO LEE and HIDEKAKI SUITO. Activities of FetO in CaO-Al2O3-SiO2-FetO(<5 Pct)Slags Saturated with Liquid Iron. Metallurgical and Materials Transactiona B,1994,25B(10):893~901.
    [18] 毛璟红,宋波,赵保东. CaO-MgO-Al2O3-FetO-MnO-P2O5 渣系中 FetO 和 Mn 活度的测定和研究. 钢铁研究学报,1999,11(10):6~10.
    [19] M.Iwase et al. Removal of Copper from Solid Ferrous Scarp by Using Molten Aluminum. Electric Furnace Conference Proceedings, 1991(11): 113.
    [20] M.Iwase. Thermodynamics of Oxide-Halide Melts[J]. Ironmaker and Steemmaker, 1988, (2): 63.
    [21] HIDEAKI HOSHINO and MASANORI IWASE. Chemical Potentials of Components of the System CaO+P2O5+FetO at 1673K. Metallurgical and Materials Transactions B,1996,27B(8):595~603.
    [22] V.ESPEJO and M.IWASE. A Thermodynamic Study of the System CaO+Al2O3+FetO at 1673K,Metallurgical and Materials Transactions B.1995,26B(4):257~264
    [23] 李连福,姜茂发,金成姬等. 1673K 下 BaO-BaF2-Cr2O3渣系的热力学性质[J]. 东北大学学报(自然科学版).1998,19(6):558~561.
    [24] 荒户利昭. CaO-CaCl2-FetO 渣系中 FetO 的活度. 铁钢,1980,(S):900.
    [25] T.Aratio. Trans. Removal of alkalies from blast furnaces[J]. JIM,1984,25:351.
    [26] 王常珍. 冶金物理化学研究方法[M]. 北京:冶金工业出版社,2002:75~81.
    [27] J.D.Shim and S.B.an-ya. Study on t\he sulphide capacities in the FetO-MgO-SiO2 slags. Tetsu-to-Hagane. 1983,68:251~260.
    [28] S.R. SIMEONOV,R.SRIDHAR and J.M. TOGURI. Sulfide Capacities of Fayalite-Base Slags[J]. Metall.Mater.Trans.B,1995,26B:325~333.
    [29] M.Hino and T.Fuwa. Proc.3rdInt .Iron and Steel Congr. ASM & ISS, AIME, Chicago IL.1987:321~326.
    [30] M. M. Nzotta. Experimental determination of sulphide capacities in the Al2O3-MgO-SiO2, Al2O3-MnO-SiO2 and Al2O3-CaO-MgO slags in the temperature range 1773-1923K. Scandinavi Journal of Metallurgy.1997,26:169~177.
    [31] M. M. Nzotta,R. Nilsson,Du Sichen,ed.Sulphide capacities in MgO-SiO2 and CaO-MgO-SiO2 slags. Ironmaking and Steelmaking.1997,24(4):300~305.
    [32] M. M. NZOTTA,DU SICHEN,and S. SEETHARAMAN. Sulphid capacities of “FetO”-SiO2,CaO-“FetO”, and “FetO”-MnO slags[J]. ISIJ International,1999,39(7):657~663.
    [33] M. M. NZOTTA,DU SICHEN,and S.SEETHARAMAN. A Study of the Sulfide Capacities of Iron-Oxide Containing Slags[J]. Metallurgical and Meterials Transaction B,1999,30B (10):909~920.
    [34] M. M. Nzotta,M. Andreasson,P.Jonsson,ed. A Study on the Sulphide Capacities of Steelmaking Slags. Scandinavian Journal of Metallurgy,2000,29:177~184.
    [35] S.R. SIMEONOV,R. SRIDHAR,and J.M. TOGURI. Sulfide Capacities of Fayalite-Base Slags. Metallurgical and Materials Transactions B, 1995,26B(4):325~333.
    [36] SIMEON SIMEONOV,TOSHIHIKO ASKAI,and MASAFMI MAEDA. Sulfide capacities of CaO-CaF2-CaCl2 melts. Metallurgical Transactions B,1992,23B(6):325~329.
    [37] Tang Xin , Xu Chushao. Sulphur Distribution between CaO-SiO2-TiO2-Al2O3-MgO Slag and Carbon-saturated Iron at 1773K[J]. ISIJ International,1995,35(4):367~371.
    [38] 郭占成. 铁水在熔融还原炉内脱硫精炼[J]. 钢铁,1992,27(12):11~16.
    [39] Edmundo Burgos Cruz,Eduardo Camargo,Oliveira Pinto,ed.Thermodynamics of the simulataneous desulfurization and dephosphorization processes of hot metal with CaO-and BaO-based slags bearing MnO. Steel research,1999,70(3):96~103.
    [40] 郭上型,万真雅. 钢包炉(LF)CaO-SiO2-MgO-Al2O3 渣系的脱硫试验[J]. 特殊钢,1996,17(3):46~49.
    [41] 赖志贤. CaO 在高碳铬熔池中的行为探讨[J]. 铁合金,2000(5):12~15.
    [42] 乐可壤,董元篪,王世俊. CaO-SiO2-MgO-Al2O3精炼渣的脱硫性能[J].特殊钢. 1998,19(3):15~17.
    [43] Ahmad SOBANDI,Hiroshi G. KATAYAMA , Tadashi MOMONO. Activity of phosphorus oxide in CaO-MnO-SiO2-P2O5(-MgO,FetO)slags[J]. ISIJ International,1998,38(8):781~788.
    [44] C. NASSARALLA and R.J. FRUEHAN.Phosphate capacity of CaO-Al2O3 slag containing CaF2, BaO, Li2O, or Na2O. Metallurgical Transactions B,1992,23B:117~123.
    [45] Liu Xiaoya,Olle EIJK,Roger selin,ed. Effect of Additives in BaO-BaF2-MnO slag on phosphate and manganese capacities[J]. ISIJ Intenational,1998,38(1):36~45.
    [46] Hideahi SUITO and Ryo INOUE. Effect of calcium fluoride on phosphorus distribution between MgO saturated slags of the system CaO-MgO-FetOx-SiO2 and liquid iron. Transactions ISIJ,1982,(22):869~877.
    [47] 董元篪,吴其澳,R..塞林. CaO-CaF2-SiO2 渣系脱磷能力的研究. 钢铁,1991,26(6):10~15.
    [48] 董元篪,R..塞林. MgO 和 Al2O3对 CaO-CaF2-SiO2渣系脱磷能力的影响. 华东冶金学院学报,1990,7(2):27~34.
    [49] 马杰. BaO-CaO-CaF2-CaCl2渣系钢液脱硫研究[J]. 上海金属,1996,18(6):16~19.
    [50] 翁宇庆,王衷东. 利用光学碱度计算含 CaF2 脱硫剂脱硫能力的研究. 炼钢,1999,15(2):25~28.
    [51] Ahmad Sobandi.H.G.Katayama and T.Momono. Manganese and Phosphorus Equilibria between Liquid Coppre and MnO-P2O5 Slag. ISIJ Int..1997,37:1043
    [52] Jeoungkiu IM,Kazuki MORITA and Nobuo SANO. Phoshorus distribution ratios between CaO-SiO2-FetO slags and carbon-saturated iron at 1573K[J]. ISIJ International,1996,36(5):517~521
    [53] 王世俊. 磷在含氧化钡渣系与锰铁熔体间的平衡[J]. 钢铁研究学报,2000,12(5):18~21.
    [54] Jeong-Do Seo and Seon-Hyo Kim. The sulphide capacity of CaO-SiO2-Al2O3-MgO(-FetO)smelting reduction slags. Steel reseach.1999,70(6):203~214.
    [55] 陈兆平. 碱土金属离子及卤离子在渣中的行为[D]. 沈阳:东北大学,1993.
    [56] E.T.Turkdogan and J.Pearson. Activities of Constituents-Part Ⅲ-Phosphorus Pentoxide[J]. :JISI, 1953,173(19):217.
    [57] R.Schuhmann and P.J.Ensio. Kinetics of Reaction of Gaseous Nitrogen with Iron PartⅡTrans. Met.Soc.AIME,1951,191(23):401.
    [58] J.F.Elliott. The thermodynamics of Liquid Dilute Iron Alloys. Trans.Met.Soc.AIME.,1955,203(21):401.
    [59] ZHANG Jian. Coexistence Theory of Slag Structure and Its Application to Calculation of Oxidizing Capability of Slag Melts[J]. Journal of Iron and Steel Research International,2003,10(1):1~10.
    [60] 李洪桂. 冶金原理[M]. 北京:科学出版社,2005:109~110.
    [61] S.Tabuchi and N.Sano.Thermodynamics of Phosphate and Phosphide in CaO-CaF2 Melts. Metallurgical Transaction B,1984,15B(6):350~356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700