用户名: 密码: 验证码:
黄海春季和夏季海雾过程的观测分析与数值试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对2008年5月1日和2008年7月7日两次黄海海雾个例的形成、发展和演变过程及物理特征进行了研究。通过新的观测资料的引入,能够更加清楚的对海雾过程进行分析。通过数值模拟表明,WRF模式对海雾有较好的模拟能力。通过对两个海雾个例的研究,分别将它们作为发生在春季和夏季两个不同季节的海雾的代表,发现这两个海雾具有不同的特点。本文将重点放在研究下垫面即海表面温度SST在春季和夏季两种不同海雾过程中起到的作用。主要结论如下:
     (1)本文所研究的春季和夏季两次海雾个例,在海雾形成时,位势高度场上,不论850hPa高空还是1000hPa地面,都有一个闭合的高压系统位于黄海海区。春季个例的高压是黄海局地产生的小高压,而夏季个例的高压则是副高西伸所致。受高压系统的影响,下沉气流使黄海上空的大气边界层内容易形成逆温层。同时反气旋式的环流把黄海南部海区的水汽输送到黄海海区,为海雾的发生提供了水汽条件。黄海1000hPa温度场上也总存在一个冷中心,温度的降低也使得黄海上空的水汽更易凝结,形成海雾
     (2)近海浮标站观测资料和数值模拟结果表明,不论春季还是夏季的海雾,在海雾发生之前和结束之后,气温都明显的高于海温;在海雾发生的时间段,气温有明显的下降。雾顶的长波辐射冷却可看作雾区降温的主要原因。不同的是,春季海雾个例中雾区内的海气温差更小,气温高于海温0.5℃~1℃,有时甚至出现了海温高于气温的情况;夏季海雾个例中气温始终高于海温,气温高于海温1℃~2℃,雾区内的海气温差比春季更大。
     (3)探空资料和数值模拟结果表明,不论春季还是夏季海雾,在海雾发生之前和刚刚形成的阶段,大气边界层内都有逆温层存在。春季的逆温层高度比夏季更高,逆温强度也更强。数值模拟得到的气块轨迹分析表明,春季低层气块来自黄海南部海区,温度较低,水汽含量较高,高层气块经过了黄海西部的大陆,气块温度更高更干燥,这种海陆空气热力的差异在黄海地区形成了较厚较强的逆温层(5℃~8℃)。夏季个例低层和高层的气块都来自于黄海南部海区,因此逆温的强度较弱(1℃~2℃)。
     (4)探空资料和数值模拟结果表明,夏季海雾个例的雾层厚度比春季个例要厚,春季的厚度在200m左右,而夏季可以达到400m。同时夏季个例雾区内部的水汽含量也比春季要多,表明夏季海雾比春季海雾发展的更旺盛。在水汽凝结成雾的过程中,放出更多的凝结潜热,因此夏季雾区内部的气温比春季更高。
     (5)探空资料和数值模拟结果表明,夏季海雾个例雾区内部的稳定度比春季个例弱。从?θv /?z的值上可以看出,春季雾区内部?θv /?z可以达到0.05K/m以上,而夏季雾区内部只有0.01K/m。从Richardson数的值上可以看出,春季雾区内部湍流层高度较低,紧贴在海面上,夏季雾区内部湍流层比春季更多,而且高度更高,集中在100m-300m的雾层中上部。由于春季海雾厚度本身较薄,湍流层能够将雾顶的长波辐射冷却作用带到雾区底部,而夏季海雾厚度较厚,湍流层又在雾层上部,因此长波辐射冷却作用不能很快的到达雾区底部。这也解释了为什么夏季海雾的海气温差比春季要大。
     (6)海表面温度(SST)敏感性试验表明,不论春季还是夏季,升高SST使雾区的面积减小,减小SST雾区的面积增大。雾区面积减小增大的程度与海温变化的程度正相关。SST的变化对雾区高度的影响不大。同时SST的变化对雾区的影响与低层的水汽含量有关。在春季,在湿度较小( q < 0.5g/kg)的薄海雾区,SST增加,稳定度明显减弱( ?θv / ?z≤0.01K/m),海雾面积缩小;而SST下降,稳定度明显增加( ?θv / ?z≥0.07K/m),薄海雾面积增大。在湿度较大( q > 0.6g/kg)的浓海雾区,SST的变化对稳定度的影响不大,海雾仍然维持。在夏季,由于雾区内整体的水汽含量都比春季要高(都是q > 0.6g/kg),因此雾区范围的变化对SST变化的相应没有春季的明显。
     (7)此外在研究的过程中,对WRF模式各参数化方案进行的敏感性试验,得出了一套适合于海雾模拟的参数化方案设置。
In this thesis, the formation, development and physical process of two sea fog cases over the Yellow Sea which occur on 1 May 2008 and 7 July 2008, are investigated. The analyses of sea fog process are clearer by using new observational data. Modeling results shows that the WRF model has enough ability to document the sea fog process. Then the two cases of sea fog are taken as representations of sea fog occur on spring and summer. The different characters and the influence of thermal effects of SST as underlaying surface especially between spring and summer cases are investigated by using WRF model. The following results are obtained:
     (1) The weather situations are similar between spring and summer sea fog cases in this thesis when sea fog formation. There is a closed high pressure system over the Yellow Sea both at 1000hPa and 850hPa level in the geopotential topography. The high pressure of spring is caused by local effect, but the high pressure of summer is caused by subtropical high. The inversion layer is formed easily by the downward airflow caused by high pressure system. At the same time the anticyclonic circumfluence brings water vapor from south to the Yellow Sea which provides humidity condition for sea fog formation. There is also a cold area over the Yellow Sea. The water vapor condensate easily and translate into sea fog when temperature goes down.
     (2) After analyzing buoy observations and modeling results, it is indicated that air temperature is higher than SST obviously before and after sea fog formation whether on spring or summer. The temperature goes down when sea fog occur. Long wave radiation is the main reason for temperature reducing. The difference between SST and air temperature is smaller in spring case. Air temperature is more than SST 0.5℃~1℃. And SST is even higher than air temperature sometimes. But air temperature is always higher than SST 1℃~2℃in summer case, and the difference between SST and air temperature is larger.
     (3) After analyzing sounding observations and modeling results, it is indicated that there is inversion layer in boundary layer when sea fog formed whether on spring or summer. The inversion layer is higher and stronger in spring case than summer. The trajectory experiment show that air mass at low level comes from south of Yellow Sea which is cooler and moister, and air mass at high level comes from continent west to Yellow Sea which is warmer and drier. As a result the inversion layer formed on the Yellow Sea(5℃~8℃). For this consideration the inversion layer is weaker in summer because air mass both of low and high level come from south of Yellow Sea(1℃~2℃).
     (4) After analyzing sounding observations and modeling results, it is indicated that the height of sea fog in summer is higher than spring. The height is 200m in spring, and could reach 400m in summer. The content of water vapor in fog area is also higher in summer than spring. It is imply that sea fog in summer develops better than spring. So the temperature in fog area in summer is higher than spring because water vapor releases more latent heat during condensation.
     (5) After analyzing sounding observations and modeling results, it is indicated that the stability of boundary layer in fog area in summer is weaker than spring. The value of ?θv /?z in fog area could reach more than 0.05K/m in spring but only 0.01K/m in summer. The Richardson number shows that the turbulence layer in fog area is lower which sticking the sea surface in spring while turbulence layer could reach 100m-300m where is the top of the fog area. For the height of fog in spring is quite low, cooling of long wave radiation could reach bottom of fog area. While this effect couldn’t happen in summer because of height of fog is higher and turbulence layer is at top of fog. That’s the reason why the difference between SST and air temperature in summer is higher than spring.
     (6) After sensitive experiments of SST, it is indicated that the area of sea fog is larger when SST increases and smaller when SST reduces. The effect of SST is weaker to the height of sea fog. And the effect of SST has relationship with the content of water vapor. In spring case, area of fog reduces and stability weakens when increasing SST, in the opposite area of fog enlarges and stability enhances when reducing SST in the low water vapor condition ( q < 0.5g/kg). The effect of SST to the stability is weak in the high water vapor condition. For this consideration, changes of SST has less effect to sea fog in summer than spring because of content of water vapor is higher than spring.
     (7) In addition, after sensitive experiments of WRF Parameterizations, a suitable Specifications of WRF Parameterizations for sea fog simulation has been founded.
引文
鲍献文,王鑫,孙立潭等,2005:卫星遥感全天候监测海雾技术与应用,高技术通讯,15(1), 101-106
    陈绍鑫,常美桂,曲维政等,1994:关于海雾生成的讨论,青岛海洋大学学报, 24(3), 325-332
    刁学贤,1995:黄海冷水区多雾分析,海洋预报, 12(3), 57-60
    刁学贤,1996:青岛及其近海海雾的主要特征,海洋通报, 15(3), 87-91
    傅刚,张涛,周发琇, 2002:一次黄海海雾的三维数值模拟研究,青岛海洋大学学报, 32(6), 859-867
    傅刚,王菁茜,张美根等,2004:一次黄海海雾事件的观测与数值模拟研究,中国海洋大学学报, 34(5), 720-726。
    郭敬天,2008:海雾形成与发展机制的观测分析与数值模拟研究,中国海洋大学博士研究生毕业论文。
    胡瑞金,周发琇,1997:海雾过程中海洋气象条件影响数值研究,青岛海洋大学学报, 27(3), 282-290
    胡瑞金,周发琇,1998:海雾生成过程中平流、湍流、辐射效应研究Ⅰ.理论分析.海洋学报,20(1), 25-32
    胡瑞金,董克慧,周发琇,2006:海雾生成过程中平流、湍流和辐射效应的数值试验,海洋科学进展, 24(2) , 156-165。
    黄健,2008:海雾的天气气候特征与边界层观测研究,中国海洋大学博士研究生学位论文。
    黄克慧,张意权,周功铤,吴贤笃,2006:浙南沿海海雾特征分析,浙江气象, 28(1) , 18-22
    黄旭阳,郭炜峻,2005:卫星云图在一次海雾预报中的运用,广西气象, 26, 177-179。
    李子华,张利民,楼小凤,1993:重庆市区冬季雾的宏微观结构及其物理成因,南京气象学院学报,16,48-54。
    梁爱民,张庆红,刘开宇等, 2007:华北地区一次大雾过程的三维变分同化试验,气象学报, 65(5) , 792-804。
    梁军,李燕,2000:大连及其近海海雾分析,辽宁气象,1, 5-8。
    刘科峰,张韧,2004:模糊逻辑仿真建模及其在青岛海雾分析中的应用,海洋湖沼通报, 4, 17-25。
    彭虎,李子华, 1992:包含详细微物理过程的一维辐射雾模式,重行环境科学,14,48-54。
    钱峻屏,黄菲,崔祖强,郑志宏,吴志军,2004:基于MODIS数据的海上气象能见度遥感光谱分析与统计反演,海洋科学进展,22(10) , 58-64。
    钱峻屏,黄菲,王国复,刘万侠,崔祖强,郑志宏,2006:基于MODIS资料反演海上能见度的经验模型,中国海洋大学学报,36(3),355-360。
    宋晓姜,张蕴斐,马静,2007:非静力中β尺度模式对渤海地区水平能见度的模拟.海洋预报, 24(3) , 59-64
    王彬华,1983:海雾,[M]北京:海洋出版社。
    王厚广,曲维政,1997:青岛地区的海雾预报,海洋预报, 14(3) , 52-57
    王青,战淑芸,杨淑瑞,1995:我国黄、东海海海雾气候资料,海洋预报, 12(4) , 81-84。
    王衍明,1993:大气物理学,青岛:青岛海洋大学出版社,218pp。
    吴晓京,张苏平,周文艳,2008:大雾消散卫星遥感临近预报及消散型分类——我国中东部案例,自然灾害学报,17(6)。
    徐静琦,张正,魏皓,1994:青岛海雾雾滴谱与含水量观测与分析,海洋湖沼通报, 2, 174-178。
    徐静琦,魏皓,张正等,1996:青岛市海雾海气通量观测及其作用初探,气象学报, 54(2),207-215
    徐静琦,杨殿荣译,1991:边界层气象学导论,青岛:青岛海洋大学出版社,457pp。
    徐旭然,1997:胶东半岛北部沿海海雾特征及成因分析,海洋预报, 14(2),58-63。
    徐燕峰,陈淑琴,戴群英,叶君武,2002:舟山海域春季海雾发生规律和成因分析,19(3),59-64。
    尹球,许绍祖,1993:辐射雾生消的数值(I)——数值模式,气象学报,51,351-359。
    尹球,许绍祖,1993:辐射雾生消的数值(I)——生消机制,气象学报,52,60-67。
    张红岩,周发琇,张晓慧, 2005:黄海春季海雾的年际变化研究,海洋与湖沼,36(1),36-42。
    张纪伟,张苏平,吴晓京,刘应辰,刘敬武,2009:基于MODIS的黄海海雾研究——海雾特征量反演和海雾频数空间分布,中国海洋大学学报,已投稿。
    张苏平,2008:黄海海雾季节变化特殊性形成机理的研究,中国海洋大学博士研究生毕业论文。
    张苏平,鲍献文,2008:近十年我国海雾研究进展,中国海洋大学学报,38(3),359-366。
    张苏平,任兆鹏,2009:下垫面热力作用对黄海春季海雾的影响——观测与数值试验,气象学报,已投稿。
    张苏平,杨育强,王新功,魏建苏,2008:低层大气季节变化及与黄海雾季的关系,中国海洋大学学报,38(5),689-698。
    赵永平,陈永利,王丕诰,1997:黄、东海海雾过程及其大气和海洋环境背景场的分析,海洋科学集刊, 38,69-78。
    钟烈军,1995:黄东海海雾数值预报方法的研究,“八五”国家科技攻关项目:灾害性海洋环境数值预报及近海环境关键技术研究85-903-08-08专题研究报告。
    周发琇,王鑫,鲍献文,2004:黄海春季海雾形成的气候特征,海洋学报,26(3),28-37。
    Angevine, W.M., J.E.Hare, C.W.Fairall, D.E.Wolfe, R.J.Hill, W.A.Brewer, and A.B.White, 2006: Structure and formation of the highly stable marine boundary layer over the Gulf of Maine. Journal of Geophysical Research, 111.
    Beljaars, A.C.M., 1994: The parameterization of surface fluxes in large-scale models under free convection, Quart. J. Roy. Meteor. Soc., 121, 255-270.
    Bergot, T. and D.Guedalia, 1994: Numerical Forecasting of Radiation Fog. Part I: Numerical Model and Sensitivity Tests. Mon. Wea. Rev., 122:1218-1230.
    Bergot, T., E.Terradellas, J.Cuxart, A.Mira, O.Liechti, M.Mueller, and N.W.Nielsen, 2005: Intercomparison of single-column numerical models for the prediction of radiation fog, J. Appl. Meteo. and Cli., 46, 504-521.
    Bendix, J., 1995: A case study on the determination of fog optical depth and liquid water path using AVHRR data and relations to fog liquid water content and horizontal visibility. Int. J. Remote Sensing, 16, 515-530.
    Bendix, J., B. Thies, J. Cermak, and T.Naub, 2005: Ground fog detection from space based on MODIS daytime data–a feasibility study. Wea. and Fore., 20, 989-1005.
    Betts, A. 1986: Anew convective adjustment scheme. Part I: Observational land theoretical basis, 112, 667-691
    Betts, A. K., and Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets, Q. J. Roy. Meteor. Soc., 112, 693-709
    Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model, J. Meteor. Soc. Japan, 80, 99-118
    Cooper, W. A., 1986: Ice initiation in natural clouds Precipitation Enhancement– A Scientific Challenge, Meteor.Monogr., Amer.Met.Soc., 43, 29~32.
    Dudhia Jimy.. 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two- Dimensional Model. J. Atmos. Sci., 46, 3077–3107.
    Duynkerke, P.G., 1991: Radiation Fog: A comparison of model simulation with detailed observations, Mon. Wea. Rev., 119, 324-341.
    Dyer, A.J., and B.B.Hicks, 1970: Flux-gradient relationships in the constant flux layer, Quart. J. Roy. Meteor. Soc., 96, 715-721.
    Fisher, E.L., and P. Caplan, 1963: an experiment in numerical prediction of fog and stratus, J. Atmos. Sci., 20, 425-437.
    Fitzgerald J.W., 1978: A Numerical Model of the Formation of Droplet Spectra in Advection Fogs at Sea, J. Atmos. Sci., 35, 1522-1535.
    Fletcher, N.H., 1962: The physics of Rain Clouds. Cambridge University Press, 386.
    GAO Shanhong, LIN Hang, SHEN Biao, 2007: A Heavy Sea Fog Event over the Yellow Sea in March 2005:Analysis and Numerical Modeling. ADVANCES IN ATMOSPHERIC SCIENCES, 24(1):65-81
    Gazzi,M., V.Vincentini, and C.Pesci, 1997: Dependence of a black target’s apparent luminance on fog droplet size distribution, Atmos. Environ., 31,3441-3447.
    Gazzi,M., T. eorgiadis, and V. Vincentini, 2001: Distant contrast measurements through fog and thick haze, Atmos. Environ., 35,5143-5149.
    Golding, B.W., 1993: A Study of the influence of terrain on fog development, Mon. Wea. Rev., 121, 2529-2541.
    Grell, G.A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 14, 1693.
    Guedalia, D., and T.Bergot, 1994: Numerical Forecasting of Radiation Fog. Part II: A Comparsion of Model Simulation with Several Observed Fog Events. Mon. Wea. Rev., 122:1231-1246.
    Gultepe, I., Isaac, G., Marcpherson, I., Marcotte, D., and Strawbridge, K., 2003: Characteristics of moisture and heat fluxes over leads and polynyas, and their effect on Arctic clouds during FIRE.ACE, Atmos.and Ocean, 41, 15-34.
    Gultepe, I., R. Tardif, S.C. Michaelides, J. Cermak, A. Bott, J. Bendix, M.D. Muller, M. Pagowski, B. Hansen, G. Ellrod, W. Jacobs, G. Toth, and S.G. Cober, 2007: Fog research: a review of past achievements and future perspectives, Pure Appl. Geophys., 164,1121-1159.
    Heidinger, A.K., and G.L. Stephens, 2000: Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensingin the O2 A band. J. Atmos. Sci., 57,1615-1634.
    Hong S.Y., Juang H.-M.H., Zhao Q., 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639.
    Hong S.Y., Dudhia Jimy, Chen Shu-hua. 2004: A Approach to Ice Microphysical Process for the Bulk Parameterization of Cloud and Precipitation. J. Atmos. Sci., 132, 103–130.
    Janjic, Z.I., 1990: The step-mountain coordinate:physical package, Mon.Wea.Rev., 118, 1429-1443
    Janjic,Z.I., 1994; The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes, Mon. Wea. Rev., 122, 927-945.
    Janjic, Z.I., 1996: The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 19-23 August; Amer. Meteor. Soc., Boston, MA, 354-355
    Janjic,Z.I., 2000: Comments on‘Development and Evaluation of a Convection Scheme for Use in Climate Model’, J. Atmos. Sci., 57, 3686
    Janjic, Z.I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, 2002, No.437,61 pp.
    Kain, J.S., and J.M.Fritsch, 1990: A one-dimensional entraing/detraining plume model and its application in convective parameterization, J.Atmos.Sci., 47,2784-2802
    Kain, J.S., and J.M.Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K.A.Emanuel and D.J.Raymond, Eds., Amer.Meteor.Soc., 246 pp.
    Kessler,W. 1969: On the distribution and continuity of water substance in atmospheric circulation. Meteor.Monogr., Amer .Meterl. Soc., 32, 84.
    Koracin D., J. Lewis, W.T. Thompson, C.E. Dorman and J.A. Businger, 2001: Transition of Stratus into Fog along the California Coast: Observations and Modeling, J. Atmos. Sci., 58, 1714-1731.
    Koracin, D., J.A.Businger, C.E.Dorman and J.M.Lewis, 2005: Formation, Evolution, and Dissipation of Coastal Sea Fog. Boundary-Layer Meteorology, 117:447-478.
    Koracin, D., D.F. Leipper, and J.M. Lewis, 2005:Modeling sea fog on the U.S. California coast during a hot spell event, GEOFIZIKA, 22, 59-82.
    Kunkel, B.A., 1984: Parameterization of droplet terminal velocity and extinction coefficient in fog models. J.Climate Appl. Meteor., 23:34-41.
    Lamb, H., 1943: Haars or North Sea fogs on the coasts of Great Britain. Meteorology Office Publication M. M. 504, 24 pp.
    Lin, Y.-L., R.D. Farley, and H.D. 1983: Orville, Bulk parameterization of the snow field in a cloud model, J. Climate, 22, 1065-1092.
    Lewis, J.M., D. Koracin, and K.T. Redmond, 2004: Sea fog research in the United Kingdom and United States: a historical essay including outlook. Bull. Amer. Meteor. Soc., 85,395-408.
    Mellor, G.L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problem, Rev. Geophys. Space Phys., 20, 851-875.
    Mlawer, E.J., S.J.Taubman, P.D.Brown, M.J.Iacono, and S.A.Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J.Geophys.Res., 102,D14,16663-16682.
    Minnis, P., P.W. Heck, D.F. Young, C.W. Fairall, and J.B. Snider, 1992: Stratocumulus cloud properties from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31, 317-339.
    Monin, A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci., USSR, 151, 163-187(in Russian)
    Paulson, C.A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteor., 9,857-861
    Reisner, J., Rasmussen R. M., Bruintjes R. T., 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart.J. Roy. Meteor. Soc., 124, 1071- 1107.
    Rutledge, S.A., and P.V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands, J. Atmos. Sci., 20, 2949-2972
    Sasamori, T., J. London, and D.V. Hoyt, 1972: Radiation budget of the Southern Hemisphere, Meteor. Monogr., 35, 9-23
    Stephens, G.L., 1972: Radiation profiles in extended water clouds. Part II: Parameterizationschemes, J.Atmos. Sci., 35, 2123-2132
    Stoelinga, M.T., and T.T.Warner, 1999: Nonhydrostatic mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event, J Appl Meteor, 38,385~404.
    Tao,W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment, Mon. Wea. Rev., 117, 231-235
    Thompson Gregory, Rasmussen Roy M., Manning Kevin. 2004: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Monthly Weather Review, 132, 519–542.
    Walko, R. L., Cotton W. R., Meyers M. P., Harrington J. Y., 1995: New RAMS cloud microphysics parameterization. Part I: The single - moment scheme. Atmos. Res.,38, 29~62.
    Webb, E.K., 1970: Profile relationships: The log-linear range, and extension to strong stability, Quart. J. Roy. Meteor. Soc., 96, 67-90
    Wicker, L.J., and R.B. 1995: Wilhelmson, Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm, J. Atmos. Sci., 52, 2675-2703
    Xie, Shang-Ping. 2004: Satellite Observations of Cool Ocean–Atmosphere interaction, Bull. Amer. Meteor. Soc., 84,195-208
    Zhang, D.-L., and R.A. Anthes, 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data, J. Appl. Meteor., 21,1594-1609
    ZHANG Suping, Ren Zhaopeng, Liu Jingwu,Yang Yuqiang, Wang Xingong. 2008:Variations in the lower level of the PBL associated with the Yellow Sea Fog—New Observations by L-band Radar. J.Ocean Uni.China, 7(4):353-361.
    Zhao Q., Carr F. H. 1997: A Prognostic Cloud Scheme for Operational NWP Models. Mon. Wea. Rev., 125, 1931- 1953.
    Zilitinkevich, S.S., 1995: Non-local turbulent transport: pollution dispersion aspects of coherent structure of convective flows, Air Pollution III ---- Volume I. Air Pollution Theory and Simulation, Eds. H. Power, N. Moussiopoulos and C.A. Brebbia. Computational Mechanics Publications, Southampton Boston, 53-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700