用户名: 密码: 验证码:
渤海夏季海气通量船基系统观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气边界层又称为行星边界层,通常指从地面到高度约为1~1.5千米之间的大气层,以海洋为下垫面的大气边界层即为海洋大气边界层。边界层大气湍流运动方面的研究表明,湍流属性的输送过程对于边界层以及更高层次大气中的动量、热量、水汽等物理量的输送和平衡都有着重要的作用。海洋大气边界是海洋—大气能量和物质交换的桥梁。进入20世纪以来,人们越来越意识到海洋对于人类的重要性,而且也认识到海洋与大气运动有着密切的联系。海气之间湍流通量的观测在全球气候变化研究中有着十分重要的意义。
     本文尝试性的利用船体运动姿态监测系统辅助涡动相关系统的观测,使其精确记录涡动相关系统相对于地球坐标系下的移动速度和系统对于自自身重心的旋转、俯仰、摇摆的偏离角度,并根据Edson(1998)提出的船体运动修正公式计算出真实的三维风速。通过这一方法,初步解决了船体晃动对实际观测的影响。利用2005年渤海夏季的观测数据,分析了不同典型天气条件下的湍流特征结构和海气通量,以及风速、温度对湍流强度和海气通量的影响。研究表明:
     ①渤海夏季在晴天时,海气边界层湍流不稳定层结时,风速分量的归一化谱在惯性副区中仍遵循-2/3指数率,但是在稳定度参数参数ξ接近于0,即近似中性层结时,风速分量的归一化谱在惯性副区中的不符合-2/3指数率。在雾天时,风速分量的归一化谱在惯性副区中也仍遵循-2/3指数率。在晴天时,湍流近似满足各向同性条件;在雾天时,湍流很好地满足各向同性的条件,在雾天条件下的空气湍流相比晴天条件下具有更显著的各向同性的性质。
     ②在晴天时,随着稳定度的增加,湍流强度也随之增加,湍流强度与水平风速有显著的负相关关系。在雾天时,随着稳定度的增加,湍流强度降低;风速对湍流强度影响不明显。台风过程时,随着稳定度的增加,湍流强度也增加,湍流强度与水平风速有显著的正相关关系。在中性层结条件下,湍流强度均为Iu>Iv>Iw,但是在台风时的Iv与Iw已经十分接近。Iw在晴天时最大,而Iu和Iv在台风时最大,湍流总强度从大到小依次为台风、晴天、雾天。
     ③在不同天气条件下,水平风速对湍流强度的影响不同。在晴天时,湍流强度与水平风速有显著的负相关关系;在雾天时,二者的相关性不明显;在台风过程中,二者为显著的正相关关系。中性层结条件下,湍流强度均为Iu>Iv>Iw,但是在台风时的Iv与Iw已经十分接近,在个别时段,Iv>Iu。Iw在晴天时最大,而Iu和Iv在台风时最大,湍流总强度从大到小依次为台风、晴天、雾天。
     ④在晴天和雾天时,感热通量均与气温有显著的负相关关系。晴天条件下,感热通量日平均值为3.0W/m2;雾天条件下,感热通量日平均值为-5.9W/m2。雾天时感热由大气向海洋传输;而在晴天时,当气温变化时,感热输送方向可能改变。晴天时潜热通量与水平风速有显著的正相关关系,其日平均值为88.5W/ m2。
     ⑤在高海况条件下使用涡动相关法进行海气边界层观测时,使用船体运动姿态监测系统对观测的三维风速进行修正是十分必要的。如不进行修正,计算出的结果往往偏大。
Previous studies on turbulence in the atmosphere boundary layer showed that the transferring of turbulence properties plays significant roles in the transferring and balance of momentum, heat and water vapor. Since the 20 century, people have realized the importance of ocean, and also known the close relationship between ocean and atmosphere. Atmospheric-oceanic boundary is the bridge of energy and matter exchange between air and sea. The observation of turbulent flux between air and sea is much important in the study of global climatic variation.
     In this study, we tried to observe the air-sea momentum, heat and CO2 fluxes in the summer over Bohai Sea by eddy correlation system with help of ship movement and gesture monitoring system. The ship movement and gesture monitoring system could record the speed of eddy correlation system relative to earth coordinate, and also the rotating, rocking and rolling angles in high precision. Moreover, we calculated the real 3-D wind speed according to boat movement modified equation proposed by Edson (1998). By this observation and data process, we studied the basic effects of ship shaking on air-sea flux observation.
     Based on the observation data from summer cruise over the Bohai Sea in 2005, we analyzed turbulence structure and air-sea fluxes in different weather conditions. Moreover, the influences of wind speed and air temperature on turbulence intensity and air-sea flux are also investigated. Conclusions are listed as follows.
     1. In clear sky condition, when air-sea boundary layer is in unsteady stratification, the normalized spectrum of wind speed complies with -2/3 exponential rule in the inertial subarea, but when the stabilization parameterξis close to 0, i.e. the neutral stratification, the normalized spectrum of wind speed doesn’t comply with this classic rule in the inertial subarea. In foggy condition, the spectrum still abides by the rule in this subarea. Additionally, turbulence meets the isotropic condition approximately in clear sky, and it entirely meets the isotropic condition in foggy sky.
     2. In clear sky condition, turbulent intensity increases with increases of the stabilization, which indicates the particularity of turbulent intensity. In foggy condition, turbulent intensity decreased with increases of the stabilization, and the wind speed has no clear effect on the turbulent intensity. In a typhoon process, turbulent intensity increases with the increases of the stabilization, and they have significant positive correlation.
     3. The influences of wind speed on turbulent intensity are different in different sky conditions. If it is in the neutral stratification, turbulent intensities are Iu>Iv>Iw, but in the typhoon, Iv is usually close to Iw, and in some times, Iv>Iu. Iw reaches the maximum in the clear condition, but Iu and Iv get the maximum in the typhoon process. The total turbulent intensity in typhoon is the strongest, and then the clear sky condition and the weakest is in the foggy condition.
     4. Both in clear and foggy conditions, sensible and latent heat flux have negative correlations to the air temperature. In clear sky, the daily mean of sensible heat flux is 3.0 W/m~2. In foggy condition, it is -5.9 W/m~2, and transferred from atmosphere to ocean. However in the clear condition, transfer direction of sensible heat may alter due to the variation of air temperature. Latent heat flux has significantly positive correlation with wind speed in the clear sky, and the daily mean value is 88.5 W/m2.
     5. In clear sky, the mean wind speed is 8.2 m/s; mean momentum flux is 0.138 N/m~2s. In foggy sky, wind speed is 6.1 m/s; momentum flux is 0.03 N/m~2s. In typhoon process, wind speed is 12.0 m/s, momentum flux is 0.30 N/m~2s. We could sum up that the wind speed is key factor of the momentum flux.
     6. In worse sea environment, it is necessary to revise the 3-D wind speed by ship movement and gesture monitoring system when we use eddy correlation to observe the air-sea boundary layer. If it is not revised, the calculation result will deviate a lot from the real condition.
引文
[1] Yann Bozec,Helmuth Thomas,Khalid Elkalay.The continental shelf pump for CO2 in the North sea-evidence from summer observation.Marine Chemistry,2005,93:131-147
    [2] Clinton D.Winant ,Clive E.Dorman. Seasonal patterns of surface wind stress and heat flux over the Southern California Bight. Journal of Geophysical Reseach, 1997, 102:5641-5653
    [3] Craig Gilman , Chris Garrett. Heat flux parameterizations for the Mediterranean Sea. The role of atmospheric aerosols and constraints from the water budget. Journal of Geophysical Reseach, 1994, 99:5119-5134
    [4] E.W.Schulz, B.G Sanderson, E.F.Bradley. Motion Correction for Shipborne Turbulence Sensors. American Meteorological Society , 2005,22:55– 69
    [5] J. B. Edson, A. A. Hinton , and K. E. Prada. Direct Covariance Flux Estimates from Mobile Platforms at Sea. Jouranl of Atmospheric and Oceanic Technology , 1998, 15;547-562
    [6] Jiang Zhu , Masafumi Kamachi and Dongxiao Wang. Estimation of air-sea heat flux from ocean measurements-- An ill-posed problem. Journal of Geophysical Reseach, 2002, 107:23.1-23.15
    [7] Knud Simonsen and Peter M.Haugan. Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. Journal of Geophysical Reseach, 1996, 101:6553-6576
    [8] L. Eymard, A. Weill, D. Bourras, C. Gue′rin, P. Le Borgne, and J. M. Lefe`vre. Use of ship mean data for validating model and satellite flux fields during the FETCH experiment. Journal of Geophysical Reseach, 2003, 108:8,1-8,20
    [9] Michael A. Brunke , Xubin Zeng and Steven Anderson . Uncertainties in sea surface turbulent flux algorithms and data sets. Journal ofGeophysical Reseach, 2002, 107:5,1-5,21
    [10] Miles G.McPhee. An inertial-dissipation method for estimating turbulent flux in buoyancy-driven, convective boundary layers. Journal of Geophysical Reseach, 1998, 103:3249-3255
    [11] Mark P.Stephens, Geaffrey Samuels, Donald B.Olson and Rana A.Fine. Sea-air flux of CO2 in the North Pacific using shipboard and satellite data . Journal of Geophysical Reseach, 1995, 100:13,571-13,583
    [12] P. Ola ,G. Persson,Christopher W. Fairall,Edgar L. Andreas,Peter S. Guest,and DonaldK.Perovich. Measurements near the Atmospheric Surface Flux Group tower at SHEBA-Near-surface conditions and surface energy budget. Journal of Geophysical Reseach, 2002, 107:5119-5134
    [13] Rana A. Fine, Kevin A. Maillet, Kevin F. Sullivan, and Debra Willey. Circulation and Ventilation flux of the Pacific Ocean. Journal of Geophysical Reseach, 2001, 106:22.159-22.178
    [14] Scarse F J. Some characteristics of eddy motion in the atmosphere. Geophysicsical Memoirs,1930,52
    [15] Simon A.Josey and Daniel Oakley. On estimating the atmospheric longwave flux at the ocean surface from ship meteorological reports . Journal of Geophysical Reseach, 1997, 102:27,961-27,972
    [16] Swinbank W C. Measurement of vertical transfer of heat and water vapour by eddies in the low atmosphere.Journal of Meteorology, 1951,8:135-145
    [17] S.-C.Kim,C.T.Friendrichs,Member,ASCE,J.P.-Maa,and L.D.Wrihgt. Estimating Bottom Stress in Tidal Boundary Layer from Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering.June 2000:399-406
    [18] S.Pond,G.T.Phelps and J.E.Paquin. Measurements of the Turbulent Fluxes of Momentum, Moisture and Sensible Heat over the Ocean.Journal of the Atmospheric sciences , 1971, 28:901-917
    [19] W.G. Large, S.Pond. Sensible and Latent Heat Flux Measurements over the Ocean. American Meteorological Society ,2003, 108:5.1–5.16
    [20] Wu-ting Tsai, Kon-Kee Liu. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux. Journal of Geophysical Reseach, 2003, 108:24.1-24.16
    [21] Xuhui Lee,William Massman,Beverly Law.Handbook of Micrometeorology: Kluwer Academic Publishers,2004
    [22] Youichi Tanimoto, Hisashi Nakamura, Takashi Kagimoto, and Shozo Yamane. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. Journal of Geophysical Reseach, 2003, 108:2.1-2.12
    [23]陈红岩,胡非,曾庆存.处理时间序列提高计算湍流通量的精度.气候与环境研究,2000,5(3):304-311
    [24]陈陟,李诗明,吕乃平,等. TOGA-COARE lOP期间的海气通量观测结果.地球物理学报,1997,40(6):753-762
    [25]程志强.南海海一气热交换的热通量分布.热带海洋,1996,15(2): 74-78
    [26]丁一汇,李崇银,何金海,等.南海季风试验与东亚夏季风.气象学报,2004,62(5):561-586
    [27]郭晓峰,康凌,蔡旭辉,等.华南农田下垫面地气交换和能量收支的观测研究.大气科学,2006,30(3):453-463
    [28]高会旺、管玉平、陈长和,等.河谷城市小风条件下的近地层湍流特征.大气科学,1998,22(6):896-904
    [29]高众勇,陈立奇,王伟强.南大洋二氧化碳源汇分布及其海一气通量研究.极地研究,2001,13(3):175-186
    [30]胡敦欣,赵永平,陆蔼庆,等.船上海气之间湍流通量的观测研究.海洋与湖沼,1996.27(2):163-168
    [31]蒋国荣,何金海,王东晓.南海夏季风爆发前后海—气界面热交换特征.气象学报2004,62(2):189-199
    [32]李富余,王凯,张宏升,等.采样长度和频率对大气湍流数据处理结果的影响.气象水文海洋仪器,2003,3 :25-31
    [33]李富余,张宏升,李诗明,等.青藏高原当雄地区湍流脉动耗散率特征研究.北京大学学报(自然科学版),2004,40(5):781-787
    [34]陆蔼庆,赵永平,陈永利,等.船舶运动速度及姿态角监测系统.海洋科学,1994.(3):16-19
    [35]刘和平,刘树华,朱廷曜,等.森林冠层湍流结构的特征研究.北京大学学报(自然科学版),1997,33(2):246-253
    [36]刘树华,胡非.森林冠层上湍流尺度、耗散率和湍流结构参数.北京大学学报(自然科学版). 2003,39(1):73-82
    [37]刘树华,刘和平,X. Mei等.森林冠层上下湍流谱结构和耗散率.中国科学(D辑),1998,28(5):469-480
    [38]刘树华,刘和平,洪钟祥,等.我国草原下垫面低层大气湍流结构.大气科学,1996,20(3):378-383
    [39]刘树华,李洁,刘和平,等.在EBEX-2000实验资料中湍流谱和局地各向同性特征.大气科学,2005,29(2):213-224
    [40]苗曼倩,张雷鸣.非定常天气海面通量特征.大气科学,1990,14(4):464-474
    [41]马晓光,胡非.大气湍流能谱的精细结构及能量级串.地球物理学报.2004,47(2):195-199
    [42]门雅彬.船基系统海气通量测量方法研究.海洋技术,2004.23(3):51-54
    [43]钱粉兰,周明煜.太平洋海域海气热通量地理分布和时间变化的研究.海洋学报,2006,23(1):22-28
    [44]钱莉英,周乐义,周晓平.一种船载海面通量观测的校正方法.海洋科学, 1994,4:59-63
    [45]曲绍厚,胡非.北冰洋海域极昼期间海-冰-气间湍流通量交换特征.自然科学进展,2000,10(9):836-841
    [46] R.B斯塔尔.边界层气象学导论,青岛:青岛海洋大学出版社,1991
    [47]邵庆秋,周明煜,李兴生.洋面动量、感热和潜热通量计算的研究.大气科学, 1991,15(3):9-17
    [48]沈艳,刘允芬,王堰,等.应用涡动相关法计算水热、CO2通量的国内外进展概况.南京气象学院学报,2005,28(4):559-566
    [49]谭燕,张龙军,王凡,等.夏季东海西部表层海水中的pCO2及海-气界面通量.海洋与湖沼,2004,35(3):239-245
    [50]王丽娟,王辉,闫俊岳,等.南海海气界面潜热通量的分布特征及其对西南季风爆发影响的初步分析.海洋学报,2008. 30(1):20-30
    [51]吴迪生,邓文珍,张俊峰.南海台风状况下海气界面热量交换研究.大气科学,2001,25(3)329-341:
    [52]徐静琦,魏浩,张正,等.青岛市海雾海气通量观测及其作用初探.气象学报,1996,54(2):207-215
    [53]姚华栋,任雪娟,马开玉. 1998年南海季风试验期间海一气通量的估算.应用气象学报,2003,14(1):87-92
    [54]闫俊岳,唐志毅,姚华栋,等.南海西南季风爆发前后海—气通量交换系数研究.气象学报,2006,64(3):335-344
    [55]阎俊岳.中国邻海海-气热量、水汽通量计算和分析.应用气象学报,1999,10(1):9-19
    [56]张宏升,康凌,张霭琛,等.大气湍流数据处理系统及计算方法的讨论.气象水文海洋仪器,2001,1:1-11
    [57]褚健婷,陈锦年,许兰英.海-气界面热通量算法的研究.海洋与湖沼,2006.37(6):481-487
    [58]周明煜,钱粉兰.中国近海及其邻近海域海气热通量的模式计算.海洋学报, 1998,20(6):21-30
    [59]张正斌,杨桂朋,刘莲生,等.物质海—气通量计算的新建议.科学通报,1997,42(9):943-946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700